生物多样性 ›› 2021, Vol. 29 ›› Issue (7): 927-937. DOI: 10.17520/biods.2020434
收稿日期:
2020-11-20
接受日期:
2021-02-09
出版日期:
2021-07-20
发布日期:
2021-03-09
通讯作者:
* 严云志 E-mail: yanyunzhi@ahnu.edu.cn
作者简介:
# 共同第一作者
基金资助:
Jiayun He#, Dong Zhang#, Ling Chu, Yunzhi Yan*()
Received:
2020-11-20
Accepted:
2021-02-09
Online:
2021-07-20
Published:
2021-03-09
Contact:
* Yunzhi Yan E-mail: yanyunzhi@ahnu.edu.cn
About author:
# Co-first authors
摘要:
溪流鱼类多样性沿着河流纵向梯度的空间分布规律已得到大量报道, 但这些研究大多聚焦基于物种组成的分类α多样性, 而有关分类β多样性和功能多样性的纵向梯度分布规律及其对人类干扰的响应研究较少。本文以青弋江上游3条人为干扰程度不同的河源溪流为研究区域, 比较研究了人为干扰对溪流鱼类功能α和β多样性及其纵向梯度分布格局的影响。结果显示, 人类干扰改变了河源溪流鱼类功能多样性的纵向梯度格局——由线性变化变为二项式分布。此外, 我们发现, 人为干扰导致土著种被本地入侵种取代, 且较强的土地利用和水污染排放可能增大环境的不连续性, 而群落周转和嵌套变化往往取决于环境的变化。尽管功能β多样性由嵌套成分主导, 但周转成分占比相对于人为干扰较小的溪流而言明显增加。人为干扰显著改变了受干扰溪流鱼类的物种组成和功能多样性, 且功能多样性的纵向梯度格局在不同的多样性指标上存在差异。本研究强调, 在评估人为干扰下多样性的变化时, 需要从多方面考虑, 包括空间尺度和多样性指标等。
贺佳云, 张东, 储玲, 严云志 (2021) 人为干扰对溪流鱼类功能多样性及其纵向梯度格局的影响. 生物多样性, 29, 927-937. DOI: 10.17520/biods.2020434.
Jiayun He, Dong Zhang, Ling Chu, Yunzhi Yan (2021) Anthropogenic disturbances affect the functional diversity of stream fishes and its longitudinal patterns in China. Biodiversity Science, 29, 927-937. DOI: 10.17520/biods.2020434.
功能特征 Functional traits | 计算方法 Measure | 生态学意义 Ecological meaning | 参考文献 Reference |
---|---|---|---|
眼睛相对大小 Relative eye size | 眼径/头长 Ed/Hd | 对食物的可视范围 Visual scope to food | |
眼睛相对位置 Relative eye position | 眼位/头高 Eh/Hd | 在水体中的垂直位置 Vertical position in water | |
口裂位置 Mouth gape position | 口位/头高 Mo/Hd | 在水中的生活位置 Living position in water | |
相对肠长 Relative gut length | 肠长/体长 Gl/Bl | 食物消化能力 Ability to digest food | |
体型指标I Body shape I | 体高/体宽 Bd/Bw | 在水体中的栖息位置及游泳能力 Habitat location and swimming ability in water | |
体型指标II Body shape II | 体高/体长 Bd/Bl | 在水体中的栖息位置及游泳能力 Habitat location and swimming ability in water | |
尾柄对游泳的贡献 Contribution of caudal peduncle to the swimming capability | 最大尾鳍高/最小尾柄宽 CFd/CPd | 游泳持久性 Staying power to swimming |
表1 本研究所使用的鱼类功能特征
Table 1 The functional traits measured for each fish species in this study
功能特征 Functional traits | 计算方法 Measure | 生态学意义 Ecological meaning | 参考文献 Reference |
---|---|---|---|
眼睛相对大小 Relative eye size | 眼径/头长 Ed/Hd | 对食物的可视范围 Visual scope to food | |
眼睛相对位置 Relative eye position | 眼位/头高 Eh/Hd | 在水体中的垂直位置 Vertical position in water | |
口裂位置 Mouth gape position | 口位/头高 Mo/Hd | 在水中的生活位置 Living position in water | |
相对肠长 Relative gut length | 肠长/体长 Gl/Bl | 食物消化能力 Ability to digest food | |
体型指标I Body shape I | 体高/体宽 Bd/Bw | 在水体中的栖息位置及游泳能力 Habitat location and swimming ability in water | |
体型指标II Body shape II | 体高/体长 Bd/Bl | 在水体中的栖息位置及游泳能力 Habitat location and swimming ability in water | |
尾柄对游泳的贡献 Contribution of caudal peduncle to the swimming capability | 最大尾鳍高/最小尾柄宽 CFd/CPd | 游泳持久性 Staying power to swimming |
物种 Species | 平均多度 Average abundance | 舒溪 vs. 麻溪 Shuxi vs. Maxi | 舒溪 vs. 浦溪 Shuxi vs. Puxi | ||||
---|---|---|---|---|---|---|---|
舒溪 Shuxi | 麻溪 Maxi | 浦溪 Puxi | 平均不相似性 Average dissimilarity | 贡献率 Contribution (%) | 平均不相似性 Average dissimilarity | 贡献率 Contribution (%) | |
光唇鱼 Acrossocheilus fasciatus | 0.91 | 0.17 | 4.69 | 8.27 | |||
原缨口鳅 Vanmanenia stenosoma | 0.91 | 0.33 | 0 | 4.01 | 7.08 | 5.09 | 10.33 |
稀有花鳅 Cobitis rarus | 0.73 | 0.17 | 0.11 | 3.95 | 6.96 | 3.74 | 7.59 |
河川沙塘鳢 Odontobutis obscurus | 0 | 0.58 | 3.34 | 5.89 | |||
麦穗鱼 Pseudorasbora parva | 0.27 | 0.56 | 2.84 | 5.77 | |||
中华花鳅 Cobitis sinensis | 0.55 | 0.17 | 0.56 | 3.28 | 5.79 | 2.83 | 5.75 |
高体鳑鲏 Rhodeus ocellatus | 0.55 | 0.58 | 0.56 | 3.05 | 5.37 | 2.82 | 5.72 |
花斑副沙鳅 Parabotia fasciata | 0.27 | 0.44 | 2.75 | 5.58 | |||
似? Belligobio nummifer | 0.45 | 0.33 | 0.33 | 2.93 | 5.17 | 2.73 | 5.54 |
泥鳅 Misgurnus anguillicaudatus | 0.64 | 0.67 | 2.87 | 5.07 | |||
银鮈 Squalidus argentatus | 0.36 | 0.17 | 0.44 | 2.54 | 4.47 | 2.73 | 5.54 |
表2 基于相似百分比分析得到的溪流间物种组成差异的鱼类关键种
Table 2 The key fish species contributing the between-stream composition difference based on similarity percentages
物种 Species | 平均多度 Average abundance | 舒溪 vs. 麻溪 Shuxi vs. Maxi | 舒溪 vs. 浦溪 Shuxi vs. Puxi | ||||
---|---|---|---|---|---|---|---|
舒溪 Shuxi | 麻溪 Maxi | 浦溪 Puxi | 平均不相似性 Average dissimilarity | 贡献率 Contribution (%) | 平均不相似性 Average dissimilarity | 贡献率 Contribution (%) | |
光唇鱼 Acrossocheilus fasciatus | 0.91 | 0.17 | 4.69 | 8.27 | |||
原缨口鳅 Vanmanenia stenosoma | 0.91 | 0.33 | 0 | 4.01 | 7.08 | 5.09 | 10.33 |
稀有花鳅 Cobitis rarus | 0.73 | 0.17 | 0.11 | 3.95 | 6.96 | 3.74 | 7.59 |
河川沙塘鳢 Odontobutis obscurus | 0 | 0.58 | 3.34 | 5.89 | |||
麦穗鱼 Pseudorasbora parva | 0.27 | 0.56 | 2.84 | 5.77 | |||
中华花鳅 Cobitis sinensis | 0.55 | 0.17 | 0.56 | 3.28 | 5.79 | 2.83 | 5.75 |
高体鳑鲏 Rhodeus ocellatus | 0.55 | 0.58 | 0.56 | 3.05 | 5.37 | 2.82 | 5.72 |
花斑副沙鳅 Parabotia fasciata | 0.27 | 0.44 | 2.75 | 5.58 | |||
似? Belligobio nummifer | 0.45 | 0.33 | 0.33 | 2.93 | 5.17 | 2.73 | 5.54 |
泥鳅 Misgurnus anguillicaudatus | 0.64 | 0.67 | 2.87 | 5.07 | |||
银鮈 Squalidus argentatus | 0.36 | 0.17 | 0.44 | 2.54 | 4.47 | 2.73 | 5.54 |
功能多样性 Functional diversity | 多样性指数 Diversity index | 分类变量 Factors | T-III SS | F | P | 组间比较 S-N-K |
---|---|---|---|---|---|---|
α多样性 α diversity | 功能丰富度 Functional richness | 溪流 Stream | 268.569 | 5.629 | 0.010 | 舒溪 < 麻溪 = 浦溪 SS < MS = PS |
河段 Segment | 173.811 | 3.643 | 0.042 | 上游 < 中游 = 下游 Up < Mi = Lo | ||
溪流 × 河段 Stream × Segment | 300.09 | 3.145 | 0.034 | |||
功能均匀度 Functional evenness | 溪流 Stream | 0.003 | 1.444 | 0.256 | ||
河段 Segment | 0.002 | 1.033 | 0.372 | |||
溪流 × 河段 Stream × Segment | 0.007 | 1.485 | 0.239 | |||
功能离散度 Functional divergence | 溪流 Stream | 0.029 | 14.189 | 0.000 | 舒溪 > 浦溪 = 麻溪 SS > PS = MS | |
河段 Segment | 0.001 | 0.658 | 0.527 | |||
溪流 × 河段 Stream × Segment | 0.011 | 2.595 | 0.063 | |||
β多样性 β diversity | 功能β多样性 Functional βsør diversity | 溪流 Stream | 0.328 | 13.749 | 0.000 | 舒溪 < 浦溪 = 麻溪 SS < PS = MS |
河段 Segment | 0.003 | 0.125 | 0.883 | |||
溪流 × 河段 Stream × Segment | 0.086 | 1.804 | 0.063 | |||
功能嵌套 Functional βnes diversity | 溪流 Stream | 0.029 | 1.661 | 0.212 | ||
河段 Segment | 0.007 | 0.385 | 0.685 | |||
溪流 × 河段 Stream × Segment | 0.014 | 0.385 | 0.817 | |||
功能周转 Functional βtur diversity | 溪流 Stream | 0.477 | 25.032 | 0.000 | 舒溪 < 浦溪 < 麻溪 SS < PS < MS | |
河段 Segment | 0.013 | 0.695 | 0.509 | |||
溪流 × 河段 Stream × Segment | 0.091 | 2.400 | 0.079 |
表3 溪流和河段对鱼类功能α多样性和β多样性的影响
Table 3 Effect of streams and segments on the functional α and β diversity of fish assemblages
功能多样性 Functional diversity | 多样性指数 Diversity index | 分类变量 Factors | T-III SS | F | P | 组间比较 S-N-K |
---|---|---|---|---|---|---|
α多样性 α diversity | 功能丰富度 Functional richness | 溪流 Stream | 268.569 | 5.629 | 0.010 | 舒溪 < 麻溪 = 浦溪 SS < MS = PS |
河段 Segment | 173.811 | 3.643 | 0.042 | 上游 < 中游 = 下游 Up < Mi = Lo | ||
溪流 × 河段 Stream × Segment | 300.09 | 3.145 | 0.034 | |||
功能均匀度 Functional evenness | 溪流 Stream | 0.003 | 1.444 | 0.256 | ||
河段 Segment | 0.002 | 1.033 | 0.372 | |||
溪流 × 河段 Stream × Segment | 0.007 | 1.485 | 0.239 | |||
功能离散度 Functional divergence | 溪流 Stream | 0.029 | 14.189 | 0.000 | 舒溪 > 浦溪 = 麻溪 SS > PS = MS | |
河段 Segment | 0.001 | 0.658 | 0.527 | |||
溪流 × 河段 Stream × Segment | 0.011 | 2.595 | 0.063 | |||
β多样性 β diversity | 功能β多样性 Functional βsør diversity | 溪流 Stream | 0.328 | 13.749 | 0.000 | 舒溪 < 浦溪 = 麻溪 SS < PS = MS |
河段 Segment | 0.003 | 0.125 | 0.883 | |||
溪流 × 河段 Stream × Segment | 0.086 | 1.804 | 0.063 | |||
功能嵌套 Functional βnes diversity | 溪流 Stream | 0.029 | 1.661 | 0.212 | ||
河段 Segment | 0.007 | 0.385 | 0.685 | |||
溪流 × 河段 Stream × Segment | 0.014 | 0.385 | 0.817 | |||
功能周转 Functional βtur diversity | 溪流 Stream | 0.477 | 25.032 | 0.000 | 舒溪 < 浦溪 < 麻溪 SS < PS < MS | |
河段 Segment | 0.013 | 0.695 | 0.509 | |||
溪流 × 河段 Stream × Segment | 0.091 | 2.400 | 0.079 |
功能多样性 Functional diversity | 多样性指数 Diversity index | 溪流 Stream | 模型 Models | R2 | F | P |
---|---|---|---|---|---|---|
α多样性 α diversity | 功能丰富度 Functional richness | 舒溪 Shuxi | 线性 Linear | 0.410 | 6.310 | 0.033*# |
二次项 Quadratic | 0.418 | 2.870 | 0.115 | |||
麻溪 Maxi | 线性 Linear | 0.092 | 1.013 | 0.338 | ||
二次项 Quadratic | 0.648 | 8.288 | 0.009* | |||
浦溪 Puxi | 线性 Linear | 0.052 | 0.387 | 0.554 | ||
二次项 Quadratic | 0.434 | 2.304 | 0.081 | |||
功能均匀度 Functional evenness | 舒溪 Shuxi | 线性 Linear | 0.120 | 1.210 | 0.300 | |
二次项 Quadratic | 0.350 | 2.180 | 0.175 | |||
麻溪 Maxi | 线性 Linear | 0.288 | 4.045 | 0.072# | ||
二次项 Quadratic | 0.317 | 2.091 | 0.182 | |||
浦溪 Puxi | 线性 Linear | 0.183 | 1.571 | 0.250 | ||
二次项 Quadratic | 0.274 | 1.132 | 0.383 | |||
功能离散度 Functional divergence | 舒溪 Shuxi | 线性 Linear | 0.395 | 5.880 | 0.038*# | |
二次项 Quadratic | 0.398 | 2.640 | 0.132 | |||
麻溪 Maxi | 线性 Linear | 0.003 | 0.029 | 0.868 | ||
二次项 Quadratic | 0.132 | 0.682 | 0.530 | |||
浦溪 Puxi | 线性 Linear | 0.045 | 0.328 | 0.585 | ||
二次项 Quadratic | 0.578 | 4.104 | 0.075 | |||
β多样性 β diversity | 功能βsør多样性 Functional βsør diversity | 舒溪 Shuxi | 线性 Linear | 0.339 | 4.624 | 0.060# |
二次项 Quadratic | 0.347 | 2.123 | 0.182 | |||
麻溪 Maxi | 线性 Linear | 0.080 | 0.865 | 0.374 | ||
二次项 Quadratic | 0.598 | 6.700 | 0.017* | |||
浦溪 Puxi | 线性 Linear | 0.324 | 3.356 | 0.110 | ||
二次项 Quadratic | 0.352 | 1.632 | 0.272 | |||
功能βnes多样性 Functional βnes diversity | 舒溪 Shuxi | 线性 Linear | 0.124 | 1.278 | 0.287 | |
二次项 Quadratic | 0.132 | 0.610 | 0.567 | |||
麻溪 Maxi | 线性 Linear | 0.039 | 0.407 | 0.538 | ||
二次项 Quadratic | 0.102 | 0.508 | 0.618 | |||
浦溪 Puxi | 线性 Linear | 0.000 | 0.002 | 0.962 | ||
二次项 Quadratic | 0.477 | 2.737 | 0.431 | |||
功能βtur多样性 Functional βtur diversity | 舒溪 Shuxi | 线性 Linear | 0.147 | 1.551 | 0.244 | |
二次项 Quadratic | 0.255 | 1.368 | 0.308 | |||
麻溪 Maxi | 线性 Linear | 0.008 | 0.079 | 0.785 | ||
二次项 Quadratic | 0.186 | 1.029 | 0.396 | |||
浦溪 Puxi | 线性 Linear | 0.322 | 3.320 | 0.111 | ||
二次项 Quadratic | 0.338 | 1.533 | 0.290 |
表4 功能α和β多样性与距河源距离的线性和二次项模型的统计数据
Table 4 Summary statistic for the linear and quadratic models explaining the correlations between functional diversities and distance from headwaters
功能多样性 Functional diversity | 多样性指数 Diversity index | 溪流 Stream | 模型 Models | R2 | F | P |
---|---|---|---|---|---|---|
α多样性 α diversity | 功能丰富度 Functional richness | 舒溪 Shuxi | 线性 Linear | 0.410 | 6.310 | 0.033*# |
二次项 Quadratic | 0.418 | 2.870 | 0.115 | |||
麻溪 Maxi | 线性 Linear | 0.092 | 1.013 | 0.338 | ||
二次项 Quadratic | 0.648 | 8.288 | 0.009* | |||
浦溪 Puxi | 线性 Linear | 0.052 | 0.387 | 0.554 | ||
二次项 Quadratic | 0.434 | 2.304 | 0.081 | |||
功能均匀度 Functional evenness | 舒溪 Shuxi | 线性 Linear | 0.120 | 1.210 | 0.300 | |
二次项 Quadratic | 0.350 | 2.180 | 0.175 | |||
麻溪 Maxi | 线性 Linear | 0.288 | 4.045 | 0.072# | ||
二次项 Quadratic | 0.317 | 2.091 | 0.182 | |||
浦溪 Puxi | 线性 Linear | 0.183 | 1.571 | 0.250 | ||
二次项 Quadratic | 0.274 | 1.132 | 0.383 | |||
功能离散度 Functional divergence | 舒溪 Shuxi | 线性 Linear | 0.395 | 5.880 | 0.038*# | |
二次项 Quadratic | 0.398 | 2.640 | 0.132 | |||
麻溪 Maxi | 线性 Linear | 0.003 | 0.029 | 0.868 | ||
二次项 Quadratic | 0.132 | 0.682 | 0.530 | |||
浦溪 Puxi | 线性 Linear | 0.045 | 0.328 | 0.585 | ||
二次项 Quadratic | 0.578 | 4.104 | 0.075 | |||
β多样性 β diversity | 功能βsør多样性 Functional βsør diversity | 舒溪 Shuxi | 线性 Linear | 0.339 | 4.624 | 0.060# |
二次项 Quadratic | 0.347 | 2.123 | 0.182 | |||
麻溪 Maxi | 线性 Linear | 0.080 | 0.865 | 0.374 | ||
二次项 Quadratic | 0.598 | 6.700 | 0.017* | |||
浦溪 Puxi | 线性 Linear | 0.324 | 3.356 | 0.110 | ||
二次项 Quadratic | 0.352 | 1.632 | 0.272 | |||
功能βnes多样性 Functional βnes diversity | 舒溪 Shuxi | 线性 Linear | 0.124 | 1.278 | 0.287 | |
二次项 Quadratic | 0.132 | 0.610 | 0.567 | |||
麻溪 Maxi | 线性 Linear | 0.039 | 0.407 | 0.538 | ||
二次项 Quadratic | 0.102 | 0.508 | 0.618 | |||
浦溪 Puxi | 线性 Linear | 0.000 | 0.002 | 0.962 | ||
二次项 Quadratic | 0.477 | 2.737 | 0.431 | |||
功能βtur多样性 Functional βtur diversity | 舒溪 Shuxi | 线性 Linear | 0.147 | 1.551 | 0.244 | |
二次项 Quadratic | 0.255 | 1.368 | 0.308 | |||
麻溪 Maxi | 线性 Linear | 0.008 | 0.079 | 0.785 | ||
二次项 Quadratic | 0.186 | 1.029 | 0.396 | |||
浦溪 Puxi | 线性 Linear | 0.322 | 3.320 | 0.111 | ||
二次项 Quadratic | 0.338 | 1.533 | 0.290 |
[1] |
Allan JD (2004) Landscapes and riverscapes: The influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics, 35, 257-284.
DOI URL |
[2] |
Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134-143.
DOI URL |
[3] |
Bishop TR, Robertson MP, van Rensburg BJ, Parr CL (2014) Elevation-diversity patterns through space and time: Ant communities of the Maloti-Drakensberg Mountains of southern Africa. Journal of Biogeography, 41, 2256-2268.
DOI URL |
[4] |
Boyle KS, Horn MH (2006) Comparison of feeding guild structure and ecomorphology of intertidal fish assemblages from central California and central Chile. Marine Ecology Progress Series, 319, 65-84.
DOI URL |
[5] | Chen XY (2013) Checklist of fishes of Yunnan. Zoological Research, 34, 281-343. (in Chinese with English abstract) |
[ 陈小勇 (2013) 云南鱼类名录. 动物学研究, 34, 281-343.] | |
[6] |
Chu L, Wang WJ, Zhu R, Yan YZ, Chen YF, Wang LZ (2015) Variation in fish assemblages across impoundments of low-head dams in headwater streams of the Qingyi River, China: Effects of abiotic factors and native invaders. Environmental Biology of Fishes, 98, 101-112.
DOI URL |
[7] |
Ding N, Yang WF, Zhou YC, González-Bergonzoni I, Zhang J, Chen K, Vidal N, Jeppesen E, Liu ZW, Wang BX (2017) Different responses of functional traits and diversity of stream macroinvertebrates to environmental and spatial factors in the Xishuangbanna watershed of the upper Mekong River Basin, China. Science of the Total Environment, 574, 288-299.
DOI URL |
[8] |
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ, Sullivan CA (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
PMID |
[9] |
Dumay O, Tari PS, Tomasini JA, Mouillot D (2004) Functional groups of lagoon fish species in Languedoc Roussillon, southern France. Journal of Fish Biology, 64, 970-983.
DOI URL |
[10] |
Gatz AJ Jr (1979) Community organization in fishes as indicated by morphological features. Ecology, 60, 711-718.
DOI URL |
[11] |
Göthe E, Baattrup-Pedersen A, Wiberg-Larsen P, Graeber D, Kristensen EA, Friberg N (2017) Environmental and spatial controls of taxonomic versus trait composition of stream biota. Freshwater Biology, 62, 397-413.
DOI URL |
[12] |
Horwitz RJ (1978) Temporal variability patterns and the distributional patterns of stream fishes. Ecological Monographs, 48, 307-321.
DOI URL |
[13] |
Kessler M, Abrahamczyk S, Bos M, Buchori D, Putra DD, Gradstein SR, Höhn P, Kluge J, Orend F, Pitopang R, Saleh S, Schulze CH, Sporn SG, Steffan-Dewenter I, Tjitrosoedirdjo SS, Tscharntke T (2009) Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecological Applications, 19, 2142-2156.
DOI URL |
[14] |
Kramer DL, Bryant MJ (1995) Intestine length in the fishes of a tropical stream. 2. Relationships to diet—the long and short of a convoluted issue. Environmental Biology of Fishes, 42, 129-141.
DOI URL |
[15] |
Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology, 91, 299-305.
PMID |
[16] |
Leprieur F, Tedesco PA, Hugueny B, Beauchard O, Dürr HH, Brosse S, Oberdorff T (2011) Partitioning global patterns of freshwater fish beta diversity reveals contrasting signatures of past climate changes. Ecology Letters, 14, 325-334.
DOI PMID |
[17] | Li X, Lu J, Qian ML, Wang XR, Fan ZQ, Wang SB (2014) Study on pollution loading and water environmental capacity in watershed—A case study of Taiping Lake Basin, Anhui Province, China. China Environmental Science, 34, 2063-2070. (in Chinese with English abstract) |
[ 李响, 陆君, 钱敏蕾, 王祥荣, 樊正球, 王寿兵 (2014) 流域污染负荷解析与环境容量研究——以安徽太平湖流域为例. 中国环境科学, 34, 2063-2070.] | |
[18] |
Li YR, Tao J, Chu L, Yan YZ (2018) Effects of anthropogenic disturbances on α and β diversity of fish assemblages and their longitudinal patterns in subtropical streams, China. Ecology of Freshwater Fish, 27, 433-441.
DOI URL |
[19] |
Li ZF, Wang J, Liu ZY, Meng XL, Heino J, Jiang XK, Xiong X, Jiang XM, Xie ZC (2019) Different responses of taxonomic and functional structures of stream macroinvertebrate communities to local stressors and regional factors in a subtropical biodiversity hotspot. Science of the Total Environment, 655, 1288-1300.
DOI URL |
[20] |
Lin L, Soni A, Sabik LM, Drake C (2020) Early- and late-stage cancer diagnosis under 3 years of Medicaid expansion. American Journal of Preventive Medicine, 60, 104-109.
DOI URL |
[21] |
Liu Y, Wang YR, Zhu Q, Li YR, Kang B, Chu L, Yan YZ (2019) Effects of low-head dams on fish assemblages in subtropical streams: Context dependence on species category and data type. River Research and Applications, 35, 396-404.
DOI URL |
[22] | Lu J, Liu YF, Huang HH, Qi K, Li X, Fan ZQ (2014) Correlation analysis between land use structure and water quality of the Taiping Lake watershed in Huangshan. Journal of Fudan University (Natural Science), 53, 731-736, 746. (in Chinese with English abstract) |
[ 陆君, 刘亚风, 黄洪辉, 齐珂, 李响, 樊正球 (2014) 黄山市太平湖流域土地利用结构与河流水质相关性分析. 复旦学报(自然科学版), 53, 731-736, 746.] | |
[23] |
Mariani JJ, Pavlicova M, Choi CJ, Basaraba C, Carpenter KM, Mahony AL, Brooks DJ, Bisaga A, Naqvi N, Nunes EV, Levin FR (2021) Quetiapine treatment for cannabis use disorder. Drug and Alcohol Dependence, 218, 108366.
DOI URL |
[24] |
Mason NWH, Mouillot D, Lee WG, Wilson JB (2005) Functional richness, functional evenness and functional divergence: The primary components of functional diversity. Oikos, 111, 112-118.
DOI URL |
[25] |
Mazzoni R, Lobón-Cerviá J (2008) Longitudinal structure, density and production rates of a neotropical stream fish assemblage: The river Ubatiba in the Serra do Mar, southeast Brazil. Ecography, 23, 588-602.
DOI URL |
[26] |
Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
DOI URL |
[27] |
Münkemüller T, de Bello F, Meynard CN, Gravel D, Lavergne S, Mouillot D, Mouquet N, Thuiller W (2012) From diversity indices to community assembly processes: A test with simulated data. Ecography, 35, 468-480.
DOI URL |
[28] | Nelson JS (2006) Fishes of the World, 4th edn. John Wiley & Sons, Hoboken, New Jersey. |
[29] |
Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
PMID |
[30] |
Poff LR, Ward JV (1990) Physical habitat template of lotic systems: Recovery in the context of historical pattern of spatiotemporal heterogeneity. Environmental Management, 14, 629-645.
DOI URL |
[31] | Roberts JH, Hitt NP (2010) Longitudinal structure in temperate stream fish communities: Evaluating conceptual models with temporal data. American Fisheries Society Symposium, 73, 281-299. |
[32] |
Sax DF, Gaines SD (2003) Species diversity: From global decreases to local increases. Trends in Ecology & Evolution, 18, 561-566.
DOI URL |
[33] |
Sibbing FA, Nagelkerke LAJ (2000) Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Reviews in Fish Biology and Fisheries, 10, 393-437.
DOI URL |
[34] |
Soininen J, Heino J, Wang JJ (2018) A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Global Ecology and Biogeography, 27, 96-109.
DOI URL |
[35] |
Su GH, Xu J, Akasaka M, Molinos JG, Matsuzaki SIS (2015) Human impacts on functional and taxonomic homogenization of plateau fish assemblages in Yunnan, China. Global Ecology and Conservation, 4, 470-478.
DOI URL |
[36] | Sui XY, Lu Z, Yan YZ, Chen YF, Jia YT (2014) Influence of a large dam on the longitudinal patterns of fish assemblages in Qingyi Stream. Zoological Research, 35, 362-372. |
[37] |
Suvarnaraksha A, Lek S, Lek-Ang S, Jutagate T (2012) Fish diversity and assemblage patterns along the longitudinal gradient of a tropical river in the Indo-Burma hotspot region (Ping-Wang River Basin, Thailand). Hydrobiologia, 694, 153-169.
DOI URL |
[38] | Swenson NG, Anglada-Cordero P, Barone JA (2011) Deterministic tropical tree community turnover: Evidence from patterns of functional beta diversity along an elevational gradient. Proceedings of the Royal Society B: Biological Sciences, 278, 877-884. |
[39] |
Taylor CM, Warren ML Jr (2001) Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology, 82, 2320-2330.
DOI URL |
[40] |
Thorp JH, Thoms MC, Delong MD (2006) The riverine ecosystem synthesis: Biocomplexity in river networks across space and time. River Research and Applications, 22, 123-147.
DOI URL |
[41] |
Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302.
DOI URL |
[42] |
Tolonen KE, Leinonen K, Marttila H, Erkinaro J, Heino J (2017) Environmental predictability of taxonomic and functional community composition in high-latitude streams. Freshwater Biology, 62, 1-16.
DOI URL |
[43] |
Tylianakis JM, Klein AM, Tscharntke T (2005) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology, 86, 3296-3302.
DOI URL |
[44] |
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
DOI URL |
[45] |
Villéger S, Grenouillet G, Brosse S (2013) Decomposing functional β-diversity reveals that low functional β-diversity is driven by low functional turnover in European fish assemblages. Global Ecology and Biogeography, 22, 671-681.
DOI URL |
[46] |
Villéger S, Grenouillet G, Brosse S (2014) Functional homogenization exceeds taxonomic homogenization among European fish assemblages. Global Ecology and Biogeography, 23, 1450-1460.
DOI URL |
[47] |
Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
DOI URL |
[48] |
Wang LZ, Lyons J, Kanehl P, Bannerman R (2001) Impacts of urbanization on stream habitat and fish across multiple spatial scales. Environmental Management, 28, 255-266.
PMID |
[49] | Ward JV, Stanford JA (1983) The serial discontinuity concept of lotic ecosystems. Dynamics of Lotic Ecosystems. |
[50] |
Webb PW (1984) Body form, locomotion and foraging in aquatic vertebrates. American Zoologist, 24, 107-120.
DOI URL |
[51] |
Whittaker RH (1960) Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[52] |
Yan YZ, Xiang XY, Chu L, Zhan YJ, Fu CZ (2011) Influences of local habitat and stream spatial position on fish assemblages in a dammed watershed, the Qingyi Stream, China. Ecology of Freshwater Fish, 20, 199-208.
DOI URL |
[53] |
Zhang D, Heng WJ, Chu L, Xu DP, Kang B, Yan YZ (2020) Taxonomic and functional diversity in a subtropical stream: A longitudinal pattern analysis. Ecology of Freshwater Fish, 29, 752-763.
DOI URL |
[54] |
Zhang D, Wan FY, Chu L, Yan YZ (2018) Longitudinal patterns in α and β diversity of the taxonomic and functional organizations of stream fish assemblages in the Qingyi River. Biodiversity Science, 26, 1-13. (in Chinese with English abstract)
DOI |
[ 张东, 宛凤英, 储玲, 严云志 (2018) 青弋江鱼类分类群和功能群的α和β多样性纵向梯度格局. 生物多样性, 26, 1-13.] | |
[55] | Zhu R, Yan YZ, Sun JJ, Huang HL, Tan XL, Lin L (2012) Feeding habits of fish assemblage in headwater streams of Chencun Reservoir in Huangshan Mountain. Chinese Journal of Ecology, 31, 359-366. (in Chinese with English abstract) |
[ 朱仁, 严云志, 孙建建, 黄海玲, 谈小龙, 林璐 (2012) 黄山陈村水库河源溪流鱼类群落的食性. 生态学杂志, 31, 359-366.] |
[1] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[2] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[3] | 李发扬, 李滢钰, 蒋文妮, 刘曙光, 霍超, 孙巧奇, 邹红菲. 火后恢复时间影响大兴安岭寒温带森林内部与边缘鸟类多样性[J]. 生物多样性, 2023, 31(7): 22665-. |
[4] | 陈晓澄, 张鹏展, 康斌, 刘林山, 赵亮. 基于中国科学院西北高原生物研究所馆藏标本分析青藏高原雀形目鸟类物种和功能多样性[J]. 生物多样性, 2023, 31(5): 22638-. |
[5] | 唐楚飞, 葛成, 曹烨, 曹弘毅, 宋晓晓, 廖怀建. 城市森林不同林分类型的昆虫多样性: 以南京紫金山南麓为例[J]. 生物多样性, 2023, 31(2): 22357-. |
[6] | 张伟, 翟东东, 熊飞, 刘红艳, 陈元元, 王莹, 廖传松, 段辛斌, 田辉伍, 邓华堂, 陈大庆. 三峡库区鱼类群落结构和功能多样性[J]. 生物多样性, 2023, 31(2): 22136-. |
[7] | 罗彩访, 杨涛, 张秋雨, 王馨培, 沈泽昊. 滇中半湿润常绿阔叶林木本植物的功能特征和功能多样性及其影响因子[J]. 生物多样性, 2023, 31(11): 23215-. |
[8] | 杨瑾谕, 朱万龙. 生境差异和人类活动对云南剑川甸南镇小型哺乳动物群落结构和多样性的影响[J]. 生物多样性, 2023, 31(11): 23246-. |
[9] | 王安伦, 何萍, 龙心远. 长江干流鱼类功能群空间分异[J]. 生物多样性, 2023, 31(10): 23095-. |
[10] | 胡远芳, 李斌强, 梁丹, 李兴权, 刘兰香, 杨家伟, 罗旭. 人为干扰对白腹锦鸡活动节律的影响[J]. 生物多样性, 2022, 30(8): 21484-. |
[11] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[12] | 李艳辉, 兰天元, 王月, 于洋, 赵常明, 李利华, 徐文婷, 申国珍. 神农架植物物种空间周转的驱动因素[J]. 生物多样性, 2022, 30(4): 21377-. |
[13] | 佘丹琦, 张喜亭, 肖路, 仲召亮, 王慧梅, 王文杰. 小兴安岭凉水国家级自然保护区植物beta多样性及其影响因素[J]. 生物多样性, 2022, 30(3): 21274-. |
[14] | 陈秋菊, 孙智闲, 李雪健, 张睿, 席蕊, 田晨, 王鑫, 邢迎春, 赵亚辉. 武夷山国家公园及其周边鱼类多样性[J]. 生物多样性, 2022, 30(11): 22260-. |
[15] | 曲梦君, 努尔依拉·阿巴拜克, 邹旭阁, 赵航, 朱威霖, 王健铭, 李景文. 地理距离和环境因子对阿拉善戈壁植物群落β多样性的影响[J]. 生物多样性, 2022, 30(11): 22029-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn