生物多样性 ›› 2025, Vol. 33 ›› Issue (6): 24572. DOI: 10.17520/biods.2024572 cstr: 32101.14.biods.2024572
丁仲文1(), 陈奕廷1(
), 余文1(
), 张晶晶1(
), 黄亿彬2, 李丁科2, 彭昭杰1(
), 赖瀚1(
), 魏世超1(
), 黄明攀1,*(
)(
)
收稿日期:
2024-12-19
接受日期:
2025-05-04
出版日期:
2025-06-20
发布日期:
2025-07-29
通讯作者:
黄明攀
基金资助:
Zhongwen Ding1(), Yiting Chen1(
), Wen Yu1(
), Jingjing Zhang1(
), Yibin Huang2, Dingke Li2, Zhaojie Peng1(
), Han Lai1(
), Shichao Wei1(
), Mingpan Huang1,*(
)(
)
Received:
2024-12-19
Accepted:
2025-05-04
Online:
2025-06-20
Published:
2025-07-29
Contact:
Mingpan Huang
Supported by:
摘要: 诱饵式远程水下视频技术(baited remote underwater video, BRUV)因其操作简便、成本较低、适用范围广等优点逐渐成为一种新的珊瑚礁鱼类监测方法。然而, BRUV技术在我国礁栖鱼类群落监测中的应用效果仍缺乏研究。本研究通过在南澎列岛开展BRUV监测和水下目视调查(underwater visual census, UVC)的对比实验, 以评估BRUV技术在珊瑚礁鱼类监测中的优势和不足。BRUV系统以1 kg切碎的鲱属鱼类(Clupea sp.)为诱饵, 持续拍摄至设备电量耗尽; 相近时长的UVC由潜水员沿50 m样带开展, 同步记录鱼类物种与丰度。基于功能性状(体型、营养级、活动性、集群性、水层分布、食性)评估群落功能结构差异。结果表明, 在50-60 min同等时长的监测中, BRUV与UVC记录到的总物种数大致相当(59种 vs. 61种), 而功能丰富度则略高(0.987 vs. 0.783)。与UVC相比, BRUV记录到的礁栖鱼类更倾向于体型较大、活动能力强、集群性的上层掠食者, 而在底栖性、隐秘性较强的礁栖鱼类监测方面相对不足。本研究结果表明, BRUV与UVC在监测效果上具有显著互补性: UVC更适用于珊瑚覆盖度较高的岛礁, 而BRUV则在岩礁鱼类多样性监测中表现更为突出。在实际应用中, 应结合使用这两种方法, 以更全面、准确地揭示礁栖鱼类多样性。
丁仲文, 陈奕廷, 余文, 张晶晶, 黄亿彬, 李丁科, 彭昭杰, 赖瀚, 魏世超, 黄明攀 (2025) 诱饵式远程水下视频技术在近岸礁栖鱼类多样性监测中的应用. 生物多样性, 33, 24572. DOI: 10.17520/biods.2024572.
Zhongwen Ding, Yiting Chen, Wen Yu, Jingjing Zhang, Yibin Huang, Dingke Li, Zhaojie Peng, Han Lai, Shichao Wei, Mingpan Huang (2025) Application of baited remote underwater video technology in assessing nearshore reef fish diversity. Biodiversity Science, 33, 24572. DOI: 10.17520/biods.2024572.
图1 研究区域和诱饵式水下相机监测(BRUV)装置图。(A)南澎列岛地理位置和调查站点; (B) BRUV装置。
Fig. 1 Survey sites location and baited remote underwater video (BRUV) monitoring device. (A) Location of Nanpeng Archipelago and survey sites; (B) A BRUV device. DP, Dingpeng Island; ZP, Zhongpeng Island; NP, Nanpeng Island; QP, Qinpeng Island.
性状 Traits | 变量类型 Variable type | 详细信息 Description |
---|---|---|
最大体长 Max length | 定量 Numeric | 最大全长 The maximum length of the species |
营养级水平 Trophic level | 定量 Numeric | 在食物链中的相对位置 Relative level in the food chain |
食性 Diet | 分类 Categorical | 植食性或碎屑食性(HD), 大型藻类食性(MH), 固着无脊椎动物食性(SI), 游泳无脊椎动物食性(MI), 浮游食性(PL), 食鱼性(PI), 杂食性(O) Herbivorous-detritivorous (HD), macroalgae herbivorous (MH), invertivorous feeding on sessile invertebrates (SI), invertivorous targeting mobile invertebrates (MI), planktivorous (PL), piscivorous (PI), and omnivorous (O) |
活动性 Mobility | 排序 Ordered | 定居(S), 在礁内活动(A), 在礁之间活动(B) Sedentary (S), mobile within a reef (A), mobile among reefs (B) |
集群性 Gregariousness | 排序 Ordered | 单独的(B), 成对的(P)和生活在小型集群(S)、中型集群(M)、大型集群(L) Solitary (O), pairing (P), and living in small (S), medium (M), large groups (L) |
活动水层 Water column | 排序 Ordered | 底栖(B), 底栖-表层(BP), 表层(P) Benthic (B), bentho-pelagic (BP), and pelagic (P) |
表1 礁栖鱼类功能性状
Table 1 Functional traits of reef fish
性状 Traits | 变量类型 Variable type | 详细信息 Description |
---|---|---|
最大体长 Max length | 定量 Numeric | 最大全长 The maximum length of the species |
营养级水平 Trophic level | 定量 Numeric | 在食物链中的相对位置 Relative level in the food chain |
食性 Diet | 分类 Categorical | 植食性或碎屑食性(HD), 大型藻类食性(MH), 固着无脊椎动物食性(SI), 游泳无脊椎动物食性(MI), 浮游食性(PL), 食鱼性(PI), 杂食性(O) Herbivorous-detritivorous (HD), macroalgae herbivorous (MH), invertivorous feeding on sessile invertebrates (SI), invertivorous targeting mobile invertebrates (MI), planktivorous (PL), piscivorous (PI), and omnivorous (O) |
活动性 Mobility | 排序 Ordered | 定居(S), 在礁内活动(A), 在礁之间活动(B) Sedentary (S), mobile within a reef (A), mobile among reefs (B) |
集群性 Gregariousness | 排序 Ordered | 单独的(B), 成对的(P)和生活在小型集群(S)、中型集群(M)、大型集群(L) Solitary (O), pairing (P), and living in small (S), medium (M), large groups (L) |
活动水层 Water column | 排序 Ordered | 底栖(B), 底栖-表层(BP), 表层(P) Benthic (B), bentho-pelagic (BP), and pelagic (P) |
图2 在记录超过10种礁栖鱼类的监测视频中, 其累积物种丰富度与录像时长的关系。
Fig. 2 In the monitoring videos recording more than 10 reef fish species, the relationship between cumulative species richness and video duration was analyzed. DP, Dingpeng Island; ZP, Zhongpeng Island; NP, Nanpeng Island; QP, Qinpeng Island.
图3 诱饵式水下相机监测(BRUV)与水下目视调查(UVC)的物种组成差异。(A) BRUV和UVC监测到的科水平物种丰富度。(B) BRUV和UVC监测到的科水平相对丰度。
Fig. 3 The species composition of baited remote underwater video (BRUV) and underwater visual census (UVC). (A) Species richness of each family of BRUV and UVC. (B) Relative abundance of each family of BRUV and UVC.
图4 诱饵式水下相机监测(BRUV)与水下目视调查(UVC)礁栖鱼类的功能结构差异。蓝色为BRUV监测的功能空间, 黄色为UVC监测的功能空间。功能空间中的点代表物种所处位置。FRic: 功能丰富度指数; Total: 所有样点的总功能丰富度指数; DP1-2: 顶澎岛位点; NP: 南澎岛位点; ZP1-2: 中澎岛位点; QP: 芹澎岛位点。
Fig. 4 The functional composition of reef fish of baited remote underwater video (BRUV) and under water census (UVC). Blue indicates the functional space of BRUV, and yellow indicates the functional space of UVC. Points in the functional space indicated the position of species. Fric, Functional richness; Total, Total functional richness index for all sites; DP1-2, Dingpeng Island; NP, Nanpeng Island; ZP1-2, Zhongpeng Island; QP, Qinpeng Island.
[1] | Andradi-Brown DA, Macaya-Solis C, Exton DA, Gress E, Wright G, Rogers AD (2016) Assessing Caribbean shallow and mesophotic reef fish communities using baited-remote underwater video (BRUV) and diver-operated video (DOV) survey techniques. PLoS ONE, 11, e0168235. |
[2] | Andrello M, Darling ES, Wenger A, Suárez-Castro AF, Gelfand S, Ahmadia GN (2022) A global map of human pressures on tropical coral reefs. Conservation Letters, 15, e12858. |
[3] | Brandl SJ, Goatley CHR, Bellwood DR, Tornabene L (2018) The hidden half: Ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews, 93, 1846-1873. |
[4] | Chan BKK, Xu G, Kim HK, Park JH, Kim W (2018) Living with marginal coral communities: Diversity and host-specificity in coral-associated barnacles in the northern coral distribution limit of the East China Sea. PLoS ONE, 13, e0196309. |
[5] | Cheal AJ, Emslie MJ, Currey-Randall LM, Heupel MR (2021) Comparability and complementarity of reef fish measures from underwater visual census (UVC) and baited remote underwater video stations (BRUVS). Journal of Environmental Management, 289, 112375. |
[6] | Chen DG, Zhang MZ (2016) Marine Fishes of China. China Ocean University Press, Qingdao, Shandong. (in Chinese) |
[陈大刚, 张美昭 (2016) 中国海洋鱼类. 中国海洋大学出版社, 山东青岛.] | |
[7] | Chen TR, Yu KF, Shi Q, Li S, Price GJ, Wang R, Zhao MX, CHen TG, Zhao JX (2009) Twenty-five years of change in scleractinian coral communities of Daya Bay (northern South China Sea) and its response to the 2008 AD extreme cold climate event. Chinese Science Bulletin, 54, 2107-2117. |
[8] | Chen X (2025) Illustrations of Coral Reef Fishes in China. Straits Publishing House, Fuzhou. (in Chinese) |
[陈骁 (2025) 中国珊瑚礁鱼类图鉴. 海峡书局, 福州.] | |
[9] | Colton MA, Swearer SE (2010) A comparison of two survey methods: Differences between underwater visual census and baited remote underwater video. Marine Ecology Progress Series, 400, 19-36. |
[10] | Denis V, Chen JW, Chen Q, Hsieh YE, Lin YV, Wang CW, Wang HY, Sturaro N (2019) Biogeography of functional trait diversity in the Taiwanese reef fish fauna. Ecology and Evolution, 9, 522-532. |
[11] | Dorman SR, Harvey ES, Newman SJ (2012) Bait effects in sampling coral reef fish assemblages with stereo-BRUVs. PLoS ONE, 7, e41538. |
[12] | Dunlop KM, Marian Scott E, Parsons D, Bailey DM (2015) Do agonistic behaviours bias baited remote underwater video surveys of fish? Marine Ecology, 36, 810-818. |
[13] | Eisele MH, Madrigal-Mora S, Espinoza M (2021) Drivers of reef fish assemblages in an upwelling region from the Eastern Tropical Pacific Ocean. Journal of Fish Biology, 98, 1074-1090. |
[14] | Farnsworth KD, Thygesen UH, Ditlevsen S, King NJ (2007) How to estimate scavenger fish abundance using baited camera data. Marine Ecology Progress Series, 350, 223-234. |
[15] | Fisher R, O’Leary RA, Low-Choy S, Mengersen K, Knowlton N, Brainard RE, Caley MJ (2015) Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25, 500-505. |
[16] | Froese R, Pauly D (2024) FishBase. https://www.fishbase.org/home. (accessed on 2024-06-01) |
[17] | Hardinge J, Harvey ES, Saunders BJ, Newman SJ (2013) A little bait goes a long way: The influence of bait quantity on a temperate fish assemblage sampled using stereo-BRUVs. Journal of Experimental Marine Biology and Ecology, 449, 250-260. |
[18] | Heagney E, Lynch T, Babcock R, Suthers I (2007) Pelagic fish assemblages assessed using mid-water baited video: Standardising fish counts using bait plume size. Marine Ecology Progress Series, 350, 255-266. |
[19] | Huang H, Chen Z, Huang LT (2021) Status of Coral Reefs in China (2010-2019). China Ocean Press, Beijing. (in Chinese) |
[黄晖, 陈竹, 黄林韬 (2021) 中国珊瑚礁状况报告: 2010-2019. 海洋出版社, 北京.] | |
[20] | Huang MP, Chen YT, Zhou WL, Wei FW (2024) Assessing the response of marine fish communities to climate change and fishing. Conservation Biology, 38, e14291. |
[21] | Huang MP, Huang GP, Fan HZ, Wei FW (2023) Influence of Last Glacial Maximum legacies on functional diversity and community assembly of extant Chinese terrestrial vertebrates. The Innovation, 4, 100379. |
[22] | Jessop SA, Saunders BJ, Goetze JS, Harvey ES (2022) A comparison of underwater visual census, baited, diver operated and remotely operated stereo-video for sampling shallow water reef fishes. Estuarine, Coastal and Shelf Science, 276, 108017. |
[23] | Langlois TJ, Harvey ES, Fitzpatrick B, Meeuwig JJ, Shedrawi G, Watson DL (2010) Cost-efficient sampling of fish assemblages: Comparison of baited video stations and diver video transects. Aquatic Biology, 9, 155-168. |
[24] | Leonetti FL, Bottaro M, Giglio G, Sperone E (2024) Studying chondrichthyans using baited remote underwater video systems: A review. Animals, 14, 1875. |
[25] | Lester EK, Langlois TJ, Simpson SD, McCormick MI, Meekan MG (2021) Reef-wide evidence that the presence of sharks modifies behaviors of teleost mesopredators. Ecosphere, 12, e03301. |
[26] | Letessier TB, Mouillot D, Mannocci L, Jabour Christ H, Elamin EM, Elamin SM, Friedlander AM, Hearn A, Juhel JB, Kleiven AR, Moland E, Mouquet N, Nillos-Kleiven PJ, Sala E, Thompson CDH, Velez L, Vigliola L, Meeuwig JJ (2024) Divergent responses of pelagic and benthic fish body-size structure to remoteness and protection from humans. Science, 383, 976-982. |
[27] | Lowry M, Folpp H, Gregson M, McKenzie R (2011) A comparison of methods for estimating fish assemblages associated with estuarine artificial reefs. Brazilian Journal of Oceanography, 59, 119-131. |
[28] | MacNeil MA, Graham NAJ, Conroy MJ, Fonnesbeck CJ, Polunin NVC, Rushton SP, Chabanet P, McClanahan TR (2008) Detection heterogeneity in underwater visual-census data. Journal of Fish Biology, 73, 1748-1763. |
[29] | Magneville C, Loiseau N, Albouy C, Casajus N, Claverie T, Escalas A, Leprieur F, Maire E, Mouillot D, Villéger S (2022) mFD: An R package to compute and illustrate the multiple facets of functional diversity. Ecography, 2022, 05904. |
[30] | Mallet D, Pelletier D (2014) Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952-2012). Fisheries Research, 154, 44-62. |
[31] | Manna GL, Guala I, Grech D, Perretti F, Ronchetti F, Manghi M, Ruiu A, Ceccherelli G (2021) Performance of a baited underwater video system vs. the underwater visual census technique in assessing the structure of fish assemblages in a Mediterranean marine protected area. Mediterranean Marine Science, 22, 480-495. |
[32] | Martins IS, Schrodt F, Blowes SA, Bates AE, Bjorkman AD, Brambilla V, Carvajal-Quintero J, Chow CFY, Daskalova GN, Edwards K, Eisenhauer N, Field R, Fontrodona-Eslava A, Henn JJ, van Klink R, Madin JS, Magurran AE, McWilliam M, Moyes F, Pugh B, Sagouis A, Trindade-Santos I, McGill BJ, Chase JM, Dornelas M (2023) Widespread shifts in body size within populations and assemblages. Science, 381, 1067-1071. |
[33] | Misa WFXE, Richards BL, DiNardo GT, Kelley CD, Moriwake VN, Drazen JC (2016) Evaluating the effect of soak time on bottomfish abundance and length data from stereo-video surveys. Journal of Experimental Marine Biology and Ecology, 479, 20-34. |
[34] | Osgood GJ, McCord ME, Baum JK (2019) Using baited remote underwater videos (BRUVs) to characterize chondrichthyan communities in a global biodiversity hotspot. PLoS ONE, 14, e0225859. |
[35] | Ou ZY, Wu ZX, Zhang ZP, James T, Dong SQ, Wang ZG, Gao DK, Liu M, Xing BB, Tian T (2021) A review of baited remote underwater video (BRUV) technology. Journal of Fishery Sciences of China, 28, 1359-1372. (in Chinese with English abstract) |
[欧哲扬, 吴忠鑫, 张泽鹏, Tweedley James, 董世淇, 王兆国, 高东奎, 刘敏, 邢彬彬, 田涛 (2021) 诱饵式远程水下视频技术的研究进展. 中国水产科学, 28, 1359-1372.] | |
[36] | Shea BD, Benson CW, de Silva C, Donovan D, Romeiro J, Bond ME, Creel S, Gallagher AJ (2020) Effects of exposure to large sharks on the abundance and behavior of mobile prey fishes along a temperate coastal gradient. PLoS ONE, 15, e0230308. |
[37] | Stobart B, García-Charton JA, Espejo C, Rochel E, Goñi R, Reñones O, Herrero A, Crec’hriou R, Polti S, Marcos C, Planes S, Pérez-Ruzafa A (2007) A baited underwater video technique to assess shallow-water Mediterranean fish assemblages: Methodological evaluation. Journal of Experimental Marine Biology and Ecology, 345, 158-174. |
[38] | Taylor MD, Baker J, Suthers IM (2013) Tidal currents, sampling effort and baited remote underwater video (BRUV) surveys: Are we drawing the right conclusions? Fisheries Research, 140, 96-104. |
[39] | Villéger S, Mason NWH, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301. |
[40] | Watson DL, Harvey ES, Anderson MJ, Kendrick GA (2005) A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Marine Biology, 148, 415-425. |
[41] | Whitmarsh SK, Huveneers C, Fairweather PG (2018) What are we missing? Advantages of more than one viewpoint to estimate fish assemblages using baited video. Royal Society Open Science, 5, 171993. |
[42] | Williams J, Jordan A, Harasti D, Davies P, Ingleton T (2019) Taking a deeper look: Quantifying the differences in fish assemblages between shallow and mesophotic temperate rocky reefs. PLoS ONE, 14, e0206778. |
[43] | Willis TJ, Babcock RC (2000) A baited underwater video system for the determination of relative density of carnivorous reef fish. Marine and Freshwater Research, 51, 755. |
[44] | Wraith J, Lynch T, Minchinton TE, Broad A, Davis AR (2013) Bait type affects fish assemblages and feeding guilds observed at baited remote underwater video stations. Marine Ecology Progress Series, 477, 189-199. |
[45] | Zarco-Perello S, Enríquez S (2019) Remote underwater video reveals higher fish diversity and abundance in seagrass meadows, and habitat differences in trophic interactions. Scientific Reports, 9, 6596. |
[46] | Zarzyczny KM, Rius M, Williams ST, Fenberg PB (2024) The ecological and evolutionary consequences of tropicalisation. Trends in Ecology & Evolution, 39, 267-279. |
[47] | Zhang JJ, Huang WB, Chen YT, Yang ZP, Ke WY, Peng ZJ, Wei SC, Zhang ZW, Hu YS, Yu WH, Zhou WL (2025) Reef-building coral diversity and distribution characteristics in the National Nature Reserve for Marine Ecology of Guangdong Nanpeng Islands. Biodiversity Science, 33, 24424. (in Chinese with English abstract) |
[张晶晶, 黄文彬, 陈奕廷, 杨泽鹏, 柯伟业, 彭昭杰, 魏世超, 张志伟, 胡怡思, 余文华, 周文良 (2025) 广东南澎列岛海洋生态国家级自然保护区造礁石珊瑚多样性及分布特征. 生物多样性, 33, 24424.] | |
[48] | Zhao JF, Wang T, Li CH, Shi J, Xie HY, Luo LJ, Xiao YY, Liu Y (2024) Seven decades of transformation: Evaluating the dynamics of coral reef fish communities in the Xisha Islands, South China Sea. Reviews in Fish Biology and Fisheries, 34, 1261-1281. |
[1] | 张晶晶, 黄文彬, 陈奕廷, 杨泽鹏, 柯伟业, 彭昭杰, 魏世超, 张志伟, 胡怡思, 余文华, 周文良. 广东南澎列岛海洋生态国家级自然保护区造礁石珊瑚多样性及分布特征[J]. 生物多样性, 2025, 33(4): 24424-. |
[2] | 马文俊, 刘思嘉, 李柯懋, 简生龙, 薛长安, 韩庆祥, 魏金良, 陈生学, 牛依萌, 崔洲平, 隋瑞臣, 田菲, 赵凯. 青海省长江源区鱼类分布及多样性格局[J]. 生物多样性, 2025, 33(2): 24494-. |
[3] | 时永强, 栾青杉, 单秀娟, 韦超, 赵永松, 孙策策, 金显仕. 长岛南部海域浮游动物多样性周年变化[J]. 生物多样性, 2024, 32(7): 23428-. |
[4] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[5] | 林迪, 陈双林, 杜榷, 宋文龙, 饶固, 闫淑珍. 大别山黏菌的物种多样性调查[J]. 生物多样性, 2024, 32(2): 23242-. |
[6] | 姚嘉, 张聪伶, 李时轩, 林阳, 王震, 张煜涵, 周伟龙, 潘心禾, 朱珊, 吴逸卿, 王丹, 刘金亮, 谭珊珊, 沈国春, 于明坚. 百山祖连续海拔样带植物群落特征[J]. 生物多样性, 2024, 32(12): 24052-. |
[7] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[8] | 王晓凤, 米湘成, 王希华, 江明喜, 杨涛, 张健, 沈泽昊. 中国中亚热带常绿阔叶林群落木本植物多样性比较[J]. 生物多样性, 2023, 31(11): 23296-. |
[9] | 杨涛, 沈泽昊, 王晓凤, 饶杰生, 刘文聪, 田希, 陈稀, 张秋雨, 刘倩, 钱恒君, 解宇阳, 刘其明, 徐衍潇, 涂梦灵, 单子铭, 张玉坤, 侯波, 李建斌, 欧晓昆. 滇中高原亚热带半湿润常绿阔叶林植物群落多样性特征[J]. 生物多样性, 2023, 31(11): 23238-. |
[10] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[11] | 赵琦, 蒋际宝, 张曾鲁, 金清, 李佳丽, 邱江平. 海南岛蚯蚓物种组成及其系统发育分析[J]. 生物多样性, 2022, 30(12): 22224-. |
[12] | 李世雄, 王彦龙, 王玉琴, 尹亚丽. 土壤细菌群落特征对高寒草甸退化的响应[J]. 生物多样性, 2021, 29(1): 53-64. |
[13] | 黄敦元, 黄世贵, 王建皓, 李红英, 窦飞越, 张可, 朱祥龙, 马方舟. 齐云山国家级自然保护区蝴蝶群落多样性[J]. 生物多样性, 2020, 28(8): 958-964. |
[14] | 刘丹, 郭忠玲, 崔晓阳, 范春楠. 5种东北红豆杉植物群丛及其物种多样性的比较[J]. 生物多样性, 2020, 28(3): 340-349. |
[15] | 李宝泉, 姜少玉, 吕卷章, 陈琳琳, 闫朗, 刘春云, 李晓静, 宋博, 李新正. 黄河三角洲潮间带及近岸浅海大型底栖动物物种组成及长周期变化[J]. 生物多样性, 2020, 28(12): 1511-1522. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn