生物多样性 ›› 2019, Vol. 27 ›› Issue (5): 516-525. DOI: 10.17520/biods.2019072
所属专题: 昆虫多样性与生态功能
收稿日期:
2019-03-12
接受日期:
2019-05-27
出版日期:
2019-05-20
发布日期:
2019-05-20
通讯作者:
周欣
基金资助:
Tang Min1,2,Zou Yi3,Su Qinzhi2,4,Zhou Xin1,2,*()
Received:
2019-03-12
Accepted:
2019-05-27
Online:
2019-05-20
Published:
2019-05-20
Contact:
Zhou Xin
摘要:
作为生态服务提供者的传粉蜜蜂与景观生态息息相关, 而以农田为主的景观组成显著降低了传粉蜜蜂的多样性。目前调查研究显示, 农田的扩张与蜜蜂多样性下降相关, 且农药残留对蜜蜂损害严重。景观中的开花植物决定了蜜蜂的食物(营养)组成, 其中花粉蛋白含量与蜜蜂的生长发育紧密相关。尽管研究已证实景观环境会显著影响蜜蜂蜂群的发展和个体的生长繁殖能力, 但未来还需要加强景观组成变化直接作用于蜜蜂的机制研究。另一方面, 大量研究表明蜜蜂肠道共生菌是影响宿主健康的重要因素: 可促进宿主吸收营养和抵抗病原菌。作为传粉者, 蜜蜂接触到的主要外部环境——花粉和花蜜都含有特殊的微生物, 很多研究暗示花源微生物是蜜蜂肠道菌来源之一。研究表明景观环境相关的食物(营养)、农药残留以及环境微生物都会显著影响肠道微生物。现有少量的研究证明不同景观的蜜蜂肠道微生物有差异, 景观环境可能通过作用于蜜蜂肠道微生物进而影响蜜蜂健康。然而不同景观环境中的微生物, 尤其是花源微生物和蜜蜂肠道菌之间的关联有待证明。景观对蜜蜂肠道微生物的影响值得研究, 希望可以从肠道菌的视角鉴别对蜜蜂友好的景观环境, 进而指导土地合理利用和蜜蜂保护。
唐敏, 邹怡, 苏秦之, 周欣 (2019) 洞察景观环境影响蜜蜂之新视角: 肠道微生物. 生物多样性, 27, 516-525. DOI: 10.17520/biods.2019072.
Tang Min, Zou Yi, Su Qinzhi, Zhou Xin (2019) A new perspective on landscape impact in bee populations: Considering the bee gut microbiome. Biodiversity Science, 27, 516-525. DOI: 10.17520/biods.2019072.
图1 来自4个蜂场的东方蜜蜂肠道菌群16S rRNA V3片段序列的非度量多维尺度分析(nMDS)图(a)及蜂场内和蜂场间的Bray-Curtis距离比较(ANOVA和t检验, b)
Fig. 1 Gut microbiome similarity on 16S rRNA V3 region of Apis cerana sampled from 4 apiaries showed by non-metric multidimensional scaling (nMDS) plot (a), and Bray-Curtis distance between gut microbiome compared among and between sampling sites and tested by using ANOVA and t-test (b). SCGB, Guanba, Sichuan; SCXHG, Xiaohegou, Sichuan; SXSSP, Shanshuping, Shaanxi; SXYJG, Yangjiagou, Shaanxi.
[7] |
Blaauw BR, Isaacs R ( 2014 a) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. Journal of Applied Ecology, 51, 890-898.
DOI URL |
[8] |
Blaauw BR, Isaacs R ( 2014 b) Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. Basic and Applied Ecology, 15, 701-711.
DOI URL |
[9] |
Blitzer EJ, Gibbs J, Park MG, Danforth BN ( 2016) Pollination services for apple are dependent on diverse wild bee communities. Agriculture, Ecosystems and Environment, 221, 1-7.
DOI URL |
[10] |
Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D ( 2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science Technology, 49, 12731-12740.
DOI URL |
[11] | Brittain C, Williams N, Kremen C, Klein AM ( 2012) Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 280, 20122767. |
[12] |
Burkle LA, Marlin JC, Knight TM ( 2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1616.
DOI URL |
[13] |
Chen C, Wang H, Liu Z, Chen X, Tang J, Meng F, Shi W ( 2018) Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana). Molecular Biology and Evolution, 35, 2260-2271.
DOI URL |
[14] |
Colwell MJ, Williams GR, Evans RC, Shutler D ( 2017) Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecology and Evolution, 7, 7243-7253.
DOI URL |
[15] |
Connelly H, Poveda K, Loeb G ( 2015) Landscape simplification decreases wild bee pollination services to strawberry. Agriculture, Ecosystems and Environment, 211, 51-56.
DOI URL |
[16] |
Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Horning M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI ( 2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318, 283-288.
DOI URL |
[17] |
Crall JD, Switzer CM, Oppenheimer RL, Ford Versypt AN, Dey B, Brown A, Eyster M, Guerin C, Pierce NE, Combes SA, de Bivort BL ( 2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science, 362, 683-686.
DOI URL |
[18] |
Crotti E, Sansonno L, Prosdocimi EM, Vacchini V, Hamdi C, Cherif A, Conella E, Marzorati M, Balloi A ( 2013) Microbial symbionts of honeybees: A promising tool to improve honeybee health. New Biotechnology, 30, 716-722.
DOI URL |
[19] |
Danner N, Keller A, Härtel S, Steffan-Dewenter I ( 2017) Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE, 12, e0183716.
DOI URL |
[20] |
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ ( 2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559-563.
DOI |
[21] |
DeGrandi-Hoffman G, Chen Y, Rivera R, Carroll M, Chambers M, Hidalgo G, de Jong EW ( 2016) Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie, 47, 186-196.
DOI URL |
[22] |
Di Pasquale G, Alaux C, Le Conte Y, Odoux JF, Pioz M, Vaissière BE, Belzunces LP, Decourtye A ( 2016) Variations in the availability of pollen resources affect honey bee health. PLoS ONE, 11, e0162818.
DOI URL |
[23] |
Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C ( 2013) Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE, 8, e72016.
DOI URL |
[24] |
Donkersley P, Rhodes G, Pickup RW, Jones KC ( 2018) Bacterial communities associated with honeybee food stores are correlated with land use. Ecology and Evolution, 8, 4743-4756.
DOI URL |
[25] |
Donkersley P, Rhodes G, Pickup RW, Jones KC, Wilson K ( 2014) Honeybee nutrition is linked to landscape composition. Ecology and Evolution, 4, 4195-4206.
DOI URL |
[26] |
dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B ( 2016) Queens become workers: Pesticides alter caste differentiation in bees. Scientific Reports, 6, 31605.
DOI |
[27] |
Engel P, Bonilla-Rosso G ( 2018) Functional roles and metabolic niches in the honey bee gut microbiota. Current Opinion in Microbiology, 43, 69-76.
DOI URL |
[28] | Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cornman RS, Dainat J, de Miranda JR, Doublet V, Emery O, Evans JD, Farinelli L, Flenniken ML, Granberg F, Grasis JA, Gauthier L, Hayer J, Koch H, Kocher S, Martinson VG, Moran N, Munoz-Torres M, Newton I, Paxton RJ, Powell E, Sadd BM, Schmid-Hempel P, Schmid-Hempel R, Song SJ, Schwarz RS, vanEngelsdorp D, Dainat B ( 2016) The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. mBio, 7, e02164-15. |
[29] |
Frias BED, Barbosa CD, Lourenço AP ( 2016) Pollen nutrition in honey bees (Apis mellifera): Impact on adult health. Apidologie, 47, 15-25.
DOI URL |
[30] |
Fridman S, Izhaki I, Gerchman Y, Halpern M ( 2012) Bacterial communities in floral nectar. Environmental Microbiology Reports, 4, 97-104.
DOI URL |
[31] | Garibaldi LA, Steffan-dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM ( 2014) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339, 1608-1611. |
[32] |
Geldmann J, Gonzalez-Varo JP ( 2018) Conserving honey bees does not help wildlife: High densities of managed honey bees can harm populations of wild pollinators. Science, 359, 392-393.
DOI URL |
[33] |
Gill RJ, Baldock KCR, Brown MJF, Cresswell JE, Dicks LV, Fountain MT, Garratt MPD, Gough LA, Heard MS, Holland JM, Ollerton J, Stone GN, Tang CQ, Vanbergen AJ, Vogler A, Woodward G, Arce AN, Boatman ND, Brand-Hardy R, Breeze TD, Green M, Hartfield CM, O’Connor RS, Osborne JL, Phillips J, Sutton PB, Potts SG ( 2016) Protecting an ecosystem service: Approaches to understanding and mitigating threats to wild insect pollinators. Advances in Ecological Research, 54, 135-206.
DOI URL |
[34] |
Gill RJ, Ramos-Rodriguez O, Raine NE ( 2012) Combined pesticide exposure severely affects individual- and colony- level traits in bees. Nature, 491, 105-108.
DOI |
[35] |
Glavinic U, Stankovic B, Draskovic V, Stevanovic J, Petrovic T, Lakic N, Stanimirovic Z ( 2017) Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE, 12, e0187726.
DOI URL |
[36] |
Goulson D, Nicholls E, Botías C, Rotheray EL ( 2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.
DOI URL |
[37] | Grass I, Jauker B, Steffan-Dewenter I, Tscharntke T, Jauker F ( 2018) Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nature Ecology & Evolution, 2, 1408-1417. |
[38] | Graystock P, Goulson D, Hughes WOH ( 2015) Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 282,. 2015. 1371. |
[39] |
Graystock P, Rehan SM, McFrederick QS ( 2017) Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conservation Genetics, 18, 701-711.
DOI URL |
[40] |
Henry M, Béguin M, Requier F, Rollin O, Odoux J, Aupinel P, Tchamitchian S, Decourtye A ( 2012) A common pesticide decreases foraging success and survival in honey bees. Science, 336, 348-350.
DOI URL |
[41] |
Herbertsson L, Lindström SAM, Rundlöf M, Bommarco R, Smith HG ( 2016) Competition between managed honeybees and wild bumblebees depends on landscape context. Basic and Applied Ecology, 17, 609-616.
DOI URL |
[42] |
Holzschuh A, Dudenhöffer J, Tscharntke T ( 2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation, 153, 101-107.
DOI URL |
[43] |
Hung KLJ, Kingston JM, Albretch M, Holway DA, Kohn JR ( 2018) The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285, 20172140.
DOI URL |
[44] |
Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FL, Hughes WO ( 2018) Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 8, 441-451.
DOI URL |
[45] | Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA ( 2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Frontiers in Microbiology, 7, 1-11. |
[46] |
Keller A, Brandel A, Becker MC, Balles R, Abdelmohsen UR, Ankenbrand MJ, Sickel W ( 2018) Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome, 6, 1-10.
DOI URL |
[1] |
Aizen MA, Gleiser G, Sabatino M, Gilarranz LJ, Bascompte J, Verdú M ( 2016) The phylogenetic structure of plant- pollinator networks increases with habitat size and isolation. Ecology Letters, 19, 29-36.
DOI URL |
[2] |
Anderson KE, Ricigliano VA ( 2017) Honey bee gut dysbiosis: A novel context of disease ecology. Current Opinion in Insect Science, 22, 125-132.
DOI URL |
[47] |
Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P ( 2017) Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 15, e2003467.
DOI URL |
[48] |
Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Radcliffe A, Stout JC, Wright GA ( 2015) Bees prefer foods containing neonicotinoid pesticides. Nature, 521, 74-76.
DOI |
[3] |
Anderson KE, Carroll MJ, Sheehan T, Mott BM, Maes P, Corby-Harris V ( 2014) Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology, 23, 5904-5917.
DOI URL |
[4] |
Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V ( 2013) Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE, 8, e83125.
DOI URL |
[49] | Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH ( 2018) Ecological intensification: Bridging the gap between science and practice. Trends in Ecology and Evolution, 34, 154-166. |
[50] |
Klein A, Vaissie BE, Steffan-dewenter I, Cunningham SA, Kremen C, Cedex A ( 2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313.
DOI URL |
[51] |
Koch H, Schmid-Hempel P ( 2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences, USA, 108, 19288-19292.
DOI URL |
[52] |
Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV ( 2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 20, 673-689.
DOI URL |
[5] |
Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, Morton RD, Smart SM, Memmott J ( 2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 530, 85-88.
DOI |
[6] |
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE ( 2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351-355.
DOI URL |
[53] |
Kremen C ( 2018) The value of pollinator species diversity. Science, 359, 741-742.
DOI URL |
[54] |
Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, Lebuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH ( 2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10, 299-314.
DOI URL |
[55] |
Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, Jaffe R, Moran NA ( 2017) Dynamic microbiome evolution in social bees. Science Advances, 3, e1600513.
DOI URL |
[56] |
Li JH, Evans JD, Li WF, Zhao YZ, Degrandi-hoffman G, Huang SK, Li ZG, Hamilton M, Chen YP ( 2017 a) New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PLoS ONE, 12, e0187505.
DOI URL |
[57] | Li Q, Lauber CL, Czarnecki-Maulden G, Pan Y ( 2017 b) Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio, 8, e01703-16. |
[58] |
Lim HC, Chu CC, Seufferheld MJ, Cameron SA ( 2015) Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLoS ONE, 10, e0118566.
DOI URL |
[59] |
Maes PW, Rodrigues PAP, Oliver R, Mott BM, Anderson KE ( 2016) Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Molecular Ecology, 25, 5439-5450.
DOI URL |
[60] | Magrach A, González-Varo JP, Boiffier M, Vilà M, Bartomeus I ( 2017) Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nature Ecology & Evolution, 1, 1299-1307. |
[61] |
Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA ( 2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20, 619-628.
DOI URL |
[62] |
McFrederick QS, Rehan SM ( 2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Molecular Ecology, 25, 2302-2311.
DOI URL |
[63] |
McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, Mueller UG ( 2017) Flowers and wild megachilid bees share microbes. Microbial Ecology, 73, 188-200.
DOI URL |
[64] |
McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG ( 2012) Environment or kin: Whence do bees obtain acidophilic bacteria? Molecular Ecology, 21, 1754-1768.
DOI URL |
[65] |
McFrederick QS, Wcislo WT, Hout MC, Mueller UG ( 2014) Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiology Ecology, 88, 398-406.
DOI URL |
[66] |
Motta EVS, Raymann K, Moran NA ( 2018) Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, USA, 115, 10305-10310.
DOI URL |
[67] |
Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI ( 2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332, 970-974.
DOI URL |
[68] |
Murphy GEP, Romanuk TN ( 2014) A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91-103.
DOI URL |
[69] |
Naug D ( 2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142, 2369-2372.
DOI URL |
[70] |
Neokosmidis L, Tscheulin T, Devalez J, Petanidou T ( 2018) Landscape spatial configuration is a key driver of wild bee demographics. Insect Science, 25, 172-182.
DOI URL |
[71] |
Oldroyd BP ( 2007) What’s killing American honey bees? PLoS Biology, 5, e168.
DOI URL |
[72] |
Ollerton J, Erenler H, Edwards M, Crockett R ( 2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360-1362.
DOI URL |
[73] |
Ollerton J, Winfree R, Tarrant S ( 2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
DOI URL |
[74] |
Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN ( 2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences, 282, 20150299.
DOI URL |
[75] |
Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D ( 2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE, 8, e70182.
DOI URL |
[76] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE ( 2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353.
DOI URL |
[77] |
Powell JE, Martinson VG, Urban-Mead K, Moran NA ( 2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and Environmental Microbiology, 80, 7378-7387.
DOI URL |
[78] |
Praet J, Parmentier A, Schmid-Hempel R, Meeus I, Smagghe G, Vandamme P ( 2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environmental Microbiology, 20, 214-227.
DOI URL |
[79] |
Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH ( 2018) Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69, 789-815.
DOI URL |
[80] |
Raymann K, Moran NA ( 2018) The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26, 97-104.
DOI URL |
[81] | Ribière C, Hegarty C, Stephenson H, Whelan P, O’Toole PW ( 2018) Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microbial Ecology, 78, 195-205. |
[82] |
Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N, Vaissière BE, Henry M ( 2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agriculture, Ecosystems and Environment, 179, 78-86.
DOI URL |
[83] | Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS ( 2018) Floral and foliar source affect the bee nest microbial community. Microbial Ecology, https://doi.org/10. |
1007/s00248-018-1300-3. | |
[84] |
Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG ( 2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521, 77-80.
DOI |
[85] |
Saraiva MA, Zemolin APP, Franco JL, Boldo JT, Stefenon VM, Triplett EW, de Oliveira Camargo FA, Roesch LFW ( 2015) Relationship between honeybee nutrition and their microbial communities. Antonie van Leeuwenhoek, 107, 921-933.
DOI URL |
[86] | Saunders ME, Smith TJ, Rader R ( 2018) Bee conservation: Key role of managed bees. Science, 360, 389. |
[87] |
Schwarz RS, Moran NA, Evans JD ( 2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proceedings of the National Academy of Sciences, USA, 113, 9345-9350.
DOI URL |
[88] |
Siviter H, Brown MJF, Leadbeater E ( 2018) Sulfoxaflor exposure reduces bumblebee reproductive success. Nature, 561, 109-112.
DOI |
[89] |
Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D ( 2018) Drivers of colony losses. Current Opinion in Insect Science, 26, 142-148.
DOI URL |
[90] |
Torné-noguera A, Rodrigo A, Osorio S, Bosch J ( 2016) Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic and Applied Ecology, 17, 199-209.
DOI URL |
[91] |
Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A ( 2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356, 1395-1397.
DOI URL |
[92] |
Vaudo AD, Tooker JF, Grozinger CM, Patch HM ( 2015) Bee nutrition and floral resource restoration. Current Opinion in Insect Science, 10, 133-141.
DOI URL |
[93] |
Whitehorn PR, O’Connor S, Wackers FL, Goulson D ( 2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336, 351-352.
DOI URL |
[94] |
Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP ( 2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters, 18, 626-635.
DOI URL |
[95] |
Winfree R, Griswold T, Kremen C ( 2007) Effect of human disturbance on bee communities in a forested ecosystem. Conservation Biology, 21, 213-223.
DOI URL |
[96] |
Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell RF ( 2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356, 1393-1395.
DOI URL |
[97] |
Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD ( 2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105-108.
DOI URL |
[98] | Wu P, Axmacher JC, Song X, Zhang X, Xu H, Chen C, Yu Z, Liu Y ( 2018) Effects of plant diversity, vegetation composition, and habitat type on different functional trait groups of wild bees in rural Beijing. Journal of Insect Science, 18, . |
[99] | Xun EN, Zhao JM, Guo JX, Zhang YW ( 2017) Nectar-dwelling microorganisms and their ecological functions. Acta Ecologica Sinica, 37, 1757-1768. |
(in Chinese with English abstract) [ 荀二娜, 赵骥民, 郭继勋, 张彦文 ( 2017) 花蜜微生物及其生态功能研究进展.生态学报, 37, 1757-1768.] | |
[100] |
Yang Y, Ma S, Yan Z, Liu F, Diao Q, Dai P ( 2019) Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution, 249, 860-867.
DOI URL |
[101] | Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, Moran NA ( 2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio, 7, e01326-16. |
[102] |
Zou Y, Bianchi FJJA, Jauker F, Xiao H, Chen J, Cresswell J, Luo A, Huang J, van der Werf W ( 2017) Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agriculture, Ecosystems and Environment, 246, 109-116.
DOI URL |
[1] | 曹亚苏, 范敏, 彭羽, 辛嘉讯, 彭楠一. 景观格局动态对浑善达克沙地植物物种多样性和功能多样性的影响[J]. 生物多样性, 2023, 31(8): 23048-. |
[2] | 吴帆, 刘深云, 江虎强, 王茜, 陈开威, 李红亮. 中华蜜蜂和意大利蜜蜂秋冬期传粉植物多样性比较[J]. 生物多样性, 2023, 31(5): 22528-. |
[3] | 孙琼, 王嵘, 陈小勇. 物种形成过程中的分化基因组岛及其形成机制[J]. 生物多样性, 2022, 30(3): 21383-. |
[4] | 楚雅南, 林晨, 毛文慧, 龙春林. 生物文化多样性研究新进展[J]. 生物多样性, 2022, 30(10): 22463-. |
[5] | 陈思淇, 张玉钧. 乡村景观生物多样性研究进展[J]. 生物多样性, 2021, 29(10): 1411-1424. |
[6] | 李月辉, 胡远满. 动物移动网络研究对景观生态学的贡献[J]. 生物多样性, 2021, 29(1): 98-108. |
[7] | 毕兴, 杨朝辉, 王丞, 粟海军, 张明明. 西南喀斯特地区生物文化多样性的演化与耦合: 以贵州兴义坡岗自然保护区为例[J]. 生物多样性, 2020, 28(8): 1036-1044. |
[8] | 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. |
[9] | 肖雅倩,刘传,肖亮. |
[10] | 李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明. 西双版纳热带雨林林窗空间分布格局及其特征数与林窗下植物多样性的相关性[J]. 生物多样性, 2019, 27(3): 273-285. |
[11] | 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765. |
[12] | 杨培, 彭艳琼, 赵荣华, 杨大荣. 大蜜蜂的生物学特性、面临威胁与保护策略[J]. 生物多样性, 2018, 26(5): 476-485. |
[13] | 陈洁, 周年兴, 陶卓民. 景观生态安全格局的算法改进与应用[J]. 生物多样性, 2018, 26(1): 36-43. |
[14] | 黄宏文. “艺术的外貌、科学的内涵、使命的担当”——植物园500年来的科研与社会功能变迁(一): 艺术的外貌[J]. 生物多样性, 2017, 25(9): 924-933. |
[15] | 陈龙, 李月辉, 胡远满, 熊在平, 吴文, 李悦, 问青春. 小兴安岭铁力林业局冬季西伯利亚狍(Capreolus pygargus)的生境选择[J]. 生物多样性, 2017, 25(4): 401-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn