生物多样性 ›› 2012, Vol. 20 ›› Issue (2): 215-223.DOI: 10.3724/SP.J.1003.2012.09138
收稿日期:
2011-08-15
接受日期:
2012-03-08
出版日期:
2012-03-20
发布日期:
2012-04-09
通讯作者:
杨万勤
作者简介:
* E-mail: scyangwq@163.com基金资助:
Bo Tan, Fuzhong Wu, Wanqin Yang*(), Lei Xia, , Ao Wang
Received:
2011-08-15
Accepted:
2012-03-08
Online:
2012-03-20
Published:
2012-04-09
Contact:
Wanqin Yang
摘要:
为了解季节性冻融及其变化对土壤动物群落特征的影响, 于2008年11月-2009年10月的冬季(土壤冻融期、冻结期和融化期)及植被生长季节, 研究了不同岷江冷杉(Abies faxoniana)林的大型土壤动物群落特征。共采集大型土壤动物10,763只, 隶属于91科。冬季与生长季节土壤动物群落结构存在显著差异: 冬季以长角毛蚊科幼虫和尖眼蕈蚊科幼虫为优势类群, 大蚊科幼虫、苔甲科和蠓科幼虫等为常见类群; 而生长季节以蚁科、隐翅甲科、长角毛蚊科幼虫和异蛩目为优势类群, 原铗叭科、蝇科幼虫和石蜈蚣目等为常见类群。土壤动物群落个体密度、类群数量和多样性指数(H')随冻融格局变化表现出先降低后升高的趋势, 在土壤融化期达到了一个明显高峰值。冬季土壤动物以腐食性类群为主, 捕食性和植食性功能类群在融化末期(4月25日)和生长季节初期(5月25日)显著增加。研究结果表明冻融循环和冻结作用显著影响土壤动物群落结构, 季节转换过程中土壤动物群落的变化可能对深入认识冬季和生长季节生态过程的相互关系具有重要意义。
谭波, 吴福忠, 杨万勤, 夏磊, 杨玉莲, 王奥 (2012) 川西亚高山/高山森林大型土壤动物群落多样性及其对季节性冻融的响应. 生物多样性, 20, 215-223. DOI: 10.3724/SP.J.1003.2012.09138.
Bo Tan, Fuzhong Wu, Wanqin Yang, Lei Xia, , Ao Wang (2012) Soil macro-fauna community diversity and its response to seasonal freeze-thaw in the subalpine/alpine forests of western Sichuan. Biodiversity Science, 20, 215-223. DOI: 10.3724/SP.J.1003.2012.09138.
图1 川西亚高山/高山不同森林群落土壤5 cm深度日平均温度动态(2008年11月-2009年10月)
Fig. 1 Dynamics of daily mean soil temperature at the soil depth of 5 cm in the subalpine and alpine forests of western Sichuan from November 1, 2008 to October 30, 2009.
森林 Forest | 循环次数 Number of soil freeze-thaw cycles (n) | 土壤平均温度 Soil mean temperature (℃) | |||||
---|---|---|---|---|---|---|---|
冻融期 OF | 冻结期 DF | 融化期 TS | 冻融期 OF | 冻结期 DF | 融化期 TS | ||
原始林(A1) Primary forest | 4 | 0 | 16 | 0.105 | -0.422 | 0.442 | |
混交林(A2) Mixed forest | 10 | 0 | 8 | 0.211 | -0.562 | 2.601 | |
次生林(A3) Secondary forest | 5 | 0 | 6 | 1.150 | -0.900 | 1.193 |
表1 川西亚高山/高山不同森林群落土壤冻融期、冻结期和融化期土壤冻融循环次数和平均土壤温度
Table 1 Number of soil freeze-thaw cycle and mean soil temperauture in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, and thawing stage
森林 Forest | 循环次数 Number of soil freeze-thaw cycles (n) | 土壤平均温度 Soil mean temperature (℃) | |||||
---|---|---|---|---|---|---|---|
冻融期 OF | 冻结期 DF | 融化期 TS | 冻融期 OF | 冻结期 DF | 融化期 TS | ||
原始林(A1) Primary forest | 4 | 0 | 16 | 0.105 | -0.422 | 0.442 | |
混交林(A2) Mixed forest | 10 | 0 | 8 | 0.211 | -0.562 | 2.601 | |
次生林(A3) Secondary forest | 5 | 0 | 6 | 1.150 | -0.900 | 1.193 |
图2 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节土壤捕食性、植食性和腐食性动物功能类群组成
Fig. 2 Composition of the function groups (predators, phytophaga, and saprozoic) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
时期 Date | 土层 Layer | 原始林 Primary forest | 混交林 Mixed forest | 次生林 Secondary forest | |||
---|---|---|---|---|---|---|---|
密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | ||
冻融期 OF | I | 104.60±44.11a | 30.32±6.18a | 125.00±18.57a | 37.00±6.22a | 86.40±29.45a | 28.65±6.85a |
II | 30.73±15.32a | 7.75±1.67a | 46.56±9.82a | 9.82±2.11a | 28.42±11.22a | 7.41±1.35a | |
冻结期 DF | I | 81.33±7.55ab | 21.33±1.15b | 103.93±13.63a | 31.33±4.73b | 80.27±12.06ab | 17.67±1.52b |
II | 22.15±7.62a | 4.40±0.82b | 34.11±8.72a | 5.42±0.47b | 23.11±4.32a | 4.33±0.33b | |
融化期 TS | I | 191.00±39.52ac | 47.50±5.97c | 223.00±110.42b | 49.50±8.81ac | 151.00±70.28ac | 36.00±5.03a |
II | 65.79±17.35b | 11.57±2.60c | 84.56±21.11b | 15.26±2.81c | 54.92±10.54b | 11.21±2.53c | |
生长季节 GS | I | 254.27±53.17cd | 53.33±10.67c | 295.47±61.47b | 66.22±9.50c | 205.27±72.47cd | 58.33±17.67c |
II | 97.53±14.38c | 18.50±4.22d | 104.56±23.48b | 20.34±3.35d | 73.42±24.35b | 16.88±2.12d |
表2 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节大型土壤动物平均密度和类群数量特征
Table 2 Characteristics of the mean density and group number of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season
时期 Date | 土层 Layer | 原始林 Primary forest | 混交林 Mixed forest | 次生林 Secondary forest | |||
---|---|---|---|---|---|---|---|
密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | ||
冻融期 OF | I | 104.60±44.11a | 30.32±6.18a | 125.00±18.57a | 37.00±6.22a | 86.40±29.45a | 28.65±6.85a |
II | 30.73±15.32a | 7.75±1.67a | 46.56±9.82a | 9.82±2.11a | 28.42±11.22a | 7.41±1.35a | |
冻结期 DF | I | 81.33±7.55ab | 21.33±1.15b | 103.93±13.63a | 31.33±4.73b | 80.27±12.06ab | 17.67±1.52b |
II | 22.15±7.62a | 4.40±0.82b | 34.11±8.72a | 5.42±0.47b | 23.11±4.32a | 4.33±0.33b | |
融化期 TS | I | 191.00±39.52ac | 47.50±5.97c | 223.00±110.42b | 49.50±8.81ac | 151.00±70.28ac | 36.00±5.03a |
II | 65.79±17.35b | 11.57±2.60c | 84.56±21.11b | 15.26±2.81c | 54.92±10.54b | 11.21±2.53c | |
生长季节 GS | I | 254.27±53.17cd | 53.33±10.67c | 295.47±61.47b | 66.22±9.50c | 205.27±72.47cd | 58.33±17.67c |
II | 97.53±14.38c | 18.50±4.22d | 104.56±23.48b | 20.34±3.35d | 73.42±24.35b | 16.88±2.12d |
图3 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节大型土壤动物平均密度和类群数量动态。图中同一森林不同小写字母表示平均密度在P = 0.05水平上差异显著(通过LSD法比较)。
Fig. 3 Dynamics of the mean density and group number of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. The different lowercases in the same forest denote the significant difference (P = 0.05) in mean density based on the LSD. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
图4 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节土壤捕食性、植食性和腐食性动物功能类群动态
Fig. 4 Dynamics of the functional groups (predators, phytophaga, and saprozoic) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
图5 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节多样性指数(H')和均匀性指数(J)动态
Fig. 5 Dynamics of the Shannon-Wiener diversity index (H') and Pielou evenness index (J) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
[1] |
Bokhorst S, Huiskes A, Convey P, van Bodegomc PM, Aertsc R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology and Biochemistry, 40, 1547-1556.
DOI URL |
[2] |
Briones MJI, Ostle NJ, McNamara NP, Poskitt J (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41, 315-322.
DOI URL |
[3] | Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005) Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322. |
[4] | Chen XN (陈小鸟), You WH (由文辉), Wang XY (王向阳), Yi L (易兰) (2009) Community traits of soil animal under different ground cover treatments in evergreen broad-leaved forest. Biodiversity Science (生物多样性), 17, 160-167. (in Chinese with English abstract) |
[5] | Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso- fauna. Soil Biology and Biochemistry, 43, 1474-1481. |
[6] |
Dumana JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50, 259-266.
DOI URL PMID |
[7] | Edwards KA, McCulloch J, Kershaw GP, Jefferies RL (2006) Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology and Biochemistry, 38, 2843-2851. |
[8] | Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007) Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35, 247-255. |
[9] | Gongalsky KB, Persson T, Pokarzhevskii AD (2008) Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Applied Soil Ecology, 39, 84-90. |
[10] | He JS (贺金生), Wang ZQ (王政权), Fang JY (方精云) (2004) Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin (科学通报), 49, 1891-1899. (in Chinese) |
[11] | Hentschel K, Borken W, Matzner E (2008) Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil. Journal of Plant Nutrition and Soil Science, 171, 699-706. |
[12] | Herrmann A, Witter E (2002) Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology and Biochemistry, 34, 1495-1505. |
[13] | Huang LR (黄丽蓉), Zhang XP (张雪萍) (2008) Soil animal guilds and ecological distribution in forest ecosystems of the northern Da Hinggan Mountains. Chinese Journal of Soil Science (土壤通报), 39, 1017-1022. (in Chinese with English abstract) |
[14] | Huhta V (2007) The role of soil fauna in ecosystems: a historical review. Pedobiologia, 50, 489-495. |
[15] | Jones HG (2001) Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems. Cambridge University Press, Cambridge. |
[16] |
Konestabo HS, Michelsen A, Holmstrup M (2007) Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology, 36, 136-146.
DOI URL |
[17] | Koponena HT, Jaakkolaa T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006) Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology and Biochemistry, 38, 1861-1871. |
[18] | Li HX (李鸿兴), Sui JZ (隋敬之), Zhou SX (周士秀), Zhou Q (周勤), Sun HG (孙洪国) (1987) Key to Insect Classification (昆虫分类检索). China Agriculture Press, Beijing. (in Chinese) |
[19] | Liu Q (刘庆) (2000) Ecological Research on Subalpine Coniferous Forests in China (亚高山针叶林生态学研究). Sichuan University Press, Chengdu. (in Chinese) |
[20] | Lu RK (鲁如坤) (1999) Agricultural Chemical Analytical Methods for Soil (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[21] | Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N loss from soils of different ecosystem? A review. European Journal of Soil Science, 59, 274-284. |
[22] | Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003) Five stages of the Alaskan arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81. |
[23] |
Sinclaira BJ, Terblanchea JS, Scott MB, Blatch GL, Klok CJ, Chown SL (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 52, 29-50.
DOI URL PMID |
[24] | Sjursen H, Michelsen A, Holmstrup M (2005) Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-arctic soil. Applied Soil Ecology, 28, 79-93. |
[25] | Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific, Oxford. |
[26] | Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010) Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99. |
[27] | Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A (2011) The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 61, 670-679. |
[28] | Tan B (谭波), Wu FZ (吴福忠), Yang WQ (杨万勤), Yu S (余胜), Yang YL (杨玉莲), Wang A (王奥) (2011) Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan. Chinese Journal of Applied Ecology (应用生态学报), 22, 1162-1168. (in Chinese with English abstract) |
[29] | Wang ZZ (王振中), Zhang YM (张友梅), Xing XJ (邢协加) (2002) Effect of change in soil environment on community structure of soil animal. Acta Pedologica Sinica (土壤学报), 39, 892-897. (in Chinese with English abstract) |
[30] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010) Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[31] | Xia L (夏磊), Wu FZ (吴福忠), Yang WQ (杨万勤) (2011) Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze-thaw season. Chinese Journal of Plant Ecology (植物生态学报), 35, 1127-1135. (in Chinese with English abstract) |
[32] | Xiang CG (向昌国), Li WF (李文芳), Yu DZ (于德珍) (2000) A preliminary study on diversity of soil animal communities in the forest of Bad agong Mountain Nature Reserve. Chinese Biodiversity (生物多样性), 8, 304-306. (in Chinese with English abstract) |
[33] | Yang ZN (杨针娘), Liu XR (刘新仁), Zeng QZ (曾群柱), Chen ZT (陈赞廷) (2000) Hydrology in Cold Region of China (中国寒区水文). Science Press, Beijing. (in Chinese) |
[34] | Yin WY (尹文英), Hu SH (胡圣豪), Shen YF (沈韫芬) (1998) Pictorial Keys to Soil Animals of China (中国土壤动物检索图鉴). Science Press, Beijing. (in Chinese) |
[1] | 李俊洁, 刘欢欢, 吴杨雪, 曾凌达, 黄晓磊. 中国半翅目昆虫多样性和地理分布数据集[J]. 生物多样性, 2021, 29(9): 1154-1158. |
[2] | 李晟, 王大军, 陈祥辉, 卜红亮, 刘小庚, 靳彤. 四川老河沟保护地2011-2015年野生动物红外相机监测数据集[J]. 生物多样性, 2021, 29(9): 1170-1174. |
[3] | 宋文宇, 李学友, 王洪娇, 陈中正, 何水旺, 蒋学龙. 三江并流区树线生境小型兽类多样性多维度评价及其保护启示[J]. 生物多样性, 2021, 29(9): 1215-1228. |
[4] | 刘童祎, 陈静, 姜立云, 乔格侠. 中国半翅目等29目昆虫2020年新分类单元[J]. 生物多样性, 2021, 29(8): 1050-1057. |
[5] | 万霞, 张丽兵. 2020年发表的全球维管植物新种[J]. 生物多样性, 2021, 29(8): 1003-1010. |
[6] | 邵桦, 杨京彪, 薛达元. 佤族传统文化在生物多样性保护中的作用[J]. 生物多样性, 2021, 29(8): 1120-1127. |
[7] | 王琴, 陈远, 禹洋, 向左甫. 动物对孢子植物的传播模式及进化意义[J]. 生物多样性, 2021, 29(7): 995-1001. |
[8] | 戴逢斌, 吴杨, 潘玉雪, 张博雅, 田瑜. IPBES工作效率和科学职能的有效性分析[J]. 生物多样性, 2021, 29(5): 688-692. |
[9] | 李亦超, 陈永生, Denis Sandanov, 罗奥, 吕童, 苏香燕, 刘云鹏, 王庆刚, Viktor Chepinoga, Sergey Dudov, 王伟, 王志恒. 欧亚大陆东部毛茛科植物多样性格局及主导因子[J]. 生物多样性, 2021, 29(5): 561-574. |
[10] | 郑进凤, 唐蓉, 贺霜, 陈月红, 伍素, 张凯, 徐雨, 邹晓. 贵州花溪大学城破碎化林地鸟类多样性与嵌套分布格局[J]. 生物多样性, 2021, 29(5): 661-667. |
[11] | 陈星, 官天培, 蒋文乐, 李丹丹, 杨孔, 李晟. 中国牛科动物分布与种群现状: 基于文献计量数据[J]. 生物多样性, 2021, 29(5): 668-679. |
[12] | 全东丽, 杨斌, 马文章, 宋亮, 沈婷. 西双版纳苔藓植物多样性及其濒危状况[J]. 生物多样性, 2021, 29(4): 545-553. |
[13] | 段美春, 覃如霞, 张宏斌, 陈宝雄, 金彬, 张松泊, 任少鹏, 金树权, 朱升海, 华家宁, 刘云慧, 宇振荣. 农田节肢动物不同取样方法的综合比较[J]. 生物多样性, 2021, 29(4): 477-487. |
[14] | 卜向丽, 王静, 吴佳忆, 孙太福, 向荣伟, 鲁庆斌, 郝映红, 崔绍朋, 盛岩, 孟秀祥. 太行山东北部哺乳动物区系及多样性[J]. 生物多样性, 2021, 29(3): 331-339. |
[15] | 黄越, 顾燚芸, 阳文锐, 闻丞. 如何在北京充分实现受胁鸟类栖息地保护?[J]. 生物多样性, 2021, 29(3): 340-350. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn