生物多样性 ›› 2012, Vol. 20 ›› Issue (2): 215-223. DOI: 10.3724/SP.J.1003.2012.09138 cstr: 32101.14.SP.J.1003.2012.09138
所属专题: 土壤生物与土壤健康
收稿日期:
2011-08-15
接受日期:
2012-03-08
出版日期:
2012-03-20
发布日期:
2012-04-09
通讯作者:
杨万勤
作者简介:
* E-mail: scyangwq@163.com基金资助:
Bo Tan, Fuzhong Wu, Wanqin Yang*(), Lei Xia, , Ao Wang
Received:
2011-08-15
Accepted:
2012-03-08
Online:
2012-03-20
Published:
2012-04-09
Contact:
Wanqin Yang
摘要:
为了解季节性冻融及其变化对土壤动物群落特征的影响, 于2008年11月-2009年10月的冬季(土壤冻融期、冻结期和融化期)及植被生长季节, 研究了不同岷江冷杉(Abies faxoniana)林的大型土壤动物群落特征。共采集大型土壤动物10,763只, 隶属于91科。冬季与生长季节土壤动物群落结构存在显著差异: 冬季以长角毛蚊科幼虫和尖眼蕈蚊科幼虫为优势类群, 大蚊科幼虫、苔甲科和蠓科幼虫等为常见类群; 而生长季节以蚁科、隐翅甲科、长角毛蚊科幼虫和异蛩目为优势类群, 原铗叭科、蝇科幼虫和石蜈蚣目等为常见类群。土壤动物群落个体密度、类群数量和多样性指数(H')随冻融格局变化表现出先降低后升高的趋势, 在土壤融化期达到了一个明显高峰值。冬季土壤动物以腐食性类群为主, 捕食性和植食性功能类群在融化末期(4月25日)和生长季节初期(5月25日)显著增加。研究结果表明冻融循环和冻结作用显著影响土壤动物群落结构, 季节转换过程中土壤动物群落的变化可能对深入认识冬季和生长季节生态过程的相互关系具有重要意义。
谭波, 吴福忠, 杨万勤, 夏磊, 杨玉莲, 王奥 (2012) 川西亚高山/高山森林大型土壤动物群落多样性及其对季节性冻融的响应. 生物多样性, 20, 215-223. DOI: 10.3724/SP.J.1003.2012.09138.
Bo Tan, Fuzhong Wu, Wanqin Yang, Lei Xia, , Ao Wang (2012) Soil macro-fauna community diversity and its response to seasonal freeze-thaw in the subalpine/alpine forests of western Sichuan. Biodiversity Science, 20, 215-223. DOI: 10.3724/SP.J.1003.2012.09138.
图1 川西亚高山/高山不同森林群落土壤5 cm深度日平均温度动态(2008年11月-2009年10月)
Fig. 1 Dynamics of daily mean soil temperature at the soil depth of 5 cm in the subalpine and alpine forests of western Sichuan from November 1, 2008 to October 30, 2009.
森林 Forest | 循环次数 Number of soil freeze-thaw cycles (n) | 土壤平均温度 Soil mean temperature (℃) | |||||
---|---|---|---|---|---|---|---|
冻融期 OF | 冻结期 DF | 融化期 TS | 冻融期 OF | 冻结期 DF | 融化期 TS | ||
原始林(A1) Primary forest | 4 | 0 | 16 | 0.105 | -0.422 | 0.442 | |
混交林(A2) Mixed forest | 10 | 0 | 8 | 0.211 | -0.562 | 2.601 | |
次生林(A3) Secondary forest | 5 | 0 | 6 | 1.150 | -0.900 | 1.193 |
表1 川西亚高山/高山不同森林群落土壤冻融期、冻结期和融化期土壤冻融循环次数和平均土壤温度
Table 1 Number of soil freeze-thaw cycle and mean soil temperauture in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, and thawing stage
森林 Forest | 循环次数 Number of soil freeze-thaw cycles (n) | 土壤平均温度 Soil mean temperature (℃) | |||||
---|---|---|---|---|---|---|---|
冻融期 OF | 冻结期 DF | 融化期 TS | 冻融期 OF | 冻结期 DF | 融化期 TS | ||
原始林(A1) Primary forest | 4 | 0 | 16 | 0.105 | -0.422 | 0.442 | |
混交林(A2) Mixed forest | 10 | 0 | 8 | 0.211 | -0.562 | 2.601 | |
次生林(A3) Secondary forest | 5 | 0 | 6 | 1.150 | -0.900 | 1.193 |
图2 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节土壤捕食性、植食性和腐食性动物功能类群组成
Fig. 2 Composition of the function groups (predators, phytophaga, and saprozoic) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
时期 Date | 土层 Layer | 原始林 Primary forest | 混交林 Mixed forest | 次生林 Secondary forest | |||
---|---|---|---|---|---|---|---|
密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | ||
冻融期 OF | I | 104.60±44.11a | 30.32±6.18a | 125.00±18.57a | 37.00±6.22a | 86.40±29.45a | 28.65±6.85a |
II | 30.73±15.32a | 7.75±1.67a | 46.56±9.82a | 9.82±2.11a | 28.42±11.22a | 7.41±1.35a | |
冻结期 DF | I | 81.33±7.55ab | 21.33±1.15b | 103.93±13.63a | 31.33±4.73b | 80.27±12.06ab | 17.67±1.52b |
II | 22.15±7.62a | 4.40±0.82b | 34.11±8.72a | 5.42±0.47b | 23.11±4.32a | 4.33±0.33b | |
融化期 TS | I | 191.00±39.52ac | 47.50±5.97c | 223.00±110.42b | 49.50±8.81ac | 151.00±70.28ac | 36.00±5.03a |
II | 65.79±17.35b | 11.57±2.60c | 84.56±21.11b | 15.26±2.81c | 54.92±10.54b | 11.21±2.53c | |
生长季节 GS | I | 254.27±53.17cd | 53.33±10.67c | 295.47±61.47b | 66.22±9.50c | 205.27±72.47cd | 58.33±17.67c |
II | 97.53±14.38c | 18.50±4.22d | 104.56±23.48b | 20.34±3.35d | 73.42±24.35b | 16.88±2.12d |
表2 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节大型土壤动物平均密度和类群数量特征
Table 2 Characteristics of the mean density and group number of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season
时期 Date | 土层 Layer | 原始林 Primary forest | 混交林 Mixed forest | 次生林 Secondary forest | |||
---|---|---|---|---|---|---|---|
密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | 密度 Density (ind./m2) | 类群数量 No. of groups | ||
冻融期 OF | I | 104.60±44.11a | 30.32±6.18a | 125.00±18.57a | 37.00±6.22a | 86.40±29.45a | 28.65±6.85a |
II | 30.73±15.32a | 7.75±1.67a | 46.56±9.82a | 9.82±2.11a | 28.42±11.22a | 7.41±1.35a | |
冻结期 DF | I | 81.33±7.55ab | 21.33±1.15b | 103.93±13.63a | 31.33±4.73b | 80.27±12.06ab | 17.67±1.52b |
II | 22.15±7.62a | 4.40±0.82b | 34.11±8.72a | 5.42±0.47b | 23.11±4.32a | 4.33±0.33b | |
融化期 TS | I | 191.00±39.52ac | 47.50±5.97c | 223.00±110.42b | 49.50±8.81ac | 151.00±70.28ac | 36.00±5.03a |
II | 65.79±17.35b | 11.57±2.60c | 84.56±21.11b | 15.26±2.81c | 54.92±10.54b | 11.21±2.53c | |
生长季节 GS | I | 254.27±53.17cd | 53.33±10.67c | 295.47±61.47b | 66.22±9.50c | 205.27±72.47cd | 58.33±17.67c |
II | 97.53±14.38c | 18.50±4.22d | 104.56±23.48b | 20.34±3.35d | 73.42±24.35b | 16.88±2.12d |
图3 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节大型土壤动物平均密度和类群数量动态。图中同一森林不同小写字母表示平均密度在P = 0.05水平上差异显著(通过LSD法比较)。
Fig. 3 Dynamics of the mean density and group number of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. The different lowercases in the same forest denote the significant difference (P = 0.05) in mean density based on the LSD. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
图4 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节土壤捕食性、植食性和腐食性动物功能类群动态
Fig. 4 Dynamics of the functional groups (predators, phytophaga, and saprozoic) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
图5 川西亚高山/高山不同森林群落冻融期、冻结期、融化期及生长季节多样性指数(H')和均匀性指数(J)动态
Fig. 5 Dynamics of the Shannon-Wiener diversity index (H') and Pielou evenness index (J) of soil macro-fauna in the subalpine and alpine forests of western Sichuan during onset of freezing stage, deeply frozen stage, thawing stage, and growing season. OF, Onset of freezing stage; DF, Deeply frozen stage; TS, Thawing stage; GS, Growing season.
[1] |
Bokhorst S, Huiskes A, Convey P, van Bodegomc PM, Aertsc R (2008) Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology and Biochemistry, 40, 1547-1556.
DOI URL |
[2] |
Briones MJI, Ostle NJ, McNamara NP, Poskitt J (2009) Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41, 315-322.
DOI URL |
[3] | Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005) Winter in northeastern North America: a critical period for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322. |
[4] | Chen XN (陈小鸟), You WH (由文辉), Wang XY (王向阳), Yi L (易兰) (2009) Community traits of soil animal under different ground cover treatments in evergreen broad-leaved forest. Biodiversity Science (生物多样性), 17, 160-167. (in Chinese with English abstract) |
[5] | Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso- fauna. Soil Biology and Biochemistry, 43, 1474-1481. |
[6] |
Dumana JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50, 259-266.
DOI URL PMID |
[7] | Edwards KA, McCulloch J, Kershaw GP, Jefferies RL (2006) Soil microbial and nutrient dynamics in a wet Arctic sedge meadow in late winter and early spring. Soil Biology and Biochemistry, 38, 2843-2851. |
[8] | Freppaz M, Williams BL, Edwards AC, Scalenghe R, Zanini E (2007) Simulating soil freeze/thaw cycles typical of winter alpine conditions: implications for N and P availability. Applied Soil Ecology, 35, 247-255. |
[9] | Gongalsky KB, Persson T, Pokarzhevskii AD (2008) Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Applied Soil Ecology, 39, 84-90. |
[10] | He JS (贺金生), Wang ZQ (王政权), Fang JY (方精云) (2004) Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin (科学通报), 49, 1891-1899. (in Chinese) |
[11] | Hentschel K, Borken W, Matzner E (2008) Repeated freeze-thaw events affect leaching losses of nitrogen and dissolved organic matter in a forest soil. Journal of Plant Nutrition and Soil Science, 171, 699-706. |
[12] | Herrmann A, Witter E (2002) Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology and Biochemistry, 34, 1495-1505. |
[13] | Huang LR (黄丽蓉), Zhang XP (张雪萍) (2008) Soil animal guilds and ecological distribution in forest ecosystems of the northern Da Hinggan Mountains. Chinese Journal of Soil Science (土壤通报), 39, 1017-1022. (in Chinese with English abstract) |
[14] | Huhta V (2007) The role of soil fauna in ecosystems: a historical review. Pedobiologia, 50, 489-495. |
[15] | Jones HG (2001) Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems. Cambridge University Press, Cambridge. |
[16] |
Konestabo HS, Michelsen A, Holmstrup M (2007) Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-arctic ecosystem. Applied Soil Ecology, 36, 136-146.
DOI URL |
[17] | Koponena HT, Jaakkolaa T, Keinänen-Toivola MM, Kaipainen S, Tuomainen J, Servomaa K, Martikainen PJ (2006) Microbial communities, biomass, and activities in soils as affected by freeze thaw cycles. Soil Biology and Biochemistry, 38, 1861-1871. |
[18] | Li HX (李鸿兴), Sui JZ (隋敬之), Zhou SX (周士秀), Zhou Q (周勤), Sun HG (孙洪国) (1987) Key to Insect Classification (昆虫分类检索). China Agriculture Press, Beijing. (in Chinese) |
[19] | Liu Q (刘庆) (2000) Ecological Research on Subalpine Coniferous Forests in China (亚高山针叶林生态学研究). Sichuan University Press, Chengdu. (in Chinese) |
[20] | Lu RK (鲁如坤) (1999) Agricultural Chemical Analytical Methods for Soil (土壤农业化学分析方法). China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[21] | Matzner E, Borken W (2008) Do freeze-thaw events enhance C and N loss from soils of different ecosystem? A review. European Journal of Soil Science, 59, 274-284. |
[22] | Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003) Five stages of the Alaskan arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81. |
[23] |
Sinclaira BJ, Terblanchea JS, Scott MB, Blatch GL, Klok CJ, Chown SL (2006) Environmental physiology of three species of Collembola at Cape Hallett, North Victoria Land, Antarctica. Journal of Insect Physiology, 52, 29-50.
DOI URL PMID |
[24] | Sjursen H, Michelsen A, Holmstrup M (2005) Effects of freeze-thaw cycles on microarthropods and nutrient availability in a sub-arctic soil. Applied Soil Ecology, 28, 79-93. |
[25] | Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific, Oxford. |
[26] | Tan B, Wu FZ, Yang WQ, Liu L, Yu S (2010) Characteristics of soil animal community in the subalpine/alpine forests of western Sichuan during onset of freezing. Acta Ecologica Sinica, 30, 93-99. |
[27] | Tan B, Wu FZ, Yang WQ, Yu S, Liu L, Wang A (2011) The dynamics pattern of soil carbon and nutrients as soil thawing proceeded in the alpine/subalpine forest. Acta Agriculturae Scandinavica, Section B-Plant Soil Science, 61, 670-679. |
[28] | Tan B (谭波), Wu FZ (吴福忠), Yang WQ (杨万勤), Yu S (余胜), Yang YL (杨玉莲), Wang A (王奥) (2011) Soil hydrolase characteristics in late soil-thawing period in subalpine/alpine forests of west Sichuan. Chinese Journal of Applied Ecology (应用生态学报), 22, 1162-1168. (in Chinese with English abstract) |
[29] | Wang ZZ (王振中), Zhang YM (张友梅), Xing XJ (邢协加) (2002) Effect of change in soil environment on community structure of soil animal. Acta Pedologica Sinica (土壤学报), 39, 892-897. (in Chinese with English abstract) |
[30] | Wu FZ, Yang WQ, Zhang J, Deng RJ (2010) Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140. |
[31] | Xia L (夏磊), Wu FZ (吴福忠), Yang WQ (杨万勤) (2011) Contribution of soil fauna to mass loss of Abies faxoniana leaf litter during the freeze-thaw season. Chinese Journal of Plant Ecology (植物生态学报), 35, 1127-1135. (in Chinese with English abstract) |
[32] | Xiang CG (向昌国), Li WF (李文芳), Yu DZ (于德珍) (2000) A preliminary study on diversity of soil animal communities in the forest of Bad agong Mountain Nature Reserve. Chinese Biodiversity (生物多样性), 8, 304-306. (in Chinese with English abstract) |
[33] | Yang ZN (杨针娘), Liu XR (刘新仁), Zeng QZ (曾群柱), Chen ZT (陈赞廷) (2000) Hydrology in Cold Region of China (中国寒区水文). Science Press, Beijing. (in Chinese) |
[34] | Yin WY (尹文英), Hu SH (胡圣豪), Shen YF (沈韫芬) (1998) Pictorial Keys to Soil Animals of China (中国土壤动物检索图鉴). Science Press, Beijing. (in Chinese) |
[1] | 干靓 刘巷序 鲁雪茗 岳星. 全球生物多样性热点地区大城市的保护政策与优化方向[J]. 生物多样性, 2025, 33(5): 24529-. |
[2] | 曾子轩 杨锐 黄越 陈路遥. 清华大学校园鸟类多样性特征与环境关联[J]. 生物多样性, 2025, 33(5): 24373-. |
[3] | 臧明月, 刘立, 马月, 徐徐, 胡飞龙, 卢晓强, 李佳琦, 于赐刚, 刘燕. 《昆明-蒙特利尔全球生物多样性框架》下的中国城市生物多样性保护[J]. 生物多样性, 2025, 33(5): 24482-. |
[4] | 祝晓雨, 王晨灏, 王忠君, 张玉钧. 城市绿地生物多样性研究进展与展望[J]. 生物多样性, 2025, 33(5): 25027-. |
[5] | 袁琳, 王思琦, 侯静轩. 大都市地区的自然留野:趋势与展望[J]. 生物多样性, 2025, 33(5): 24481-. |
[6] | 胡敏, 李彬彬, Coraline Goron. 只绿是不够的: 一个生物多样性友好的城市公园管理框架[J]. 生物多样性, 2025, 33(5): 24483-. |
[7] | 王欣, 鲍风宇. 基于鸟类多样性提升的南滇池国家湿地公园生态修复效果分析[J]. 生物多样性, 2025, 33(5): 24531-. |
[8] | 明玥, 郝培尧, 谭铃千, 郑曦. 基于城市绿色高质量发展理念的中国城市生物多样性保护与提升研究[J]. 生物多样性, 2025, 33(5): 24524-. |
[9] | 谢淦, 宣晶, 付其迪, 魏泽, 薛凯, 雒海瑞, 高吉喜, 李敏. 草地植物多样性无人机调查的物种智能识别模型构建[J]. 生物多样性, 2025, 33(4): 24236-. |
[10] | 褚晓琳, 张全国. 演化速率假说的实验验证研究进展[J]. 生物多样性, 2025, 33(4): 25019-. |
[11] | 宋威, 程才, 王嘉伟, 吴纪华. 土壤微生物对植物多样性–生态系统功能关系的调控作用[J]. 生物多样性, 2025, 33(4): 24579-. |
[12] | 卢晓强, 董姗姗, 马月, 徐徐, 邱凤, 臧明月, 万雅琼, 李孪鑫, 于赐刚, 刘燕. 前沿技术在生物多样性研究中的应用现状、挑战与展望[J]. 生物多样性, 2025, 33(4): 24440-. |
[13] | 农荞伊, 曹军, 程文达, 彭艳琼. 不同方法对蜜蜂总科昆虫资源与多样性监测效果的比较[J]. 生物多样性, 2025, 33(4): 25057-. |
[14] | 郭雨桐, 李素萃, 王智, 解焱, 杨雪, 周广金, 尤春赫, 朱萨宁, 高吉喜. 全国自然保护地对国家重点保护野生物种的覆盖度及其分布状况[J]. 生物多样性, 2025, 33(3): 24423-. |
[15] | 赵维洋, 王伟, 马冰然. 其他有效的区域保护措施(OECMs)研究进展与展望[J]. 生物多样性, 2025, 33(3): 24525-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn