生物多样性 ›› 2025, Vol. 33 ›› Issue (6): 24486. DOI: 10.17520/biods.2024486 cstr: 32101.14.biods.2024486
所属专题: eDNA技术应用
王陈1,2,3, 徐佳杰1,2,3, 安瑞志1,2,3, 卫佩佩1,2,3, 吴湘君1,2,3, 巴桑1,2,3,*()(
)
收稿日期:
2024-11-06
接受日期:
2025-02-17
出版日期:
2025-06-20
发布日期:
2025-07-29
通讯作者:
巴桑
基金资助:
Chen Wang1,2,3, Jiajie Xu1,2,3, Ruizhi An1,2,3, Peipei Wei1,2,3, Xiangjun Wu1,2,3, Sang Ba1,2,3,*()(
)
Received:
2024-11-06
Accepted:
2025-02-17
Online:
2025-06-20
Published:
2025-07-29
Contact:
Sang Ba
Supported by:
摘要: 原生动物作为真核微生物的重要组成部分, 在水生态系统中发挥关键作用。雅鲁藏布江是青藏高原重要的河流生态系统, 为探究枯水期雅鲁藏布江中游原生动物的多样性模式与地理分布格局, 我们于2021年枯水期对干流与支流的原生动物群落结构、多样性及其环境响应机制进行了研究。结果显示, 共检测到6,066个扩增子序列变体(amplicon sequence variants, ASVs), 涵盖23门55纲86目114科281属323种。其中干、支流在群落结构上存在显著差异, 物种周转是其β多样性变化的主要驱动因素。距离衰减与环境衰减分析显示, 支流群落对地理和环境变化的响应更为敏感。中性模型与零模型分析表明, 干、支流的群落组装过程均由同质选择主导, 但支流中随机性影响更大。共现网络分析揭示了干、支流群落网络结构的复杂性差异, 支流网络连接强度和信息传递效率更高。环境因子分析表明, 干、支流群落分别受到不同环境因子的显著影响。研究结果为河流生态系统中原生动物群落的空间异质性及环境响应机制提供了重要参考。
王陈, 徐佳杰, 安瑞志, 卫佩佩, 吴湘君, 巴桑 (2025) 环境DNA揭示枯水期雅鲁藏布江中游河段原生动物多样性模式与地理分布格局. 生物多样性, 33, 24486. DOI: 10.17520/biods.2024486.
Chen Wang, Jiajie Xu, Ruizhi An, Peipei Wei, Xiangjun Wu, Sang Ba (2025) The environmental DNA reveals diversity patterns and geographical distribution of protozoan in the middle reaches of the Yarlung Zangbo River during the dry season. Biodiversity Science, 33, 24486. DOI: 10.17520/biods.2024486.
图2 雅鲁藏布江中游干流与支流原生动物群落结构与α多样性分析。(a)稀释曲线; (b)群落组成; (c) α多样性指数; (d)共有与特有ASVs。
Fig. 2 Protozoan community structure and α diversity in the mainstream and tributaries of the middle reaches of the Yarlung Zangbo River. (a) Dilution curves; (b) Community composition; (c) α diversity indices; (d) Shared and unique ASVs.
图3 雅鲁藏布江中游干流与支流原生动物β多样性分析。(a)非度量多维尺度分析; (b) β组分分解; (c)地理距离衰减; (d)环境距离衰减。
Fig. 3 Protozoan beta diversity in the mainstream and tributaries of the middle reaches of the Yarlung Zangbo River. (a) Non-metric multidimensional scaling analysis; (b) Beta diversity partitioning; (c) Geographic distance decay; (d) Environmental distance decay.
图4 雅鲁藏布江中游干流与支流原生动物群落组装过程分析。(a, b)中性模型; (c)校正随机率; (d)零模型。
Fig. 4 Analysis of protozoan community assembly processes in the mainstream and tributaries of the middle reaches of the Yarlung Zangbo River. (a, b) Neutral model; (c) Modified stochasticity ratio (MST); (d) Null model.
图5 雅鲁藏布江中游干流与支流原生动物群落与环境因子关系。(a, b) Mantel检验; (c, d)方差分解分析。pH: 酸碱度; EC: 电导率; TDS: 总溶解固体; Salt: 盐度; WT: 水温; DO: 溶解氧; BOD: 生化需氧量; TUR: 浊度; WS: 水体流速; NH3-N: 氨氮; COD: 化学需氧量; TP: 总磷; TN: 总氮; NO3--N: 硝态氮。* P ≤ 0.05; ** P ≤ 0.01; ***P ≤ 0.001。
Fig. 5 Relationships between protozoan communities and environmental factors in the mainstream and tributaries of the middle reaches of the Yarlung Zangbo River. (a, b) Mantel test; (c, d) Variance partitioning analysis. pH, Acidity/alkalinity; EC, Electrical conductivity; TDS, Total dissolved solids; Salt, Salinity; WT, Water temperature; DO, Dissolved oxygen; BOD, Biochemical oxygen demand; TUR, Turbidity; WS, Water flow speed; NH3-N, Ammonia nitrogen; COD, Chemical oxygen demand; TP, Total phosphorus; TN, Total nitrogen; NO3--N, Nitrate nitrogen. * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001.
图6 雅鲁藏布江中游干流与支流原生动物群落共现网络分析。(a, b)共现网络; (c)各模块物种组成; (d)共现网络的拓扑特性。
Fig. 6 Co-occurrence network analysis of protozoan communities in the mainstream and tributaries of the middle reaches of the Yarlung Zangbo River. (a, b) Co-occurrence network; (c) Species composition of each module; (d) Topological characteristics of the co-occurrence network.
[1] | An RZ, Liu Y, Pan CM, Da Z, Zhang P, Qiao NQ, Zhao F, Ba S (2023) Water quality determines protist taxonomic and functional group composition in a high-altitude wetland of international importance. Science of the Total Environment, 880, 163308. |
[2] | Bai CR, Cai J, Tang XM, Gao G, Shao KQ, Hu Y, Yu CN, Liu JT, Xia JB, Sun JK (2023) Spatial patterns and community assembly mechanisms of bacterioplankton in large shallow lakes: A case study of Lake Taihu. Journal of Lake Sciences, 35, 1433-1442. (in Chinese with English abstract) |
[白承荣, 蔡舰, 汤祥明, 高光, 邵克强, 胡洋, 于传宁, 刘京涛, 夏江宝, 孙景宽 (2023) 大型浅水湖泊中浮游细菌群落的空间格局及其驱动机制——以太湖为例. 湖泊科学, 35, 1433-1442.] | |
[3] | Bai X, Li ZF, Liu Y, Zhang JQ, Zhang DP, Luo X, Yang JL, Du LN, Jiang XK, Wu RW, Xie ZC (2024) Species diversity and maintenance mechanisms of benthic macroinvertebrate assemblages in the Xijiang River. Biodiversity Science, 32, 23499. (in Chinese with English abstract) |
[白雪, 李正飞, 刘洋, 张君倩, 张多鹏, 罗鑫, 杨佳莉, 杜丽娜, 蒋玄空, 武瑞文, 谢志才 (2024) 西江流域大型底栖无脊椎动物物种多样性及维持机制. 生物多样性, 32, 23499.] | |
[4] | Chao X, Yang SX, Liu HQ, Yan BJ, Wei PP, Wu XJ, Ba S (2025) Mechanism and driving factors of phytoplankton community construction in the lower reaches of Yarlung Zangbo River. Journal of Lake Sciences, 37, 215-228. (in Chinese with English abstract) |
[巢欣, 杨胜娴, 刘惠秋, 闫冰洁, 卫佩佩, 吴湘君, 巴桑 (2025) 雅鲁藏布江下游浮游植物群落构建机制及驱动因素. 湖泊科学, 37, 215-228.] | |
[5] | Chen DD, Liao JB, Bearup D, Li ZQ (2020) Habitat heterogeneity mediates effects of individual variation on spatial species coexistence. Proceedings of the Royal Society B: Biological Sciences, 287, 20192436. |
[6] | Chen LX, Li Z, Tang Q, Lu LH (2025) Structure and ecological processes of the bacterioplankton community in the cascade reservoirs of the lower reaches of the Jinsha River. Environmental Science, 46, 2805-2815. (in Chinese with English abstract) |
[陈露欣, 李哲, 汤琼, 鲁伦慧 (2025) 金沙江下游梯级水库浮游细菌群落结构及生态过程. 环境科学, 46, 2805-2815.] | |
[7] | Chen WD, Ren KX, Isabwe A, Chen HH, Liu M, Yang J (2019) Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome, 7, 138. |
[8] | Chen WQ, Wang JY, Chen X, Meng ZX, Xu R, Duoji DZ, Zhang JH, He J, Wang ZG, Chen J, Liu KX, Hu TM, Zhang YJ (2022) Soil microbial network complexity predicts ecosystem function along elevation gradients on the Tibetan Plateau. Soil Biology and Biochemistry, 172, 108766. |
[9] | Chen Y, Pan BZ, Wu L, Hu E, Zhao GN, Zhang S (2022) Zooplankton community structure and influencing factors in Weihe River mainstem and its tributaries from the northern foot of Qinling Mountains. Journal of Lake Sciences, 34, 1630-1641. (in Chinese with English abstract) |
[陈越, 潘保柱, 吴利, 胡恩, 赵耿楠, 张森 (2022) 渭河干流与其秦岭北麓典型支流浮游动物群落结构及影响因素. 湖泊科学, 34, 1630-1641.] | |
[10] | Da Z, Zhang P, An RZ, Pan CM, Qiao NQ, Ba S (2023) Species distribution and factors driving the protozoan community in the middle and lower Lhasa River. Journal of Hydroecology, 44(4), 10-17. (in Chinese with English abstract) |
[达珍, 张鹏, 安瑞志, 潘成梅, 乔楠茜, 巴桑 (2023) 拉萨河中下游原生动物群落物种分布格局及其驱动因素. 水生态学杂志, 44(4), 10-17.] | |
[11] | Ding RX, Yuan DN, Wang YL, Wei CJ, Gong YC (2024) Zooplankton community structure and driving factors in the Niulan River basin. Journal of Hydroecology, 45(5), 67-75. (in Chinese with English abstract) |
[丁若霞, 袁丹妮, 王雨路, 魏朝军, 龚迎春 (2024) 牛栏江流域浮游动物群落结构特征及驱动因子. 水生态学杂志, 45(5), 67-75.] | |
[12] | Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences, USA, 112, E1326-E1332. |
[13] | Du CL, Cui JL, Li GW, Zhao C, Zhang LY (2024) Variation in benthic community composition, beta diversity, and driving factors in Lake Ulansuhai. China Environmental Science, 44, 6313-6321. (in Chinese with English abstract) |
[杜彩丽, 崔江龙, 李国文, 赵琛, 张列宇 (2024) 乌梁素海底栖动物群落组成、β多样性及驱动因素. 中国环境科学, 44, 6313-6321.] | |
[14] | Fang WK, Fan TY, Wang S, Yu XK, Lu AK, Wang XM, Zhou WM, Yuan HJ, Zhang L (2023) Seasonal changes driving shifts in microbial community assembly and species coexistence in an urban river. Science of the Total Environment, 905, 167027. |
[15] | Fu R (2017) Impact of Environmental Changes on Single Nucleotide Polymorphisms (SNPs), Copy Numbers, and Expression of Ribosomal RNA Genes in Ciliate Protozoa. PhD dissertation, University of Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[付娆 (2017) 环境变化对纤毛虫原生生物核糖体RNA基因SNP、拷贝数及其表达的影响. 博士学位论文, 中国科学院大学, 北京.] | |
[16] | Gu SY, Chen K, Jin XW, Li WP, Chen XF, Xiong J, Tang MZ, Jiang CQ, Xiong J, Li T, Zhang Q, Cui YD, Zeng HH, He SP, Wang YY, Miao W (2024) Development, applications, and standardization of environmental DNA monitoring technology for aquatic organisms. Acta Hydrobiologica Sinica, 48, 1443-1458. (in Chinese with English abstract) |
[谷思雨, 陈凯, 金小伟, 李文攀, 陈晓飞, 熊晶, 汤敏喆, 姜传奇, 熊杰, 李涛, 张琪, 崔永德, 曾宏辉, 何舜平, 王业耀, 缪炜 (2024) 水生生物环境DNA监测技术的发展、应用与标准化. 水生生物学报, 48, 1443-1458.] | |
[17] | Guan ZH, Chen CY (1984) Rivers and Lakes in Xizang. Science Press, Beijing. (in Chinese) |
[关志华, 陈传友 (1984) 西藏河流与湖泊. 科学出版社, 北京.] | |
[18] | Hu JX, Pan BZ, Wang Y, Li G, Guo SS, Qi YR, Yang ZJ (2024) Temporal and spatial dynamics of zooplankton community and water quality biological assessment in desert lake, Hongjiannao Lake. Journal of Hydroecology, doi: 10.15928/j.1674-3075.202309280267. (in Chinese with English abstract) |
[胡竞翔, 潘保柱, 王莹, 李刚, 郭善嵩, 齐苑儒, 杨子杰 (2024) 沙漠湖泊红碱淖浮游动物群落时空动态与水质生物学评价. 水生态学杂志, doi: 10.15928/j.1674-3075.202309280267.] | |
[19] | Huang Q, Zhu SY, Li TS, Li MY, Suo NC, Pubu (2024) Distribution pattern of soil protozoa community along altitude and its correlation with environmental factors in Rating National Forest Park in Tibet, China. Ecology and Environmental Sciences, 33, 499-508. (in Chinese with English abstract) |
[黄倩, 朱时应, 李天顺, 李明燕, 索南措, 普布 (2024) 西藏热振国家森林公园土壤原生动物群落沿海拔分布格局及其与环境因子的关联特征. 生态环境学报, 33, 499-508.] | |
[20] | Huang ZQ, Zhang ZP, Shen J, Tian CM, Li W, Feng JM, Wang XZ (2025) Changes of phytoplankton community structure and influencing factors in Erhai Lake. Environmental Science, 46, 3393-3405. (in Chinese with English abstract) |
[黄中情, 张志萍, 沈剑, 田春梅, 李炜, 封吉猛, 王欣泽 (2025) 洱海浮游植物群落结构变化及影响因素. 环境科学, 46, 3393-3405.] | |
[21] | Jia HC, Wang DD, Huang YF, Yin HZ, Su ZQ, Li BR, Gao YX, Xia ZS, Sun JY (2024) Differences in microbial community structure and co-occurrence network patterns in rivers and lakes of the Qaidam Basin. Microbiology China, 64, 4918-4935. (in Chinese with English abstract) |
[贾海超, 王丹丹, 黄跃飞, 殷恒芝, 苏子淇, 李伯荣, 高印轩, 夏中帅, 孙继瑶 (2024) 柴达木盆地河流与湖泊水体微生物群落结构及共现网络模式差异. 微生物学报, 64, 4918-4935.] | |
[22] | Li MJ, Wu KY, Meng FF, Shen J, Liu YQ, Xiao NW, Wang JJ (2020) Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables. Biodiversity Science, 28, 1570-1580. (in Chinese with English abstract) |
[李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军 (2020) 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应. 生物多样性, 28, 1570-1580.] | |
[23] | Li SZ, Ren KX, Yan X, Tsyganov AN, Mazei YR, Smirnov A, Mazei N, Zhang YY, Rensing C, Yang J (2023) Linking biodiversity and ecological function through extensive microeukaryotic movement across different habitats in six urban parks. iMeta, 2, e103. |
[24] | Li TS, Huang Q, Pan HB, Li MY, Zhu WJ, Pubu (2024) Community characteristics of the large soil animals in different habitats along the middle reaches of the Yarlung Zangbo River. Journal of Natural Science of Hunan Normal University, 47(2), 119-127, 135. (in Chinese with English abstract) |
[李天顺, 黄倩, 潘虹伯, 李明燕, 朱文琎, 普布 (2024) 雅鲁藏布江中游不同生境大型土壤动物群落特征. 湖南师范大学自然科学学报, 47(2), 119-127, 135.] | |
[25] | Li XD, Chao X, Liu HQ, Yang Q, Yang SX, Ba S (2023a) Spatio-temporal niche of dominant species of phytoplankton community in the middle reaches of Yarlung Zangbo River. Acta Ecologica Sinica, 43, 7746-7760. (in Chinese with English abstract) |
[李晓东, 巢欣, 刘惠秋, 杨清, 杨胜娴, 巴桑 (2023a) 雅鲁藏布江中游浮游植物群落优势种时空生态位. 生态学报, 43, 7746-7760.] | |
[26] | Li XD, Yang Q, Liu HQ, Chao X, Yang SX, Ba S (2023b) Response of river ecosystem health status to water environmental factors in the middle reaches of Yarlung Zangbo River. Environmental Science, 44, 4941-4953. (in Chinese with English abstract) |
[李晓东, 杨清, 刘惠秋, 巢欣, 杨胜娴, 巴桑 (2023b) 雅鲁藏布江中游河流生态系统健康状态对水环境因子的响应. 环境科学, 44, 4941-4953.] | |
[27] | Liu HQ, Yang SX, Chao X, Yan BJ, Wei PP, Wu XJ, Ba S (2025) Environmental screening drives the assembly process of periphytic algae community in the lower reaches of Yarlung Zangbo River. Environmental Science, 46, 889-899. (in Chinese with English abstract) |
[刘惠秋, 杨胜娴, 巢欣, 闫冰洁, 卫佩佩, 吴湘君, 巴桑 (2025) 环境筛选驱动雅鲁藏布江下游着生藻类群落组装过程. 环境科学, 46, 889-899.] | |
[28] | Liu JP, Ren YQ, Zhang WC, Tao H, Yi L (2022) Study on the influence of climate and underlying surface change on runoff in the Yarlung Zangbo River basin. Journal of Glaciology and Geocryology, 44(1), 275-287. (in Chinese with English abstract) |
[刘金平, 任艳群, 张万昌, 陶辉, 易路 (2022) 雅鲁藏布江流域气候和下垫面变化对径流的影响研究. 冰川冻土, 44(1), 275-287.] | |
[29] | Liu Y, Luo S, Zhang P, Wang XY, Xiong J, Xiong X, Wu CX, Jiang CQ, Miao W (2023) Protozoan community structure and influencing factors in the Qinghai Lake basin. Journal of Hydroecology, 44(4), 1-9. (in Chinese with English abstract) |
[刘瑜, 罗帅, 张鹏, 王雪艳, 熊杰, 熊雄, 吴辰熙, 姜传奇, 缪炜 (2023) 青海湖流域原生动物群落结构及影响因素研究. 水生态学杂志, 44(4), 1-9.] | |
[30] | Luan L, Jiang YJ, Cheng MH, Dini-Andreote F, Sui YY, Xu QS, Geisen S, Sun B (2020) Organism body size structures the soil microbial and nematode community assembly at a continental and global scale. Nature Communications, 11, 6406. |
[31] | Niu KC, Liu YN, Shen ZH, He FL, Fang JY (2009) Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. (in Chinese with English abstract) |
[牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[32] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, D590-D596. |
[33] | Shen YF (1999) Protozoology. Science Press, Beijing. (in Chinese) |
[沈韫芬 (1999) 原生动物学. 科学出版社, 北京.] | |
[34] | Song Q, Zhao FQ, Hou LN, Miao M (2024) Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates. The ISME Journal, 18, wrae117. |
[35] | Sun HL, Zheng D, Yao TD, Zhang YL (2012) Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geographica Sinica, 67, 3-12. (in Chinese with English abstract) |
[孙鸿烈, 郑度, 姚檀栋, 张镱锂 (2012) 青藏高原国家生态安全屏障保护与建设. 地理学报, 67, 3-12.] | |
[36] | Vercruysse K, Grabowski RC, Rickson RJ (2017) Suspended sediment transport dynamics in rivers: Multi-scale drivers of temporal variation. Earth-Science Reviews, 166, 38-52. |
[37] | Wang DX, Zhou D, Chen K, Xiong RK, Chen B, Luo Y, Deji, Guo XF (2025) Diversity and distribution patterns of bacteria in Bangong Lake. Microbiology China, 52, 992-1012. (in Chinese with English abstract) |
[王东旭, 周迪, 陈康, 熊仁康, 陈博, 罗央措姆, 德吉, 郭小芳 (2025) 班公湖水体细菌多样性和群落分布格局. 微生物学通报, 52, 992-1012.] | |
[38] | Wang HH, Zhang P, Luo S, Gu SY, Xiong X, Yu Y, Li L, Miao W, Xiong J (2024) Study on the biodiversity of protozoan plankton in rivers and wetlands of the Qinghai section of Qilian Mountain National Park. Journal of Aquatic Ecology, 45(5), 9-19. (in Chinese with English abstract) |
[王浩骅, 张鹏, 罗帅, 谷思雨, 熊雄, 于瑶, 李仑, 缪炜, 熊杰 (2024) 祁连山国家公园青海片区河流和湿地原生生物多样性研究. 水生态学杂志, 45(5), 9-19.] | |
[39] | Wang Y, Wang JM, Cui PJ, Zhong YM, Li JW, Chu JM (2018) Biogeographical patterns and environmental interpretation of plant species richness in the Horqin Sandy Lands. Plant Science Journal, 36, 794-803. (in Chinese with English abstract) |
[王寅, 王键铭, 崔盼杰, 钟悦鸣, 李景文, 褚建民 (2018) 科尔沁沙地植物物种丰富度格局及其与环境的关系. 植物科学学报, 36, 794-803.] | |
[40] | Wang YY, Xu H, Zhang ZN, Qiu Y, Wu MJ, Sun HW, Liu YX, Zhu GW, Zhu MY, Qin BQ, Zhang YL (2024) Characterization of denitrification potential of epilithic biofilm and its microbial community in typical rivers of Lake Qiandaohu. Acta Scientiae Circumstantiae, 44(12), 1-13. (in Chinese with English abstract) |
[王圆忆, 许海, 张子宁, 邱雨, 吴铭杰, 孙宏伟, 刘宇星, 朱广伟, 朱梦圆, 秦伯强, 张运林 (2024) 千岛湖流域典型河流附石生物膜反硝化潜力及其微生物群落特征分析. 环境科学学报, 44(12), 1-13.] | |
[41] | Wu C, Liu HP, Xie JY, Wang XX (2022) Community structure of protozoan and its relation to environmental factors in the Yarlung Zangbo River Basin. Journal of Wuhan University (Natural Science Edition), 68, 621-634. (in Chinese with English abstract) |
[吴聪, 刘海平, 谢佳燕, 王纤纤 (2022) 雅鲁藏布江流域原生动物群落结构及其与环境因子的关系. 武汉大学学报(理学版), 68, 621-634.] | |
[42] | Xing Y, Wu XP, Ouyang S, Zhang JQ, Xu J, Yin SL, Xie ZC (2019) Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system. Biodiversity Science, 27, 648-657. (in Chinese with English abstract) |
[邢圆, 吴小平, 欧阳珊, 张君倩, 徐靖, 银森录, 谢志才 (2019) 赣江水系大型底栖动物多样性与受胁因子初探. 生物多样性, 27, 648-657.] | |
[43] | Xu JH, Wang SD, Song LJ, Zhang DP, Song CQ (2022) Mapping spatio-temporal variation of river width from satellite remote sensing data and hydrometeorological response in the Yarlung Zangbo River. Acta Geographica Sinica, 77, 2862-2877. (in Chinese with English abstract) |
[徐嘉慧, 王世东, 宋利娟, 张大鹏, 宋春桥 (2022) 雅鲁藏布江干流河宽时空变化遥感监测及水文气象响应. 地理学报, 77, 2862-2877.] | |
[44] | Yang FD, Zhang P, Luo S, Xiong X, Xiong J, Miao W (2025) Protist diversity in the Lhalu Wetland of Tibet based on metagenomic sequencing. Journal of Hydroecology, 46(1), 81-89. (in Chinese with English abstract) |
[杨方典, 张鹏, 罗帅, 熊雄, 熊杰, 缪炜 (2025) 基于宏基因组的西藏拉鲁湿地原生生物多样性研究. 水生态学杂志, 46(1), 81-89.] | |
[45] | Yang Q, Li XD, Yang SX, Chao X, Liu HQ, Ba S (2023) Protozoan community diversity and its impact factor in the middle reaches of the Yarlung Zangbo River in the wet season. Biodiversity Science, 31, 22500. (in Chinese with English abstract) |
[杨清, 李晓东, 杨胜娴, 巢欣, 刘惠秋, 巴桑 (2023) 雅鲁藏布江中游丰水期原生动物群落多样性及其影响因子. 生物多样性, 31, 22500.] | |
[46] | Yang Q, Zhang P, Li XD, Yang SX, Chao X, Liu HQ, Ba S (2023) Distribution patterns and community assembly processes of eukaryotic microorganisms along an altitudinal gradient in the middle reaches of the Yarlung Zangbo River. Water Research, 239, 120047. |
[47] | Yang SQ, Chen E, Ji LL, Li YX, Wu ZX (2024) Seasonal variation of biofilm microbial diversity and ecological co-occurrence networks in the Xiangxi River. Acta Scientiae Circumstantiae, 44(10), 390-401. (in Chinese with English abstract) |
[杨宋琪, 陈锷, 纪璐璐, 李玉鑫, 吴忠兴 (2024) 香溪河生物膜微生物多样性及生态共现网络的季节差异. 环境科学学报, 44(10), 390-401.] | |
[48] | Yang SX, Yang Q, Li XD, Chao X, Liu HQ, Wei LRX, Ba S (2023) Deterministic processes dominate the geographic distribution pattern and community assembly of phytoplankton in typical plateau rivers. Biodiversity Science, 31, 23092. (in Chinese with English abstract) |
[杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑 (2023) 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建. 生物多样性, 31, 23092.] | |
[49] | Yang WH, Zhang MY, Yang YT, Xu L, Guo Y, Ma J, Li WP (2024) Co-occurrence network analysis and community composition of bacteria and cyanobacteria in various types of lakes during frozen period. Journal of Lake Sciences, 36, 1366-1379. (in Chinese with English abstract) |
[杨文焕, 张明宇, 杨娅婷, 徐龙, 郭渊, 马杰, 李卫平 (2024) 冰封期不同类型湖泊细菌与蓝藻群落组成及共现网络分析. 湖泊科学, 36, 1366-1379.] | |
[50] | Ye HJ, Wang GH, Chen LL, Chen LJ, Li CH, Jiang JM, Pan HB (2024) Community structure of ciliated protozoa in rivers of Chongming Island and its indication to the water quality. Journal of Lake Sciences, 36, 1879-1887. (in Chinese with English abstract) |
[叶华建, 王冠华, 陈乐乐, 陈立婧, 李晨虹, 姜佳枚, 潘宏博 (2024) 崇明岛河道纤毛虫原生动物群落结构及对水环境的指示. 湖泊科学, 36, 1879-1887.] | |
[51] | Zhai CC, Han LL, Xiong C, Ge AH, Yue XJ, Li Y, Zhou ZX, Feng JY, Ru JY, Song J, Jiang L, Yang YF, Zhang LM, Wan SQ (2024) Soil microbial diversity and network complexity drive the ecosystem multifunctionality of temperate grasslands under changing precipitation. Science of the Total Environment, 906, 167217. |
[52] | Zhang P, Liu Y, An RZ, Qiao NQ, Da Z, Ba S (2022) Spatio-temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China. Scientia Silvae Sinicae, 58(1), 78-88. (in Chinese with English abstract) |
[张鹏, 刘洋, 安瑞志, 乔楠茜, 达珍, 巴桑 (2022) 西藏拉萨河中下游原生动物优势种时空生态位. 林业科学, 58(1), 78-88.] | |
[53] | Zhang P, Xiong J, Qiao NQ, An RZ, Da Z, Miao W, Ba S (2022) Spatiotemporal distribution of protists in the Yarlung Zangbo River, Tibetan Plateau. Water Biology and Security, 1, 100064. |
[54] | Zheng MY, Li Y, Wang XR, Zhang Y, Jia T (2024) Soil protozoa community assembly mechanism in different vegetation types of Luya Mountain. Biodiversity Science, 32, 23419. (in Chinese with English abstract) |
[郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤 (2024) 芦芽山不同植被类型土壤原生动物群落构建机制. 生物多样性, 32, 23419.] |
[1] | 徐进博, 崔雅倩, 王渊, 王伟波, 刘锋, 王广龙, 扈晶晶, 普布顿珠, 边巴多吉, 旦增, 胡开, 王小川, 宋刚, 吕永磊, 温知新. 白颊猕猴(Macaca leucogenys)在西藏雅鲁藏布大峡谷国家级自然保护区的栖息地适宜性评价[J]. 生物多样性, 2025, 33(7): 24493-. |
[2] | 张欣茹, 崔光帅, 沈维, 刘新圣, 张林. 西藏雅鲁藏布江中游砂生槐群落特征与碳、氮、磷化学计量特征数据集[J]. 生物多样性, 2025, 33(6): 25115-. |
[3] | 刘源, 杜剑卿, 马丽媛, 杨刚, 田建卿. 纳木措流域岸边带湿地产甲烷古菌群落多样性与分布特征[J]. 生物多样性, 2025, 33(1): 24247-. |
[4] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[5] | 陈又生, 宋柱秋, 卫然, 罗艳, 陈文俐, 杨福生, 高连明, 徐源, 张卓欣, 付鹏程, 向春雷, 王焕冲, 郝加琛, 孟世勇, 吴磊, 李波, 于胜祥, 张树仁, 何理, 郭信强, 王文广, 童毅华, 高乞, 费文群, 曾佑派, 白琳, 金梓超, 钟星杰, 张步云, 杜思怡. 西藏维管植物多样性编目和分布数据集[J]. 生物多样性, 2023, 31(9): 23188-. |
[6] | 肖媛媛, 冯薇, 乔艳桂, 张宇清, 秦树高. 固沙灌木林地土壤微生物群落特征对土壤多功能性的影响[J]. 生物多样性, 2023, 31(4): 22585-. |
[7] | 杨清, 李晓东, 杨胜娴, 巢欣, 刘惠秋, 巴桑. 雅鲁藏布江中游丰水期原生动物群落多样性及其影响因子[J]. 生物多样性, 2023, 31(4): 22500-. |
[8] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
[9] | 张爱梅, 殷一然, 孔维宝, 朱学泰, 杨颖丽. 西藏沙棘5种不同组织内生细菌多样性[J]. 生物多样性, 2021, 29(9): 1236-1244. |
[10] | 刘成, 亚吉东, 郭永杰, 蔡杰, 张挺. 西藏种子植物分布新资料[J]. 生物多样性, 2020, 28(10): 1238-1245. |
[11] | 王渊, 李晟, 刘务林, 朱雪林, 李炳章. 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律[J]. 生物多样性, 2019, 27(6): 638-647. |
[12] | 谢理丽, 徐磊, 林秋奇, 韩博平. 西藏湖泊长刺溞复合种的系统进化关系[J]. 生物多样性, 2015, 23(6): 784-792. |
[13] | 李玲娟, 熊勤犁, 潘开文, 张林. 土壤原生动物对川滇高山栎恢复时间的响应及生长季动态[J]. 生物多样性, 2015, 23(6): 793-801. |
[14] | 杨军, Humphrey G. Smith, David M. Wilkinson. 北极、南极和西藏有壳虫区系与分布[J]. 生物多样性, 2010, 18(4): 373-382. |
[15] | 李凤超, 康现江, 杨文波, 管越强, 张晓慧, 刘炜炜, 沈公铭, 李继龙, 王宏伟. 拒马河北京段原生动物群落特征及其对河流营养状况的指示[J]. 生物多样性, 2006, 14(4): 327-332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn