生物多样性

• • 上一篇    下一篇

AI声纹监测与人工样线调查在鸟类多样性监测中的差异研究: 以西溪国家湿地公园为例

姚可侃1,2, 余卉1,2, 张巧玲1,2, 陈琳1,2*   

  1. 1. 杭州西溪国家湿地公园服务中心(杭州西溪国家湿地公园生态文化研究中心), 杭州 310030; 2. 浙江西溪湿地生态系统定位观测研究站, 杭州 310030
  • 收稿日期:2025-06-22 修回日期:2025-09-18 接受日期:2026-01-06
  • 通讯作者: 陈琳
  • 基金资助:
    声纹识别技术支持下自然保护地鸟类多样性节律特征及监测有效性研究——以黄龙自然保护区为例. 园林, 41,(11-18); 许晓青, 余楚萌, 徐荣林, 刘颂(2024)

A comparative study of AI voiceprint monitoring and manual transect surveys in avian diversity monitoring: A case study of Xixi National Wetland Park

Kekan Yao1,2, Hui Yu1,2, Qiaoling Zhang1,2, Lin Chen1,2*   

  1. 1 Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecological and Cultural Research Center, Hangzhou 310030, China 

    2 Zhejiang Xixi Wetland Ecosystem Observation and Research Station, Hangzhou 310030, China

  • Received:2025-06-22 Revised:2025-09-18 Accepted:2026-01-06
  • Contact: Lin Chen
  • Supported by:
    A case study of Huanglong Nature Reserve. Landscape Architecture, 41, 11-18.(in Chinese with English abstract)

摘要: 鸟类多样性特征是评价湿地生态系统质量的重要指标。传统鸟类多样性调查多限于人工观测, 而近年来声纹监测技术逐步应用, 为鸟类多样性研究提供了新途径。为对比AI声纹监测与人工样线调查差异, 本研究于2024年1月(冬)、4月(春)、8月(夏)和10月(秋), 在杭州西溪国家湿地公园选取5处人工样线调查与声纹监测设备重合的样区开展同步监测。声纹监测选取77.5%作为置信阈值输出数据, 基于Simpson优势度指数(C)、Shannon-Wiener多样性指数(H′)、Pielou均匀度指数(J)和Margalef丰富度指数(M)等指标, 评估两种方法的适用性与局限。结果表明: (1)四季累计, 声纹监测设备检测到鸟类105种, 人工样线记录鸟类89种; 声纹监测在物种丰富度(S)上表现更优。(2)按居留型看, 声纹监测对候鸟的检出更优, 人工样线则在留鸟的检出上更优; 声纹监测还贡献了区域新记录。(3)两种方法在各指数的季节变化不完全一致。(4)按区域看, 声纹监测下绿堤/水下长廊的H′JM最高, 人工样线下则以莲花滩最高。总体声纹监测适合长期、广时段的动态监测, 具有广阔前景; 可与人工样线互补, 建议建立识别置信度与质量控制阈值的评估体系, 提升方法准确性与可比性。

关键词: 鸟类多样性, 声纹监测, 人工样线, 湿地, 杭州西溪

Abstract

Aim: Traditional bird diversity surveys have largely relied on manual observations; however, in recent years, voiceprint monitoring technology has been gradually applied, providing a new approach for studying avian diversity. Avian diversity is a key indicator for assessing the quality of wetland ecosystems. This study aims to compare AI-based voiceprint monitoring with manual transect surveys, offering a case reference for the application of bird voiceprint monitoring devices in wetland parks nationwide. 

Methods: In January (winter), April (spring), August (summer), and October (autumn) of 2024, this study conducted comprehensive and systematic bird diversity surveys at five sites within Xixi National Wetland Park in Hangzhou, Zhejiang, where manual transect surveys and voiceprint monitoring devices overlapped. The voiceprint monitoring uses a confidence threshold of 77.5% for output data. Based on Simpson dominance index (C), Shannon-Wiener diversity index (H′), Pielou evenness index (J), and Margalef richness index (M), the applicability and limitations of two methods were evaluated. 

Results: (1) Across the four seasons, voiceprint monitoring detected 105 species, while manual transect surveys recorded 89 species; voiceprint monitoring showed better performance in species richness (S). (2) In terms of residency status, voiceprint monitoring showed higher detection efficiency for migratory and passage birds, whereas manual transect surveys performed better for resident birds; moreover, voiceprint monitoring contributed new regional records. (3) The seasonal variations of the indices obtained by the two methods were not entirely consistent. (4) By region, the highest H′, J, and M values under voiceprint monitoring were observed at Lüdi/Shuixiachanglang area, whereas under manual transect surveys, the highest values were recorded at Lianhuatan area. 

Conclusion: Overall, voiceprint monitoring is suitable for long-term and wide time-scale dynamic monitoring, with broad application prospects, and can serve as a complement to manual transect surveys. An evaluation system incorporating recognition confidence and quality control thresholds is recommended to enhance the accuracy and comparability of the method.

Key words: avian diversity, voiceprint monitoring, manual transect, wetland, Hangzhou Xixi