生物多样性

• • 上一篇    下一篇

王朗国家级自然保护区红腹角雉时空分布模式

周铝, 郭画, 姚世贸, 田成*   

  1. 山西农业大学林学院, 山西晋中 030801
  • 收稿日期:2024-12-06 修回日期:2025-02-10 接受日期:2025-05-11
  • 通讯作者: 田成

The spatio-temporal distribution patterns of Temminck’s Tragopan in Wanglang National Nature Reserve

Lü Zhou, Hua Guo, Shimao Yao, Cheng Tian*   

  1. College of Forestry, Shanxi Agricultural University, Jinzhong, Shanxi 030801, China
  • Received:2024-12-06 Revised:2025-02-10 Accepted:2025-05-11
  • Contact: Cheng Tian

摘要: 了解野生动物时空分布对有效保护森林生态系统有重要意义。野生动物的时空分布特征研究能够为生态系统的结构与功能解析提供关键依据, 有助于精准构建保护策略与管理规划。作为国家二级重点保护野生动物, 红腹角雉(Tragopan temminckii)在维持森林生态系统的平衡中起着重要作用。为探索红腹角雉的时空分布特征, 本文于2011年1月至2019年5月在王朗国家级自然保护区不同时期共布设83台红外相机, 采用优化后MaxEnt模型、核密度估计法和单样本T检验从空间和时间角度分析了红腹角雉的适宜栖息地分布及活动节律。结果显示: (1)红腹角雉的潜在适宜栖息地面积为6,858 ha, 占保护区总面积的22.2%。(2)植被是影响红腹角雉栖息地分布的主要因素, 年降水量、最干季平均温和坡向是次要因素。(3)红腹角雉在日活动节律上表现为典型昼行性(昼行性指数β > 13/24), 日活动节律为单峰型(Φ = 17.777), 高峰期在11:00左右。(4)每月日活动差异指数α = 0.036 (t = –1.6847, df = 11, P > 0.05)和昼行性指数β = 0.68 (t = –0.0764, df = 11, P > 0.05)均无显著差异。(5)冷暖季重叠程度达到中度(∆4 = 0.78), 两季活动节律存在显著差异(P < 0.01)。冷季活动高峰期在8:00和18:00左右。暖季活动高峰期在11:00左右, 相对冷季延迟3–4 h。本次研究填补了王朗保护区内红腹角雉时间和空间生态位上的信息空缺, 为后续红腹角雉在保护区内的保护和管理提供科学依据。

关键词: 最大熵模型, 适宜栖息地, 活动节律, 核密度估计, 红外相机

Abstract

Aims: Understanding the spatio-temporal distribution of wildlife is crucial for the effective conservation of forest ecosystems. Studies on the spatio-temporal distribution patterns of wildlife provides key insights into ecosystem structure and function analysis, contributing to the precise formulation of conservation strategies and management plans. As a national second-class protected species, Temminck’s tragopan (Tragopan temminckii) plays an important role in maintaining forest ecosystem balance. 

Methods: To explore the spatio-temporal distribution characteristics of Temminck’s tragopan, a total of 83 infrared cameras were deployed at different periods from January 2011 to May 2019 in Wanglang National Nature Reserve (WLNNR). The optimized MaxEnt model, kernel density estimation, and one-sample T-test were applied to analyze the species’ suitability and activity rhythm from both spatial and temporal perspectives. 

Results: (1) The potential suitable habitat area of Temminck’s tragopan was 6,858 hectares, accounting for 22.2% of the total area in WLNNR. (2) Vegetation was the main factor affecting the habitat distribution, while annual precipitation, average temperature in the driest season, and slope aspect were secondary factors. (3) Temminck’s tragopan showed a typical diurnal activity pattern (diurnal-nocturnal index β > 13/24), and a unimodal pattern in daily activity rhythm (Φ = 17.777), peaking at around 11:00 AM. (4) There was no significant differences in the monthly daily-discrepancy index (α = 0.036 (t = –1.6847, df = 11, P > 0.05) or in the diurnal-nocturnal index (β = 0.68 (t = –0.0764, df = 11, P > 0.05). (5) Cold and warm season activity rhythms exhibited a moderate overlap (∆4 = 0.78) but differed significantly (P < 0.01). During the cold season, peak activity occurred around 8:00 AM and 18:00 PM, whereas in the warm season, peak activity was delayed by 3 to 4 hours, occurring at around 11:00 AM. 

Conclusion: The study identified vegetation as the primary factor influencing the spatio-temporal distribution of Temminck’s tragopan, with climatic and topographical variables also playing significant roles. The species exhibited a diurnal activity pattern, with peak activity at noon, and its daily activity rhythm varied significantly with season, reflecting ecological adaptation strategies. By filling spatio-temporal ecological niche gaps for Temminck’s tragopan in WLNNR, this study provides a scientific foundation for its future conservation and management within the reserve.

Key words: MaxEnt, suitable habitat, activity rhythm, Kernel density estimation, infrared camera