生物多样性 ›› 2025, Vol. 33 ›› Issue (10): 25234.  DOI: 10.17520/biods.2025234  cstr: 32101.14.biods.2025234

• 综述 • 上一篇    下一篇

蜜蜂类昆虫系统发生基因组学研究概况

张奕涵1,2, 杨光1,2, 周青松1(), 牛泽清1(), 朱朝东1(), 罗阿蓉1,*()()   

  1. 1.中国科学院动物研究所动物多样性保护与有害动物防控全国重点实验室, 北京 100101
    2.中国科学院大学生命科学学院, 北京 100020
  • 收稿日期:2025-06-18 接受日期:2025-09-20 出版日期:2025-10-20 发布日期:2025-11-21
  • 通讯作者: * E-mail: luoar@ioz.ac.cn
  • 基金资助:
    国家自然科学基金优秀青年科学基金(32122016);国家自然科学基金(32470473);国家自然科学基金(32330013);中国科学院中国生物多样性监测与研究网络昆虫多样性监测网、动物多样性保护与有害动物防控全国重点实验室自主部署项目(SKLA2501)

A review of phylogenomic research on bees

Yihan Zhang1,2, Guang Yang1,2, Qingsong Zhou1(), Zeqing Niu1(), Chaodong Zhu1(), Arong Luo1,*()()   

  1. 1 State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
    2 College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100020, China
  • Received:2025-06-18 Accepted:2025-09-20 Online:2025-10-20 Published:2025-11-21
  • Contact: * E-mail: luoar@ioz.ac.cn
  • Supported by:
    Excellent Youth Scientists Program of National Natural Science Foundation of China(32122016);National Natural Science Foundation of China(32470473);National Natural Science Foundation of China(32330013);Sino BON Insect Diversity Monitoring Network (Sino BON-Insects) and State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management(SKLA2501)

摘要:

蜜蜂类昆虫是全球陆地生物群落的重要组成部分, 是许多农作物和野生植物的重要传粉者, 具有重要的生态和经济价值。解析蜜蜂类的系统发生关系对于揭示其起源与多样化历程具有重要意义。随着分子生物学技术与方法的发展, 利用日益丰富的基因组学数据和系统发生分析方法, 已经对蜜蜂类的谱系关系开展了较为深入的探索。尽管主要分类单元间的关系逐步明朗, 但部分关键类群的系统位置仍存在争议, 这限制了我们对蜜蜂类演化历史、生物地理格局以及功能性状演化机制的全面理解。本文概述了近年基于基因组学数据的蜜蜂类系统发生研究进展, 梳理了当前广泛应用的分子数据类型与分析方法, 并对未来蜜蜂类系统发生基因组学研究领域亟待解决的科学问题进行了展望。此外, 本文配套构建了若干可检索补充资源, 包括代表性文献概览、方法参数与支持度信息、化石证据索引等, 以提升蜜蜂类昆虫系统发生基因组学相关研究进展的透明度与信息价值。

关键词: 蜜蜂总科, 蜜蜂类, 系统发生基因组学, 高通量数据, 功能性状

Abstract

Background: Bees are ecologically and economically vital pollinators that underpin terrestrial ecosystems and global food security. Genomic-scale datasets and phylogenomic methods have greatly advanced reconstructions of bee relationships, yet the placement of several key clades remains unsettled, constraining inferences about the origins, biogeography, and evolution of key traits. Here we synthesize recent progress in bee phylogenomics, with particular emphasis on major genomic data types (genomes, transcriptomes and ultraconserved elements), commonly used analytical pipelines and representative phylogenetic results. We harmonize reporting standards across studies, flag nodes with low or unreported support, map cross-study topological conflicts and compile an updated fossil catalogue, in order to enhance the traceability, comparability and reuse of existing phylogenomic evidence.

Review results: Phylogenomics corroborates family-level monophyly and has clarified many higher-level relationships and deep nodes. Temporal frameworks across studies commonly support a Cretaceous origin with subsequent radiations coincident with angiosperm diversification. However, instable clustering remain in several smaller or sparsely sampled lineages, with topological conflicts tied to heterogeneous matrices, analytical choices, and low or unreported support.

Conclusions: Bee phylogenomics has made substantial advances in reconstructing the evolutionary history of this ecologically vital group, but major challenges remain. To improve phylogenetic resolution and evolutionary inference, we recommend expanding taxon and gene sampling, standardizing fossil calibration practices, and integrating morphological and ecological data. Future research should also prioritize linking phylogenetic frameworks to questions in trait evolution, species diversification, and biogeography. A well-resolved bee phylogeny will serve as a robust foundation for understanding ecological functions, conservation priorities, and co-evolutionary dynamics, ultimately advancing biodiversity science and ecosystem sustainability on a global scale.

Key words: Apoidea, bees, phylogenomics, high-throughput data, functional trait