生物多样性 ›› 2024, Vol. 32 ›› Issue (9): 24180. DOI: 10.17520/biods.2024180 cstr: 32101.14.biods.2024180
魏诗雨(), 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰*(
)(
)
收稿日期:
2024-05-10
接受日期:
2024-07-22
出版日期:
2024-09-20
发布日期:
2024-08-26
通讯作者:
* E-mail: 基金资助:
Shiyu Wei(), Tianjiao Song, Jiayi Luo, Yan Zhang, Zixuan Zhao, Jingwen Ru, Hua Yi, Yanbing Lin*(
)(
)
Received:
2024-05-10
Accepted:
2024-07-22
Online:
2024-09-20
Published:
2024-08-26
Contact:
* E-mail: Supported by:
摘要:
土壤细菌在维持森林生态系统功能和土壤养分循环中发挥着重要作用。火地塘林区是秦岭南坡中具有代表性的林区, 但其针叶林土壤细菌群落的海拔分布格局仍不明晰。本研究采集了不同海拔高度的两种典型针叶林(铁杉(Tsuga chinensis)林、华北落叶松(Larix principis-rupprechtii)林)的土样, 对其理化性质进行测定, 采用16S rRNA扩增子测序对不同海拔下针叶林土壤细菌群落特征进行研究, 并采用典范对应分析和相关性分析探明影响土壤细菌群落组成的驱动因素。结果表明, 不同海拔针叶林土壤细菌群落的α多样性无显著差异, 但β多样性发生了显著变化。优势细菌门为变形菌门、酸杆菌门和放线菌门, 占比66.02%-73.78%; 属水平上, 不同海拔的细菌群落组成差异较大。线性判别分析表明, 高海拔针叶林土壤富集的特征微生物大多归属于变形菌门, 氮循环相关功能相对富集; 低海拔和中海拔富集的特征微生物大多归属于酸杆菌门, 碳循环相关功能相对富集。海拔、土壤pH值、全钾(TK)和碳氮比(C/N)与细菌群落结构相关。其中, 变形菌门与海拔和C/N呈正相关; 酸杆菌门与海拔和C/N呈负相关; 放线菌门与土壤pH值呈负相关, 与TK呈正相关。综上所述, 秦岭火地塘针叶林土壤细菌群落组成和结构随着海拔梯度发生了明显变化, 土壤理化性质和海拔高度共同影响了土壤细菌群落组成及其功能。本研究有助于深入理解秦岭火地塘针叶林土壤细菌群落组成的变化和驱动机制, 为秦岭针叶林保护和生态修复提供理论依据。
魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰 (2024) 秦岭火地塘针叶林土壤细菌群落的海拔分布格局. 生物多样性, 32, 24180. DOI: 10.17520/biods.2024180.
Shiyu Wei, Tianjiao Song, Jiayi Luo, Yan Zhang, Zixuan Zhao, Jingwen Ru, Hua Yi, Yanbing Lin (2024) Altitudinal distribution patterns of soil bacterial communities in the Huoditang coniferous forests of the Qinling Mountains. Biodiversity Science, 32, 24180. DOI: 10.17520/biods.2024180.
海拔 Altitude (m) | pH | 土壤有机质 SOM (g/kg) | 全氮 TN (g/kg) | 全磷 TP (g/kg) | 全钾 TK (g/kg) | 碱解氮 AN (mg/kg) | 速效磷 AP (mg/kg) | 速效钾 AK (mg/kg) | C/N | |
---|---|---|---|---|---|---|---|---|---|---|
T | 1582 | 5.95 ± 0.04b | 341.29 ± 13.57a | 14.1 ± 0.58a | 1.07 ± 0.03a | 12.61 ± 0.51b | 713.08 ± 24.31a | 35.76 ± 5.59a | 175 ± 7.81a | 24.21 ± 0.48b |
1874 | 7.26 ± 0.1a | 62.96 ± 29.31b | 2.36 ± 1.01b | 0.65 ± 0.26b | 13.91 ± 0.77b | 159.67 ± 50.58b | 34.87 ± 25.31a | 203.33 ± 104.84a | 26.25 ± 2.49b | |
2400 | 5.8 ± 0.27b | 91.64 ± 9.18b | 3 ± 0.28b | 0.78 ± 0.02ab | 22.51 ± 2.33a | 239.01 ± 47.34b | 43.8 ± 8.68a | 210.33 ± 15.82a | 30.49 ± 0.48a | |
L | 1578 | 5.55 ± 0.26b | 70.36 ± 35.09a | 3.37 ± 1.84a | 0.67 ± 0.23a | 20.41 ± 1.03a | 228.16 ± 102.01a | 13.82 ± 5.89a | 239.33 ± 96.77a | 21.26 ± 1.21c |
1809 | 6.94 ± 0.36a | 58.22 ± 1.99a | 2.7 ± 0.05a | 0.81 ± 0.08a | 17.5 ± 1.29b | 178.89 ± 5.17a | 36.32 ± 13.6a | 222.33 ± 23.71a | 21.56 ± 0.64c | |
1979 | 5.67 ± 0.32b | 61.09 ± 43.85a | 2.02 ± 1.48a | 0.76 ± 0.05a | 19.67 ± 0.93ab | 146.36 ± 71.48a | 41.78 ± 18.87a | 186 ± 48.45a | 30.47 ± 0.6a |
表1 两种针叶林土壤理化性质随海拔的梯度的变化(平均值 ± 标准差)
Table 1 Changes of soil physical and chemical properties in two types of coniferous forests along the altitude gradients (mean ± SD)
海拔 Altitude (m) | pH | 土壤有机质 SOM (g/kg) | 全氮 TN (g/kg) | 全磷 TP (g/kg) | 全钾 TK (g/kg) | 碱解氮 AN (mg/kg) | 速效磷 AP (mg/kg) | 速效钾 AK (mg/kg) | C/N | |
---|---|---|---|---|---|---|---|---|---|---|
T | 1582 | 5.95 ± 0.04b | 341.29 ± 13.57a | 14.1 ± 0.58a | 1.07 ± 0.03a | 12.61 ± 0.51b | 713.08 ± 24.31a | 35.76 ± 5.59a | 175 ± 7.81a | 24.21 ± 0.48b |
1874 | 7.26 ± 0.1a | 62.96 ± 29.31b | 2.36 ± 1.01b | 0.65 ± 0.26b | 13.91 ± 0.77b | 159.67 ± 50.58b | 34.87 ± 25.31a | 203.33 ± 104.84a | 26.25 ± 2.49b | |
2400 | 5.8 ± 0.27b | 91.64 ± 9.18b | 3 ± 0.28b | 0.78 ± 0.02ab | 22.51 ± 2.33a | 239.01 ± 47.34b | 43.8 ± 8.68a | 210.33 ± 15.82a | 30.49 ± 0.48a | |
L | 1578 | 5.55 ± 0.26b | 70.36 ± 35.09a | 3.37 ± 1.84a | 0.67 ± 0.23a | 20.41 ± 1.03a | 228.16 ± 102.01a | 13.82 ± 5.89a | 239.33 ± 96.77a | 21.26 ± 1.21c |
1809 | 6.94 ± 0.36a | 58.22 ± 1.99a | 2.7 ± 0.05a | 0.81 ± 0.08a | 17.5 ± 1.29b | 178.89 ± 5.17a | 36.32 ± 13.6a | 222.33 ± 23.71a | 21.56 ± 0.64c | |
1979 | 5.67 ± 0.32b | 61.09 ± 43.85a | 2.02 ± 1.48a | 0.76 ± 0.05a | 19.67 ± 0.93ab | 146.36 ± 71.48a | 41.78 ± 18.87a | 186 ± 48.45a | 30.47 ± 0.6a |
图1 两种针叶林土壤微生物群落结构及多样性。(a-c): 基于Bray-Curtis的主坐标分析(PCoA); (d-f): α多样性指数。T: 铁杉林; L:华北落叶松林; TL: 低海拔铁杉林; TM: 中海拔铁杉林; H: 高海拔铁杉林; LL: 低海拔华北落叶松林; LM: 中海拔华北落叶松林; LH: 高海拔华北落叶松林。
Fig. 1 Structure and diversity of soil microbial communities in two types of coniferous forests. (a-c), PcoA (principal co-ordinates analysis) based on Bray-Curtis; (d-f), α-diversity values. T, Tsuga chinensis forest; L, Larix principis-rupprechtii forest; TL, Low-altitude T. chinensis forest; TM, Mid-altitude T. chinensis forest; TH, High-altitude T. chinensis forest; LL, Low-altitude L. principis-rupprechtii forest; LM, Mid-altitude L. principis-rupprechtii forest; LH, High-altitude L. principis-rupprechtii forest.
图2 两种针叶林门水平(a)和属水平(b)土壤微生物群落相对丰度。T: 铁杉林; L: 华北落叶松林; TL: 低海拔铁杉林; TM: 中海拔铁杉林; TH: 高海拔铁杉林; LL: 低海拔华北落叶松林; LM: 中海拔华北落叶松林; LH: 高海拔华北落叶松林。图(b)右侧刻度条中颜色深浅表示菌属丰度与均值的差异程度。以同一样本菌属丰度平均值为基准, 高于平均值则为正值, 标记为红色; 反之, 低于平均值则为负值, 标记为蓝色。
Fig. 2 Relative abundance of soil microbial communities at the phylum level (a) and genus level (b) in two types of coniferous forests. T, Tsuga chinensis forest; L, Larix principis-rupprechtii forest; TL, Low-altitude T. chinensis forest; TM, Mid-altitude T. chinensis forest; TH, High-altitude T. chinensis forest; LL, Low-altitude L. principis-rupprechtii forest; LM, Mid-altitude L. principis-rupprechtii forest; LH, High-altitude L. principis-rupprechtii forest. The colour shades in the scale bar on the right side of figure (b) indicate the degree of difference between the genus abundance and the mean value. Based on the mean value of genus abundance in the same sample, values above the mean are positive and marked in red; on the contrary, values below the mean are negative and marked in blue.
图3 铁杉林(a)和华北落叶松林(b)不同海拔土壤微生物群落差异的线性判别分析(LEfSe)。每个圆环为1个分类学层次内的所有分类群, 从内到外的圆环分别代表超群、门、纲、目和科; 圆环上的节点表示分类学层次上的1个分类单元, 每个节点的直径与丰度成正比; 不同海拔中相对丰度显著较高的分类单元(特征微生物)在进化分支图中进行了颜色编码。TM: 中海拔铁杉林; TH: 高海拔铁杉林; LL: 低海拔华北落叶松林; LM: 中海拔华北落叶松林; LH: 高海拔华北落叶松林。
Fig. 3 LEfSe (linear discriminant analysis effect size ) showing soil community differences at different altitudes in Tsuga chinensis forest (a) and Larix principis-rupprechtii forest (b). Each circular ring deposits all taxa within a taxonomic level, and the circular ring from inside to outside represents supergroup, phylum, class, order, and family, respectively. The node on the circular ring represents taxon, affiliating within the taxonomic level. The diameter of each node is proportional to the abundance of the group. Taxa that have significantly higher relative abundance in a certain treatment within each altitude gradient are color-coded within the cladogram. TM, Mid-altitude T. chinensis forest; TH, High-altitude T. chinensis forest; LL, Low-altitude L. principis-rupprechtii forest; LM, Mid-altitude L. principis-rupprechtii forest; LH, High-altitude L. principis-rupprechtii forest.
图4 铁杉林(a)和华北落叶松林(b)不同海拔梯度土壤细菌群落的FAPROTAX功能预测。右侧刻度条中颜色深浅表示代谢功能表达量与均值的差异程度。以同一样本基因表达量平均值为基准, 高于平均值表达量则为正值, 标记为红色; 反之, 低于平均值表达量则为负值, 标记为蓝色。TL: 低海拔铁杉林; TM: 中海拔铁杉林; TH: 高海拔铁杉林; LL: 低海拔华北落叶松林; LM: 中海拔华北落叶松林; LH: 高海拔华北落叶松林。
Fig. 4 FAPROTAX functional prediction of soil bacterial communities across different altitudinal gradients of Tsuga chinensis forest (a) and Larix principis-rupprechtii forest (b). The color shades indicate the degree of difference between the expression of metabolic function and the mean. The average value of gene expression in the same sample is used as the benchmark, and the expression above the average is positive, and the mark is red; conversely, the expression below the average is a negative value and marked as blue. TL, Low-altitude T. chinensis forest; TM, Mid-altitude T. chinensis forest; TH, High-altitude T. chinensis forest; LL, Low-altitude L. principis-rupprechti forest; LM, Mid-altitude L. principis-rupprechtii forest; LH, High-altitude L. principis-rupprechtii forest.
图5 环境因子间相关性分析。Altitude: 海拔; pH: 土壤pH值; SOM: 土壤有机质; TN: 全氮; TP: 全磷; TK: 全钾; AN: 速效氮; AP: 速效磷; AK: 速效钾; C/N: 碳氮比。右侧刻度条中的数值表示Pearson相关系数。红色表示正相关, 蓝色表示负相关, 颜色越深表示相关性越强。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 5 Correlation analysis of environmental factors. Altitude, Altitude; pH, Soil pH; SOM, Soil organic matter; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; C/N, Carbon to nitrogen ratio. The values in the right scale bar indicate the Pearson correlation coefficients. The color of the square indicates the direction of the correlation, where red indicates positive correlation and blue indicates negative correlation, and the darker color indicates the stronger correlation. * P < 0.05; ** P < 0.01; *** P < 0.001.
图6 环境因子和土壤微生物群落的相关性分析。(a)典范对应分析; (b) Spearman相关性分析。Altitude: 海拔; SOM: 土壤有机质; TN: 全氮; TP: 全磷; TK: 全钾; AN: 速效氮; AP: 速效磷; AK: 速效钾; C/N: 碳氮比。右侧图例中的数值表示Spearman相关系数; 红色表示正相关, 蓝色表示负相关, 颜色越深表示相关性越强。TL: 低海拔铁杉; TM: 中海拔铁杉林; TH: 高海拔铁杉林; LL: 低海拔华北落叶松林; LM: 中海拔华北落叶松林; LH: 高海拔华北落叶松林。* P < 0.05; ** P < 0.01; *** P < 0.001。
Fig. 6 Correlation analysis between environmental factors and soil microbial communities. (a) Canonical correspondence analysis; (b) Spearman correlation analysis. Altitude, Altitude; SOM, Soil organic matter; TN, Total nitrogen; TP, Total phosphorus; TK, Total potassium; AN, Available nitrogen; AP, Available phosphorus; AK, Available potassium; C/N, Carbon to nitrogen ratio. The color of the bar indicates the Spearman’s correlation coefficients, where red indicates positive correlation and blue indicates negative correlation, and the darker color indicates the stronger correlation. TL, Low-altitude Tsuga chinensis forest; TM, Mid-altitude T. chinensis forest; TH, High-altitude T. chinensis forest; LL, Low-altitude Larix principis-rupprechtii forest; LM, Mid-altitude L. principis-rupprechtii forest; LH, High-altitude L. principis-rupprechtii forest. * P < 0.05; ** P < 0.01; *** P < 0.001.
[1] | Ahmedin AM, Elias E (2022) Effects of habitat gradient and agro-climatic variation on selected soil physical and chemical properties in the Bale Mountains National Park, south-eastern Ethiopia. BMC Ecology and Evolution, 22, 78. |
[2] | Bardgett RD, Freeman C, Ostle NJ (2008) Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805-814. |
[3] | Bay G, Lee C, Chen C, Mahal NK, Castellano MJ, Hofmockel KS, Halverson LJ (2021) Agricultural management affects the active rhizosphere bacterial community composition and nitrification. Msystems, 6, e0065121. |
[4] | Chen JJ, Hou L, Li Y, Bai J, Zhang SX (2014) Soil microbes and enzymes in an oak-pine mixed forest in the Qinling Mountains. Journal of Northeast Forestry University, 42(3), 103-106, 111. (in Chinese with English abstract) |
[陈军军, 侯琳, 李银, 白娟, 张硕新 (2014) 秦岭松栎混交林土壤微生物及酶活性. 东北林业大学学报, 42(3), 103-106, 111.] | |
[5] | Chen XB, Su YR, He XY, Qin WG, Wei YW, Liang YM, Wu JS (2012) Effect of human disturbance on composition of the dominant bacterial group proteobacteriain karst soil ecosystems. Acta Pedologica Sinica, 49, 354-363. (in Chinese with English abstract) |
[陈香碧, 苏以荣, 何寻阳, 覃文更, 魏亚伟, 梁月明, 吴金水 (2012) 不同干扰方式对喀斯特生态系统土壤细菌优势类群——变形菌群落的影响. 土壤学报, 49, 354-363.] | |
[6] | Cheng F (2015) Study on Microbial Community Characteristics of Main Forest Types in Huoditang Forest Region of Qinling Mountains. PhD dissertation, Northwest A&F University, Yangling, Shaanxi. (in Chinese with English abstract) |
[程飞 (2015) 秦岭火地塘林区主要森林类型微生物群落特征研究. 博士学位论文, 西北农林科技大学, 陕西杨凌.] | |
[7] | Cheng L, Wang LX, Wang XH, Ou Y, Liu HP, Hou X, Yan LM, Li XY (2023) The various effect of cow manure compost on the degradation of imazethapyr in different soil types. Chemosphere, 337, 139325. |
[8] | Chisholm C, Di H, Cameron K, Podolyan A, Shen J, Zhang L, Sirisena K, Godsoe W (2024) Contrasting response of comammox Nitrospira, ammonia oxidising bacteria, and archaea to soil pH and nitrogen inputs. Science of the Total Environment, 924, 171627. |
[9] |
Coluccia M, Besaury L (2023) Acidobacteria members harbour an abundant and diverse carbohydrate-active enzymes (cazyme) and secreted proteasome repertoire, key factors for potential efficient biomass degradation. Molecular Genetics and Genomics, 298, 1135-1154.
DOI PMID |
[10] | Dai XJ (2023) Study on Nitrogen Leaching Loss and Crop Utilization in Soils with Different pH Values. PhD dissertation, Jiangxi Agricultural University, Nanchang. (in Chinese with English abstract) |
[代新俊 (2023) 不同pH土壤的氮素淋溶损失和作物利用研究. 博士学位论文, 江西农业大学, 南昌.] | |
[11] |
Chaves MGD, Silva GGZ, Rossetto R, Edwards RA, Navarrete AA (2019) Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil amended with vinasse and nitrogen fertilizers. Frontiers in Microbiology. Front Microbiol, 10, 1680.
DOI PMID |
[12] | Guo HL, Qi W (2017) Forest stand structure optimization of Larix principis-rupprechtii plantation in the central area of Qinling Mountains. Journal of Northwest Forestry University, 32(5), 144-149. (in Chinese with English abstract) |
[郭怀林, 齐伟 (2017) 秦岭中段华北落叶松人工林林分结构优化研究. 西北林学院学报, 32(5), 144-149.] | |
[13] | Huang YT, Lü YL, Ding Y, Yu ZB, Cheng H (2013) Comparison of soil nutrient status in four types of forests in Bawangling of Hainan Island. Journal of West China Forestry Science, 42(1), 64-69. (in Chinese with English abstract) |
[黄永涛, 吕瑜良, 丁易, 余兆波, 程辉 (2013) 海南岛霸王岭4种热带森林类型林地土壤养分状况的比较分析. 西部林业科学, 42(1), 64-69.] | |
[14] | Huber KJ, Overmann J (2017) Vicinamibacteraceae fam. nov., the first described family within the subdivision 6 Acidobacteria. International Journal of Systematic and Evolutionary Microbiology, 67, 1408-1414. |
[15] |
Kern M, Winkler C, Simon J (2011) Respiratory nitrogen metabolism and nitrosative stress defence in ϵ-proteobacteria: The role of NssR-type transcription regulators. Biochemical Society Transactions, 39, 299-302.
DOI PMID |
[16] | Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N (2013) Temporal variability in soil microbial communities across land-use types. The ISME Journal, 7, 1641-1650. |
[17] | Li C, Lu M, Ren YL, Du F, Tao H, Yang LP, Wang DX (2020) Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China. Journal of Beijing Forestry University, 42(12), 63-73. (in Chinese with English abstract) |
[李聪, 陆梅, 任玉连, 杜凡, 陶海, 杨罗平, 王东旭 (2020) 文山典型亚热带森林土壤氮组分的海拔分布及其影响因子. 北京林业大学学报, 42(12), 63-73.] | |
[18] | Li CN, Li JB, Li XZ (2017) Soil methanotrophic community structure and diversity in different vegetation types at elevation gradient of Gongga Mountain, Southwest China. Chinese Journal of Applied Ecology, 28, 805-814. (in Chinese with English abstract) |
[李超男, 李家宝, 李香真 (2017) 贡嘎山海拔梯度上不同植被类型土壤甲烷氧化菌群落结构及多样性. 应用生态学报, 28, 805-814.]
DOI |
|
[19] | Li FL, Liu M, Li ZP, Jiang CY, Han FX, Che YP (2013) Changes in soil microbial biomass and functional diversity with a nitrogen gradient in soil columns. Applied Soil Ecology, 64, 1-6. |
[20] | Li JY, Ren TB, Li YS, Chen N, Yin QY, Li MS, Liu HB, Liu GS (2022) Organic materials with high C/N ratio: More beneficial to soil improvement and soil health. Biotechnology Letters, 44, 1415-1429. |
[21] | Li XM, Che KJ, Yang YH, Wang H, Ma WW, Wang H, Huang R (2014) Variation pattern of soil nutrients in forests at different altitudes at upstream of Bailongjiang River. Journal of Gansu Agricultural University, 49(6), 136-137. (in Chinese with English abstract) |
[李兴民, 车克钧, 杨永红, 王辉, 马维维, 王惠, 黄蓉 (2014) 白龙江上游不同海拔森林土壤养分变化规律研究. 甘肃农业大学学报, 49(6), 131-137.] | |
[22] | Li XY, Zhang WY, Liu F, Zhang ZM, He TB, Lin CH (2016) The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain. Research of Soil and Water Conservation, 23(3), 19-24. (in Chinese with English abstract) |
[李相楹, 张维勇, 刘峰, 张珍明, 何腾兵, 林昌虎 (2016) 不同海拔高度下梵净山土壤碳、氮、磷分布特征. 水土保持研究, 23(3), 19-24.] | |
[23] | Li YJ, Zhao Y, Wang LM, Zhao GQ, Wei BC, Wang WG, Wu FZ (2016) A study of soil physicochemical property and soil enzyme along altitude gradient at Neixiang Baotianman Nature Reserve. Journal of Xinyang Normal University (Natural Science Edition), 29, 560-566. (in Chinese with English abstract) |
[李彦娇, 赵燕, 王立民, 赵干卿, 魏宝成, 王维刚, 吴福忠 (2016) 内乡宝天曼自然保护区土壤理化性质和酶活性的海拔特征研究. 信阳师范学院学报(自然科学版), 29, 560-566.] | |
[24] | Liu SQ, Gao LL, Pu YL, Deng LJ, Zhang SR (2005) Status of soil P and K nutrient and their influencing factors in Tibet. Journal of Soil and Water Conservation, 19(1), 75-78, 88. (in Chinese with English abstract) |
[刘世全, 高丽丽, 蒲玉琳, 邓良基, 张世熔 (2005) 西藏土壤磷素和钾素养分状况及其影响因素. 水土保持学报, 19(1), 75-78, 88.] | |
[25] | Liu YY, Wang S, Li SZ, Deng Y (2017) Advances in molecular ecology on microbial functional genes of carbon cycle. Microbiology China, 44, 1676-1689. (in Chinese with English abstract) |
[刘洋荧, 王尚, 厉舒祯, 邓晔 (2017) 基于功能基因的微生物碳循环分子生态学研究进展. 微生物学通报, 44, 1676-1689.] | |
[26] |
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 1272-1277.
DOI PMID |
[27] | Lu RK (2000) Methods for Agrochemical Analysis of Soils. China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[28] | Luo L, Shen GZ, Xie ZQ, Yu J (2011) Leaf functional traits of four typical forests along the altitudinal gradients in Mt. Shennongjia. Acta Ecologica Sinica, 31, 6420-6428. (in Chinese with English abstract) |
[罗璐, 申国珍, 谢宗强, 喻杰 (2011) 神农架海拔梯度上4种典型森林的乔木叶片功能性状特征. 生态学报, 31, 6420-6428.] | |
[29] | Lü SL, Li XP, Li WB, Mu XY (2013) Forest soil nutrient characteristics at different altitudes in Niubeiliang National Natural Reserve. Journal of Northwest A&F University (Natural Science Edition), 41(4), 161-168, 177. (in Chinese with English abstract) |
[吕世丽, 李新平, 李文斌, 慕小艳 (2013) 牛背梁自然保护区不同海拔高度森林土壤养分特征分析. 西北农林科技大学学报(自然科学版), 41(4), 161-168, 177.] | |
[30] | Naz M, Dai ZC, Hussain S, Tariq M, Danish S, Khan IU, Qi SS, Du DL (2022) The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770. |
[31] | Praeg N, Pauli H, Illmer P (2019) Microbial diversity in bulk and rhizosphere soil of Ranunculus glacialis along a high-alpine altitudinal gradient. Frontiers in Microbiology, 10, 1429. |
[32] | Ren CJ, Zhang W, Zhong ZK, Han XH, Yang GH, Feng YZ, Ren GX (2018) Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Science of the Total Environment, 610, 750-758. |
[33] | Ren XM, Ren L (2023) Altitudinal variation of soil nitrogen content in subalpine shrub in the Xishui forest area of Qilian Mountains. Forest Science and Technology, (3), 4-7. (in Chinese with English abstract) |
[任雪梅, 任龙 (2023) 祁连山西水林区亚高山灌丛土壤氮素含量海拔梯度变化特征. 林业科技通讯, (3), 4-7.] | |
[34] |
Pedraza RO (2008) Recent advances in nitrogen-fixing acetic acid bacteria. International Journal of Food Microbiology, 125, 25-35.
DOI PMID |
[35] | Shen CC, Shi Y, Fan KK, He JS, Adams JM, Ge Y, Chu HY (2019) Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau. FEMS Microbiology Ecology, 95, fiz003. |
[36] | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211. |
[37] | Song XR, Shang ZY, Li XD, Fu H (2015) Soil phosphorus and influencing factors in the grasslands at different elevations on west-slope of Helan Mountain, Inner Mongolia. Pratacultural Science, 32, 1054-1060. (in Chinese with English abstract) |
[宋雄儒, 尚振艳, 李旭东, 傅华 (2015) 贺兰山西坡不同海拔梯度草地土壤磷特征及其影响因素. 草业科学, 32, 1054-1060.] | |
[38] | Sor R, Legendre P, Lek S (2018) Uniqueness of sampling site contributions to the total variance of macroinvertebrate communities in the Lower Mekong basin. Ecological Indicators, 84, 425-432. |
[39] |
Stone BW, Li JH, Koch BJ, Blazewicz SJ, Dijkstra P, Hayer M, Hofmockel KS, Liu XJ, Mau RL, Morrissey EM, Pett-Ridge J, Schwartz E, Hungate BA (2021) Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nature Communications, 12, 3381.
DOI PMID |
[40] | Tang ZY, Fang JY (2004) A review on the elevational patterns of plant species diversity. Biodiversity Science, 12, 20-28. (in Chinese with English abstract) |
[唐志尧, 方精云 (2004) 植物物种多样性的垂直分布格局. 生物多样性, 12, 20-28.]
DOI |
|
[41] | Tao J, Zang RG, Yu CY (2011) Altitudinal patterns of plant communities and species diversity in the Habaxueshan Mountains, Yunnan, China. Scientia Silvae Sinicae, 47(7), 1-6. (in Chinese with English abstract) |
[陶晶, 臧润国, 余昌元 (2011) 云南哈巴雪山植物群落和植物多样性海拔梯度分布格局. 林业科学, 47(7), 1-6.] | |
[42] | Tripathi BM, Stegen JC, Kim M, Dong K, Adams JM, Lee YK (2018) Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. The ISME Journal, 12, 1072-1083. |
[43] | Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB (2016) Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32(2), 14-20. (in Chinese with English abstract) |
[王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 (2016) 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32(2), 14-20.]
DOI |
|
[44] | Wei X, Zheng XF, Zhang SX (2014) Forest soil physicochemical properties along different altitudinal gradients at Huoditang in the Qinling Mountains. Journal of Northwest Forestry University, 29(3), 9-14. (in Chinese with English abstract) |
[魏新, 郑小锋, 张硕新 (2014) 秦岭火地塘不同海拔梯度森林土壤理化性质研究. 西北林学院学报, 29(3), 9-14.] | |
[45] | Wu JY, Zhi XY, Li Y, Guan TW, Tang SK, Xu LH, Li WJ (2008) Comparison of actinobacterial diversity in Jiangcheng and Heijing saline mines in Yunnan by using culture-independent approach. Microbiology China, 35, 1550-1555. (in Chinese with English abstract) |
[吴晋元, 职晓阳, 李岩, 关统伟, 唐蜀昆, 徐丽华, 李文均 (2008) 云南江城和黑井盐矿沉积物未培养放线菌多样性比较. 微生物学通报, 35, 1550-1555.] | |
[46] | Xiang QS, Zhang DS, Sun K, Wang N (2021) Analysis of soil microbial community structure and diversity in Berberis vernae habitat at different altitudes in alpine region. Acta Botanica Boreali-Occidentalia Sinica, 41, 1036-1050. (in Chinese with English abstract) |
[向前胜, 张登山, 孙奎, 王宁 (2021) 高寒地区不同海拔梯度西北小檗生境土壤微生物群落结构及多样性分析. 西北植物学报, 41, 1036-1050.] | |
[47] | Xu N, Tan GC, Wang HY, Gai XP (2016) Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 74, 1-8. |
[48] | Yang F, Wu YH, Yuan XF, Fu ZC (2019) Status quo and protection countermeasures of hemlock ancient trees in south slope of Qinling Mountains. Modern Agriculture Research, (4), 54-55. (in Chinese with English abstract) |
[杨芬, 吴玉华, 袁小峰, 付志超 (2019) 秦岭南坡铁杉古树群现状及保护对策. 现代农业研究, (4), 54-55.] | |
[49] | Yao L, Hu LH, Zhang HC, Fang YM, Wang GM (2019) Elevational distribution characteristics of soil bacterial community and enzyme activities in Mount Huangshan. Environmental Science, 40, 859-868. (in Chinese with English abstract) |
[姚兰, 胡立煌, 张焕朝, 方炎明, 王艮梅 (2019) 黄山土壤细菌群落和酶活性海拔分布特征. 环境科学, 40, 859-868.] | |
[50] | Zhang BY, Yu K (2020) Application of microbial gene databases in the annotation of nitrogen cycle functional genes. Microbiology China, 47, 3021-3038. (in Chinese with English abstract) |
[张博雅, 余珂 (2020) 微生物基因数据库在氮循环功能基因注释中的应用. 微生物学通报, 47, 3021-3038.] | |
[51] | Zhang Q (2019) Study on the Difference of Soil Microbial Diversity and Nitrification at Different Altitudes in Yunhe Terrace. PhD dissertation, Zhejiang University, Hangzhou. (in Chinese with English abstract) |
[张倩 (2019) 云和梯田不同海拔土壤微生物多样性及硝化作用差异研究. 博士学位论文, 浙江大学, 杭州.] | |
[52] | Zhang X, Liu XQ, Wang YP, Li ZB, Li P (2012) Evaluation on benefits of soil and water conversation in ecological function region of Qinling Mountain. Research of Soil and Water Conservation, 19(2), 86-90. (in Chinese with English abstract) |
[张霞, 刘晓清, 王亚萍, 李占斌, 李鹏 (2012) 秦岭生态功能区水土保持治理效益评价. 水土保持研究, 19(2), 86-90.] | |
[53] | Zhou H (2019) Characteristics and Adaptive Mechanism of Soil Microorganisms in Alpine Grassland at Different Altitudes. PhD dissertation, Gansu Agricultural University, Lanzhou. (in Chinese with English abstract) |
[周恒 (2019) 不同海拔高寒草原土壤微生物特征及其适应机制. 博士学位论文, 甘肃农业大学, 兰州.] | |
[54] | Zhou HK, Li S, Sun J, Qu JP, Zhang ZH, Ma L, Qin RM, Wei JJ, Chang T, Su HY, Hu X, A DHZ, Yuan F, Li HL (2023) Characteristics of plant community and soil physical and chemical properties in alpine meadow along altitude gradient in the headwaters region of Three-River on Tibetan Plateau. Acta Agrestia Sinica, 31, 1735-1743. (in Chinese with English abstract) |
[周华坤, 李珊, 孙建, 曲家鹏, 张中华, 马丽, 秦瑞敏, 魏晶晶, 常涛, 苏洪烨, 胡雪, 阿的哈则, 袁访, 李宏林 (2023) 三江源区高寒草甸植物群落与土壤理化性质沿海拔梯度的变化特征. 草地学报, 31, 1735-1743.]
DOI |
[1] | 李蓉姣, 董江海, 郑文芳, 刘入源, 赵立娟, 高瑞贺. 关帝山不同海拔杨桦混交林土壤动物多样性特征及其影响因素[J]. 生物多样性, 2024, 32(9): 24070-. |
[2] | 张瑶, 孙君瑶, 李伟. 雅鲁藏布江流域不同海拔梯度下消落区植被NDVI的时空变化趋势及驱动因素[J]. 生物多样性, 2024, 32(5): 23432-. |
[3] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[4] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[5] | 刘啸林, 吴友贵, 张敏华, 陈小荣, 朱志成, 陈定云, 董舒, 李步杭, 丁炳扬, 刘宇. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 23294-. |
[6] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[7] | 罗小燕, 李强, 黄晓磊. 戴云山国家级自然保护区访花昆虫DNA条形码数据集[J]. 生物多样性, 2023, 31(8): 23236-. |
[8] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[9] | 蒋景龙, 颜文博, 胡凤成, 王琦, 孙旺, 李耘, 王勇. 濒危植物秦岭石蝴蝶野外回归早期探索[J]. 生物多样性, 2023, 31(3): 22520-. |
[10] | 林木青, 张应明, 欧阳芳, 束祖飞, 朱朝东, 肖治术. 广东车八岭国家级自然保护区独栖性胡蜂多样性空间分布特征及其对环境因子的响应[J]. 生物多样性, 2023, 31(2): 22310-. |
[11] | 侯东敏, 辉洪, 张栋儒, 肖能文, 饶定齐. 云岭山脉云南地区两栖爬行类动物多样性[J]. 生物多样性, 2023, 31(2): 22316-. |
[12] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[13] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[14] | 高瑞贺, 范世明, 董江海, 李蓉姣, 张志伟. 关帝山不同海拔昆虫功能群特征及分布格局[J]. 生物多样性, 2023, 31(10): 23152-. |
[15] | 张超, 李娟, 程海云, 段家充, 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn