生物多样性 ›› 2022, Vol. 30 ›› Issue (6): 22012. DOI: 10.17520/biods.2022012
杨清1,2, 张鹏1,2, 安瑞志1,2, 乔楠茜1,2, 达珍1,2, 巴桑1,2,*()
收稿日期:
2022-01-09
接受日期:
2022-03-14
出版日期:
2022-06-20
发布日期:
2022-04-19
通讯作者:
巴桑
作者简介:
* E-mail: hbasang2003@aliyun.com基金资助:
Qing Yang1,2, Peng Zhang1,2, Ruizhi An1,2, Nanqian Qiao1,2, Zhen Da1,2, Sang Ba1,2,*()
Received:
2022-01-09
Accepted:
2022-03-14
Online:
2022-06-20
Published:
2022-04-19
Contact:
Sang Ba
摘要:
为了探究拉萨河中下游纤毛虫群落的组成模式、时空多样性格局及其维持机制, 本文于2015年5月和8月以及2016年10月在拉萨河中下游17个样点进行采样, 采用活体观察、鲁哥氏碘液固定染色以及Wilbert蛋白银法相结合的物种鉴定方法, 对纤毛虫群落结构进行了研究。通过Shannon多样性指数、Margalef丰富度指数、物种数分析群落结构时空上的差异性; 通过共现网络分析纤毛虫类群之间的相互作用; 通过冗余分析(redundancy analysis, RDA)探讨水体理化因子对纤毛虫群落结构的影响。结果表明, Shannon多样性指数在季节和河段间没有显著性差异; Margalef丰富度指数、物种数在河段间存在极显著性差异; 中游和下游河段共现网络节点间的相关关系均以正相关为主; 溶解氧(DO)、总氮(TN)、总磷(TP)、总溶解盐(TDS)是影响纤毛虫群落结构的关键因子。综上所述, 拉萨河中下游纤毛虫群落结构在季节间没有显著差异, 在空间上具有显著差异; 纤毛虫在纲级水平上类群间的相互作用以协同作用为主导, 不同类群间存在复杂的相互作用, 整体上互作关系在春季较为复杂、夏季较为简单; 影响拉萨河中下游纤毛虫群落结构是多个环境因子共同作用的结果。
杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑 (2022) 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制. 生物多样性, 30, 22012. DOI: 10.17520/biods.2022012.
Qing Yang, Peng Zhang, Ruizhi An, Nanqian Qiao, Zhen Da, Sang Ba (2022) Spatial and temporal distribution patterns and driving mechanisms of ciliate communities in the midstream and downstream reaches of the Lhasa River. Biodiversity Science, 30, 22012. DOI: 10.17520/biods.2022012.
图2 拉萨河中下游纤毛虫群落物种组成与分布。(a)各季节纲水平变化; (b)各季节空间分布; (c)三个季节所有物种数的空间分布。
Fig. 2 Species composition and distribution of ciliate communities in the midstream and downstream of Lhasa River. (a) Species on class level varies from seasons; (b) Spatial distribution from seasons; (c) Spatial distribution of all species in three seasons.
图3 拉萨河中下游样点间纤毛虫种类多集合维恩图。黑色点表示该位置有数据, 点线图表示样点间存在交集, 柱状图上的数字表示样点间的共有物种数, 左侧柱形图和点线图分别表示各样点的物种数和特有物种数。
Fig. 3 Multi-set Venn diagram of ciliate species between sites in the midstream and downstream of Lhasa River. Black dots indicated the existence of data at the sites, the dot plots indicated the intersection of the different sites, the numbers on the bar chart indicate the number of species in common between different sites, the bar chart and dot plot on the left show the number of species and endemic species at each.
编号 Serial number | 物种 Species | McNaughton指数 McNaughton index (Y) | 春季 Spring | 夏季 Summer | 秋季 Autumn |
---|---|---|---|---|---|
S1 | 双刺板壳虫 Coleps bicuspis | 0.04 | + | - | - |
S2 | 尾草履虫 Paramecium caudatum | 0.05 | + | - | - |
S3 | 大弹跳虫 Halteria grandinella | 0.07 | + | - | - |
S4 | 肾形豆形虫 Colpidium colpoda | 0.04 | + | - | - |
S5 | 凹缝楯纤虫 Aspidisca sulcata | 0.04 | + | - | - |
S6 | 锐利楯纤虫 Aspidisca lynceus | 0.03 | + | - | - |
S7 | 薄漫游虫 Litonotus lamella | 0.02 | + | - | - |
S8 | 太阳球吸管虫 Sphaerophrya soliformis | 0.02 | + | - | - |
S9 | 盘状肾形虫 Colpoda patella | 0.03 | + | - | - |
S10 | 前突肾形虫 Colpoda penardi | 0.02 | - | - | + |
S11 | 似肾形虫 Colpoda simulans | 0.03 | + | - | - |
S12 | 武装尾毛虫 Urotricha armatus | 0.02 | - | + | - |
S13 | 钩刺斜管虫 Chilodonella uncinata | 0.02 | + | - | - |
S14 | 美丽圆纹虫 Furgasonia rubens | 0.03 | - | + | - |
S15 | 钟虫属一种 Vorticella sp. | 0.02 | - | + | + |
S16 | 固着足吸管虫 Podophrya fixa | 0.02 | + | - | - |
表1 拉萨河中下游纤毛虫优势种
Table 1 Dominant species of ciliates in the midstream and downstream of Lhasa River
编号 Serial number | 物种 Species | McNaughton指数 McNaughton index (Y) | 春季 Spring | 夏季 Summer | 秋季 Autumn |
---|---|---|---|---|---|
S1 | 双刺板壳虫 Coleps bicuspis | 0.04 | + | - | - |
S2 | 尾草履虫 Paramecium caudatum | 0.05 | + | - | - |
S3 | 大弹跳虫 Halteria grandinella | 0.07 | + | - | - |
S4 | 肾形豆形虫 Colpidium colpoda | 0.04 | + | - | - |
S5 | 凹缝楯纤虫 Aspidisca sulcata | 0.04 | + | - | - |
S6 | 锐利楯纤虫 Aspidisca lynceus | 0.03 | + | - | - |
S7 | 薄漫游虫 Litonotus lamella | 0.02 | + | - | - |
S8 | 太阳球吸管虫 Sphaerophrya soliformis | 0.02 | + | - | - |
S9 | 盘状肾形虫 Colpoda patella | 0.03 | + | - | - |
S10 | 前突肾形虫 Colpoda penardi | 0.02 | - | - | + |
S11 | 似肾形虫 Colpoda simulans | 0.03 | + | - | - |
S12 | 武装尾毛虫 Urotricha armatus | 0.02 | - | + | - |
S13 | 钩刺斜管虫 Chilodonella uncinata | 0.02 | + | - | - |
S14 | 美丽圆纹虫 Furgasonia rubens | 0.03 | - | + | - |
S15 | 钟虫属一种 Vorticella sp. | 0.02 | - | + | + |
S16 | 固着足吸管虫 Podophrya fixa | 0.02 | + | - | - |
网络拓扑指标 Network topology indicators | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|
中游 Midstream | 下游 Downstream | 中游 Midstream | 下游 Downstream | 中游 Midstream | 下游 Downstream | |
节点数 Number of nodes | 45 | 35 | 50 | 23 | 64 | 24 |
连接数 Number of connections | 115 | 113 | 113 | 37 | 230 | 38 |
平均度 Average degree | 5.11 | 6.46 | 4.52 | 3.22 | 7.19 | 3.17 |
模块化系数 Modularity coefficient | 0.83 | 0.20 | 0.88 | 0.71 | 0.82 | 0.73 |
图密度 The density of figure | 0.12 | 0.19 | 0.09 | 0.15 | 0.11 | 0.14 |
平均聚类系数 Mean clustering coefficient | 0.91 | 0.94 | 0.85 | 0.86 | 0.96 | 0.88 |
平均路径长度 Mean path length | 1.42 | 1.03 | 1.38 | 1.00 | 1.13 | 1.00 |
正相关占比 Positive correlation ratio (%) | 94.78 | 97.35 | 96.46 | 100.00 | 99.57 | 100.00 |
负相关占比 Negative correlation ratio (%) | 5.22 | 2.65 | 3.54 | 0.00 | 0.43 | 0.00 |
表2 拉萨河中下游纤毛虫共现网络的关键拓扑结构特征
Table 2 The key topological characteristics of ciliate co-occurrence networks in the midstream and downstream of Lhasa River
网络拓扑指标 Network topology indicators | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|
中游 Midstream | 下游 Downstream | 中游 Midstream | 下游 Downstream | 中游 Midstream | 下游 Downstream | |
节点数 Number of nodes | 45 | 35 | 50 | 23 | 64 | 24 |
连接数 Number of connections | 115 | 113 | 113 | 37 | 230 | 38 |
平均度 Average degree | 5.11 | 6.46 | 4.52 | 3.22 | 7.19 | 3.17 |
模块化系数 Modularity coefficient | 0.83 | 0.20 | 0.88 | 0.71 | 0.82 | 0.73 |
图密度 The density of figure | 0.12 | 0.19 | 0.09 | 0.15 | 0.11 | 0.14 |
平均聚类系数 Mean clustering coefficient | 0.91 | 0.94 | 0.85 | 0.86 | 0.96 | 0.88 |
平均路径长度 Mean path length | 1.42 | 1.03 | 1.38 | 1.00 | 1.13 | 1.00 |
正相关占比 Positive correlation ratio (%) | 94.78 | 97.35 | 96.46 | 100.00 | 99.57 | 100.00 |
负相关占比 Negative correlation ratio (%) | 5.22 | 2.65 | 3.54 | 0.00 | 0.43 | 0.00 |
图7 拉萨河中下游纤毛虫群落特征参数(a)以及优势种(b)与环境参数的Spearman相关性热图。* P < 0.05; ** P < 0.01。WT: 水温; EC: 电导率; TDS: 总溶解盐; Salt: 盐度; DO: 溶解氧; COD: 化学需氧量; TN: 总氮; TP: 总磷; NH4+-N: 氨氮; NO3--N: 硝态氮; TUR: 浊度; WS: 水流速度。
Fig. 7 Spearman correlation heat map of ciliate community characteristics (a) and dominant species (b) and environmental parameters in the midstream and downstream of Lhasa River. * P < 0.05; ** P < 0.01. WT, Water temperature; EC, Electrical conductivity; TDS, Total dissolved salt; Salt, Salinity; DO, Dissolved oxygen; COD, Chemical oxygen demand; TN, Total nitrogen; TP, Total phosphorus; NH4+-N, Ammonia nitrogen; NO3--N, Nitrate nitrogen; TUR, Turbidity; WS, Water flow speed.
图8 基于冗余分析方法的拉萨河中下游纲级水平上各纤毛虫类群与环境因子之间的关系。WT: 水温; EC: 电导率; TDS: 总溶解盐; Salt: 盐度; DO: 溶解氧; COD: 化学需氧量; TN: 总氮; TP: 总磷; NH4+-N: 氨氮; NO3--N: 硝态氮; TUR: 浊度; WS: 水流速度。Oligohymenophorea: 寡膜纲; Spirotrichea: 旋毛纲; Colpodea: 肾形纲; Heterotrichea: 异毛纲; Phyllopharyngea: 叶咽纲; Nassophorea: 篮口纲; Prostomatea: 前口纲; Litostomatea: 叶口纲; Karyorelictea: 核残迹纲。
Fig. 8 RDA method was used to analyze the relationship between ciliate groups and environmental factors at class level in the midstream and downstream of Lhasa River. WT, Water temperature; EC, Electrical conductivity; TDS, Total dissolved salt; Salt, Salinity; DO, Dissolved oxygen; COD, Chemical oxygen demand; TN, Total nitrogen; TP, Total phosphorus; NH4+-N, Ammonia nitrogen; NO3--N, Nitrate nitrogen; TUR, Turbidity; WS, Water flow speed.
[1] | An RZ, Pan CM, Liu Y, Ba S (2020) Study on the distribution pattern and coexistence mechanism of dominant summering phytoplankton population in the Basomtso. Plateau Science Research, 4, 27-36. (in Chinese with English abstract) |
[安瑞志, 潘成梅, 刘洋, 巴桑 (2020) 巴松措(湖)夏季浮游植物优势种群分布格局与共存机制研究. 高原科学研究, 4, 27-36.] | |
[2] | An RZ, Zhang P, Da Z, Qiao NQ, Tang QY, Ba S (2021) Niche and interspecific association of dominant protozoan species under different hydrologic periods in the Mitika wetland of Tibet, China. Scientia Silvae Sinicae, 57(5), 126-138. (in Chinese with English abstract) |
[安瑞志, 张鹏, 达珍, 乔楠茜, 汤秋月, 巴桑 (2021) 西藏麦地卡湿地不同水文期原生动物优势种生态位及其种间联结性. 林业科学, 57(5), 126-138.] | |
[3] | Ba S, Yang XL, Huang X, Wang Y, Liu Y (2017) Community characteristic of protozoan in middle and upper reaches of the Lhasa River during spring season. Journal of Northwest Normal University (Natural Science), 53, 70-76, 83. (in Chinese with English abstract) |
[巴桑, 杨欣兰, 黄香, 王芸, 刘洋 (2017) 拉萨河中上游春季原生动物群落特征. 西北师范大学学报(自然科学版), 53, 70-76, 83.] | |
[4] |
Chen H, Liu Q, Pan JX, Wang S, Wang ZZ (2019) Spatial and temporal variation of the plankton community and its relationship with environmental factors in the city section of the Ba River. Acta Ecologica Sinica, 39, 173-184. (in Chinese with English abstract)
DOI URL |
[陈红, 刘清, 潘建雄, 王松, 王在照 (2019) 灞河城市段浮游生物群落结构时空变化及其与环境因子的关系. 生态学报, 39, 173-184.] | |
[5] | Chen X, Jin TT, Su HD, Lin JQ, Wang DB, Liu GH, Zhang JJ (2019) Construction and application of health assessment index system for Lhasa River. Acta Ecologica Sinica, 39, 799-809. (in Chinese with English abstract) |
[陈歆, 靳甜甜, 苏辉东, 林俊强, 王东波, 刘国华, 张俊洁 (2019) 拉萨河河流健康评价指标体系构建及应用. 生态学报, 39, 799-809.] | |
[6] | Da Z, Zhang P, An RZ, Pan CM, Qiao NQ, Ba S (2022) Species distribution patterns and driving factors of protozoan community in the middle and lower reaches of Lhasa River. Journal of Hydroecology, https://doi.org/10.15928/j.1674-3075.202109230333. (in Chinese with English abstract) |
[达珍, 张鹏, 安瑞志, 潘成梅, 乔楠茜, 巴桑 (2022) 拉萨河中下游原生动物群落物种分布格局及其驱动因素. 水生态学杂志, https://doi.org/10.15928/j.1674-3075.202109230333.] | |
[7] |
Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012) Molecular ecological network analyses. BMC Bioinformatics, 13, 113.
DOI PMID |
[8] | Gao Y, Wang C, Liu QF, Peng SY, Mai YZ, Lai ZN (2019) Dominant zooplankton species and their ecological niches under different hydrologic regimes in rivers of the Pearl River Delta. Journal of Hydroecology, 40, 37-44. (in Chinese with English abstract) |
[高原, 王超, 刘乾甫, 彭松耀, 麦永湛, 赖子尼 (2019) 珠三角河网不同水文期浮游动物优势种及生态位. 水生态学杂志, 40, 37-44.] | |
[9] | Guan ZH, Chen CY (1984) Rivers and Lakes in Tibet. Science Press, Beijing. (in Chinese) |
[关志华, 陈传友 (1984) 西藏河流与湖泊. 科学出版社, 北京.] | |
[10] | Han L, Shi XL, Liu GJ, Tan XL, Han HL (2007) Preliminary studies on protozoans community diversity in the water area of the Sun Island in Harbin. Acta Hydrobiologica Sinica, 31, 272-277. (in Chinese with English abstract) |
[韩蕾, 施心路, 刘桂杰, 谭晓丽, 韩宏蕾 (2007) 哈尔滨太阳岛水域原生动物群落变化的初步研究. 水生生物学报, 31, 272-277.] | |
[11] |
Hao YY, Sun GJ, Zhang LX, Gong XP, Xu SS, Liu HM, Zhang F (2014) Relationship between community characteristics of the phytoplankton and environmental factors in Heihe River basin. Journal of Lake Sciences, 26, 121-130. (in Chinese with English abstract)
DOI URL |
[郝媛媛, 孙国钧, 张立勋, 龚雪平, 许莎莎, 刘慧明, 张芬 (2014) 黑河流域浮游植物群落特征与环境因子的关系. 湖泊科学, 26, 121-130.] | |
[12] | Jiang CW, Liu JT, Lin L, Xu SS, Ji HJ (2018) Correlation between river flow width and topographic structure factors in Lhasa River drainage basin. Journal of Yangtze River Scientific Research Institute, 35, 117-121, 134. (in Chinese with English abstract) |
[蒋成伟, 刘金涛, 林璐, 许珊珊, 姬海娟 (2018) 拉萨河流域河宽与地形结构因子相互关系分析. 长江科学院院报, 35, 117-121, 134.] | |
[13] |
Jiang RJ, Zhang LL, Xu KD, Li PF, Xiao Y, Fan ZW (2019) Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province. Biodiversity Science, 27, 1330-1338. (in Chinese with English abstract)
DOI |
[蒋日进, 张琳琳, 徐开达, 李鹏飞, 肖祎, 樊紫薇 (2019) 浙江中南部近岸海域游泳动物功能群特征与多样性. 生物多样性, 27, 1330-1338.]
DOI |
|
[14] |
Jiang Y, Xu HL, Hu XZ, Zhu MZ, Al-Rasheid KA, Warren A (2011) An approach to analyzing spatial patterns of planktonic ciliate communities for monitoring water quality in Jiaozhou Bay, northern China. Marine Pollution Bulletin, 62, 227-235.
DOI PMID |
[15] |
Jiang ZG (2018) Exploring the distribution patterns and conservation approaches of biodiversity on the Qinghai-Tibetan Plateau. Biodiversity Science, 26, 107-110. (in Chinese)
DOI URL |
[蒋志刚 (2018) 探索青藏高原生物多样性分布格局与保育途径. 生物多样性, 26, 107-110.]
DOI |
|
[16] |
Jiao S, Chen WM, Wei GH (2017) Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Molecular Ecology, 26, 5305-5317.
DOI URL |
[17] |
Kowalczewski A, Ozimek T (1993) Further long-term changes in the submerged macrophyte vegetation of the eutrophic Lake Mikolajskie (North Poland). Aquatic Botany, 46, 341-345.
DOI URL |
[18] |
Lewis WM Jr (1998) Freshwater biology, priorities and development in Danish research. Limnology and Oceanography, 43, 1019-1020.
DOI URL |
[19] |
Li FC, Kang XJ, Yang WB, Guan YQ, Zhang XH, Liu WW, Shen GM, Li JL, Wang HW (2006) Protozoan community character in relation to trophic level in the Beijing section of the Juma River. Biodiversity Science, 14, 327-332. (in Chinese with English abstract)
DOI URL |
[李凤超, 康现江, 杨文波, 管越强, 张晓慧, 刘炜炜, 沈公铭, 李继龙, 王宏伟 (2006) 拒马河北京段原生动物群落特征及其对河流营养状况的指示. 生物多样性, 14, 327-332.]
DOI |
|
[20] |
Li GG, Li P, Xu HY, Yu HY, Yu J (2020) Path analysis of zooplankton diversity and environmental factors in the water sources rivers, Zhejiang Province. Biodiversity Science, 28, 166-175. (in Chinese with English abstract)
DOI URL |
[李共国, 李平, 徐杭英, 于海燕, 俞建 (2020) 浙江水源地河流浮游动物多样性与环境因子的通径分析. 生物多样性, 28, 166-175.]
DOI |
|
[21] | Li KQ (2016) Resolving the divergence times and major evolutionary relationships of protoctists. Journal of Henan Normal University (Natural Science Edition), 44, 115-124. (in Chinese with English abstract) |
[李可群 (2016) 原生生物物种分歧时间和主要演化关系的定量计算. 河南师范大学学报(自然科学版), 44, 115-124.] | |
[22] |
Li Q, An CG, Ma Q, Xu LL, Zhao YL (2010) Species composition and diversity of zooplankton in tidal creeks of the Chongming Dongtan intertidal flat. Biodiversity Science, 18, 67-75. (in Chinese with English abstract)
DOI URL |
[李强, 安传光, 马强, 徐霖林, 赵云龙 (2010) 崇明东滩潮间带潮沟浮游动物的种类组成及多样性. 生物多样性, 18, 67-75.]
DOI |
|
[23] | Liu Y, An RZ, Ba S (2022) Ecological characteristics of phytoplankton community during the summer season in the Selin Co-Puruogangri Glacier National Park potential construction area of Tibet, China. Journal of Hydroecology, https://doi.org/10.15928/j.1674-3075.202108120276. (in Chinese with English abstract) |
[刘洋, 安瑞志, 巴桑 (2021) 西藏色林错-普若岗日国家公园潜在建设区夏季浮游植物群落生态特征. 水生态学杂志, https://doi.org/10.15928/j.1674-3075.202108120276.] | |
[24] | Liu ZF, Ning YZ, Ma ZX, Lu YZ (2007) Community structure of ciliates in the cage fish culture farm of Liujiaxia Reservoir in spring. Journal of Northwest Normal University (Natural Science), 43(2), 77-81, 92. (in Chinese with English abstract) |
[刘智峰, 宁应之, 马正学, 卢云中 (2007) 刘家峡水库网箱养鱼场春季纤毛虫群落结构. 西北师范大学学报(自然科学版), 43(2), 77-81, 92.] | |
[25] | Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira A, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Frontiers in Environmental Science, 2, 10. |
[26] | Lynn DH (2008) The Ciliated Protozoa: Characterization, Classification, and Guide to the Literature. Springer, Dordrecht. |
[27] | Margalef R (1968) Perspectives in Ecological Theory. University of Chicago Press, Chicago. |
[28] | Min WW, Huang FJ, Wang W (2021) Community structure of zooplankton in Chishui River in autumn and its relationship with environmental factors. Journal of Anhui Agricultural Sciences, 49, 75-79. (in Chinese with English abstract) |
[闵文武, 黄福江, 王伟 (2021) 赤水河秋季浮游动物群落结构及其与环境因子关系. 安徽农业科学, 49, 75-79.] | |
[29] |
Nilssen JP (1984) Tropical lakes—Functional ecology and future development: The need for a process-orientated approach. Hydrobiologia, 113, 231-242.
DOI URL |
[30] | Ning YZ, Wu WN, Liu HC, Chen LY (2014) Community characteristics of ciliates in plateau swamp wetland of Gannan in spring. Journal of Northwest Normal University (Natural Science), 50, 87-92. (in Chinese with English abstract) |
[宁应之, 武维宁, 刘汉成, 陈凌云 (2014) 甘南高原沼泽湿地春季纤毛虫群落结构特征. 西北师范大学学报(自然科学版), 50, 87-92.] | |
[31] |
Pratt JR, Cairns J (1985) Functional groups in the protozoa: Roles in differing ecosystems 1, 2. The Journal of Protozoology, 32, 415-423.
DOI URL |
[32] | Qiao NQ, Zhang P, Da Z, An RZ, Ba S (2021) Distribution of functional groups of protozoa and assessment of water environment quality in the middle and lower reaches of the Lhasa River. Wetland Science, 19, 726-742. (in Chinese with English abstract) |
[乔楠茜, 张鹏, 达珍, 安瑞志, 巴桑 (2021) 拉萨河中下游河段原生动物功能群分布和水环境质量评价. 湿地科学, 19, 726-742.] | |
[33] | Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems, 147, 237-246. |
[34] |
Shannon CE (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423.
DOI URL |
[35] | Shen YF (1999) Protozoology. Science Press, Beijing. (in Chinese) |
[沈韫芬 (1999) 原生动物学. 科学出版社, 北京.] | |
[36] | Shen YF, Gu MR, Gong XJ, Shi ZX, Wei YX, Zheng Y (1994) A New Technique for Micro-biological Monitoring. China Architecture and Building Press, Beijing. (in Chinese) |
[沈韫芬, 顾曼如, 龚循矩, 施之新, 魏印心, 郑英 (1994) 微型生物监测新技术. 中国建筑工业出版社, 北京.] | |
[37] | Song WB, Warren A, Hu XZ (2009) Free-living Ciliates from the Yellow and Bohai Seas of China. Science Press, Beijing. (in Chinese) |
[宋微波, 沃伦A, 胡晓钟 (2009) 中国黄渤海的自由生纤毛虫. 科学出版社, 北京.] | |
[38] | Song WB, Xu KD (1994) Common methods for morphological studies of ciliated protozoa. Marine Sciences, 18, 6-9. (in Chinese) |
[宋微波, 徐奎栋 (1994) 纤毛虫原生动物形态学研究的常用方法. 海洋科学, 18, 6-9.] | |
[39] | State Environmental Protection Administration, Editorial Board of Water and Wastewater Monitoring and Analysis Methods (2002) Water and Wastewater Monitoring and Analysis Methods, 4th edn. China Environmental Science Press, Beijing. (in Chinese) |
[国家环境保护总局, 《水和废水监测分析方法》编委会 (2002) 水和废水监测分析方法(第四版). 中国环境科学出版社, 北京.] | |
[40] | Sun ZQ, Shi XL, Xu LL, Meng XW, Liu GJ (2013) The protozoan community structure and its response to the change of water quality in a typical wetland landscape in summer. Acta Hydrobiologica Sinica, 37, 290-299. (in Chinese with English abstract) |
[孙志强, 施心路, 徐琳琳, 孟祥玮, 刘桂杰 (2013) 景观湿地夏季原生动物群落结构与水质关系. 水生生物学报, 37, 290-299.] | |
[41] | Tan XL, Shi XL, Liu GJ, Bai X (2005) The regular changes of protozoan community diversity in an artificial lake in Harbin, China. Acta Ecologica Sinica, 25, 2650-2657. (in Chinese with English abstract) |
[谭晓丽, 施心路, 刘桂杰, 白昕 (2005) 哈尔滨人工湖泊中原生动物群落变化规律. 生态学报, 25, 2650-2657.] | |
[42] | Tan YH, Huang LM, Huang XP, Su Q, Shi X, Huang JR (2010) The relationships between ciliate composition, abundance, and environmental factors in Sanya Bay coral reef waters. Acta Ecologica Sinica, 30, 6835-6844. (in Chinese with English abstract) |
[谭烨辉, 黄良民, 黄小平, 苏强, 时翔, 黄建荣 (2010) 三亚珊瑚礁水域纤毛虫种类组成和数量分布及与环境因子的关系. 生态学报, 30, 6835-6844.] | |
[43] | Tibetan Plateau Comprehensive Research Team, Chinese Academy of Sciences (1983) Aquatic Invertebrates of Tibet. Science Press, Beijing. (in Chinese) |
[中国科学院青藏高原综合科学考察队 (1983) 西藏水生无脊椎动物. 科学出版社, 北京.] | |
[44] |
Verity PG, Stoecker DK, Sieracki ME, Nelson JR (1993) Grazing, growth and mortality of microzooplankton during the 1989 North Atlantic spring bloom at 47° N, 18° W. Deep Sea Research Part I: Oceanographic Research Papers, 40, 1793-1814.
DOI URL |
[45] | Wang L, Cong YT, Lu YN, Wei J, Wang Y (2018) Benthic algal communities of Taizi River and its main tributaries in relation to environmental variables. Journal of Aquaculture, 39, 6-10. (in Chinese with English abstract) |
[王丽, 丛玉婷, 卢亚楠, 魏杰, 王媛 (2018) 太子河流域及其主要支流底栖藻类群落与环境因子的关系. 水产养殖, 39, 6-10.] | |
[46] |
Wang YB, Zhang WJ, Lin YS, Zheng LM, Cao WQ, Yang J (2013) Spatial pattern of the planktonic ciliate community and its relationship with the environment in spring in the northern Beibu Gulf, South China Sea. Oceanological and Hydrobiological Studies, 42, 470-479.
DOI URL |
[47] | Wilbert N (1975) Eine verbesserte technik der protargolimprägnation für ciliaten. Mikrokosmos, 64, 171-179. |
[48] | Wu FX, Huang HH, Dai M, Tan YH, Qi ZH, Zhang WB (2017) Spatial and temporal pattern of planktonic ciliate community and its relationship with its environment in Dapeng Cove, the South China Sea. South China Fisheries Science, 13, 1-9. (in Chinese with English abstract) |
[吴风霞, 黄洪辉, 戴明, 谭烨辉, 齐占会, 张文博 (2017) 大鹏澳浮游纤毛虫群落与环境因子间的关系. 南方水产科学, 13, 1-9.] | |
[49] | Xi XD (2014) Study of adsorption and desorption mechanism of sediment on pollutants. Sichuan Environment, 33, 117-121. (in Chinese with English abstract) |
[郗晓丹 (2014) 水体底泥对污染物的吸附-解吸机理的研究. 四川环境, 33, 117-121.] | |
[50] | Xiong YQ (2000) Advances in biological methods for water quality assessment and monitoring. Shanghai Environmental Sciences, 19, 79-81. (in Chinese with English abstract) |
[熊昀青 (2000) 水质评价和监测的生物学方法进展. 上海环境科学, 19, 79-81.] | |
[51] |
Xu H, Chen J, Zhu GW, Qin BQ, Zhang YL (2019) Effect of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria. Journal of Lake Sciences, 31, 1239-1247. (in Chinese with English abstract)
DOI URL |
[许海, 陈洁, 朱广伟, 秦伯强, 张运林 (2019) 水体氮、磷营养盐水平对蓝藻优势形成的影响. 湖泊科学, 31, 1239-1247.] | |
[52] | Xu MQ, Zhai JJ, Shao YY (1998) Water quality in Beijing Tonghui River, using PFU protozoan communities as indicators. Chinese Journal of Zoology, 33(4), 1-7. (in Chinese with English abstract) |
[许木启, 翟家骥, 邵永怡 (1998) 利用PFU原生动物群落多样性快速监测北京通惠河水质. 动物学杂志, 33(4), 1-7.] | |
[53] | Xu X, Yao WJ, Xing YH, Zhang ZH, Shi YZ, Hu CC, Chang Q, Chen JQ (2021) Characteristics and influencing factors of metazoan zooplankton community structure in lakes of Suzhou Industrial Park. Acta Ecologica Sinica, 41, 4023-4035. (in Chinese with English abstract) |
[徐雪, 姚文佳, 邢雨辉, 张振华, 时应征, 胡超超, 常青, 陈建琴 (2021) 苏州工业园区湖泊后生浮游动物群落结构及影响因子. 生态学报, 41, 4023-4035.] | |
[54] | Yang LJ, Lü GH, Zhu JQ, Xu Z, Jin CH (2014) Characteristics of zooplankton community in Hengshan Reservoir and water quality assessment. Acta Hydrobiologica Sinica, 38, 720-728. (in Chinese with English abstract) |
[杨亮杰, 吕光汉, 竺俊全, 徐镇, 金春华 (2014) 横山水库浮游动物群落结构特征及水质评价. 水生生物学报, 38, 720-728.] | |
[55] | Yang XL, Ba S, Huang X (2019) Spatial and temporal variation in ciliate communities and relationships with environmental conditions in the middle and upper reaches of the Lhasa River. Acta Ecologica Sinica, 39, 3121-3132. (in Chinese with English abstract) |
[杨欣兰, 巴桑, 黄香 (2019) 拉萨河中上游夏秋季纤毛虫群落时空变动及其与环境的关系. 生态学报, 39, 3121-3132.] | |
[56] |
Yao ZJ, Liu J, Huang HQ, Song XF, Dong XH, Liu X (2009) Characteristics of isotope in precipitation, river water and lake water in the Manasarovar Basin of Qinghai-Tibet Plateau. Environmental Geology, 57, 551-556.
DOI URL |
[57] |
Zhang BG, Zhang J, Liu Y, Shi P, Wei GH (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 118, 178-186.
DOI URL |
[58] | Zhang H, Yang H (2008) Assessment on water quality by stucture and quantity distribution of ciliate population in the Luanhe River. Jiangsu Environmental Science and Technology, 21(1), 64-65, 68. (in Chinese with English abstract) |
[张华, 杨虹 (2008) 用纤毛虫的种群结构和数量分布评价滦河水质的研究. 江苏环境科技, 21(1), 64-65, 68.] | |
[59] | Zhang JL, Bian K, Xu TQ, Wang QJ (2016) Structure characteristic of plankton community in autumn in the Palong Tsangpo River, Tibet. Genomics and Applied Biology, 35, 647-655. (in Chinese with English abstract) |
[张建禄, 边坤, 许涛清, 王启军 (2016) 西藏帕隆藏布秋季浮游生物群落结构特征. 基因组学与应用生物学, 35, 647-655.] | |
[60] | Zhang Z, Wang LL, Zeng XL, Lü PY (2006) Influence of the suspended sediment on the relevant factors of Yangtze River’s eutrophication. Ecology and Environment, 15, 457-460. (in Chinese with English abstract) |
[张智, 王利利, 曾晓岚, 吕平毓 (2006) 泥沙沉降对长江水体富营养化相关因素的影响初探. 生态环境, 15, 457-460.] | |
[61] | Zhang ZS, Huang XF (1991) Methods for the Study of Freshwater Plankton. Science Press, Beijing. (in Chinese) |
[章宗涉, 黄祥飞 (1991) 淡水浮游生物研究方法. 科学出版社, 北京.] | |
[62] | Zhou FX, Chen JH (2011) Atlas of Freshwater Microorganisms and Benthos. Chemical Industry Press, Beijing. (in Chinese) |
[周凤霞, 陈剑虹 (2011) 淡水微型生物与底栖动物图谱. 化学工业出版社, 北京.] | |
[63] | Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. MBio, 1, e00169- e00110. |
[1] | 杨润明, 中村彰宏. 巢居蚂蚁更倾向于在人造光源附近定居繁殖[J]. 生物多样性, 2022, 30(8): 22067-. |
[2] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征:以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[3] | 易浪, 董亚坤, 苗白鸽, 彭艳琼. 云南高黎贡山地区蝴蝶群落多样性[J]. 生物多样性, 2021, 29(7): 950-959. |
[4] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[5] | 吴二焕, 李东海, 杨小波, 左永令, 李龙, 张培春, 陈琳, 田路嘉, 李晨笛. 海南苏铁种群结构与森林群落郁闭度的关系[J]. 生物多样性, 2021, 29(11): 1461-1469. |
[6] | 余宏昌, 毕宝帅, 唐文乔, 张亚, 郭弘艺. 上海苏州河治理中鱼类多样性及群落结构变化[J]. 生物多样性, 2021, 29(1): 32-42. |
[7] | 向颖, 刘素群, 黄兴龙, 刘志霄, 张佑祥, 马方舟. 湖南高望界国家级自然保护区及其周边蝶类多样性与影响因素[J]. 生物多样性, 2020, 28(8): 940-949. |
[8] | 尚素琴, 吴兴波, 王召龙, 彭鹤年, 周惠丽, 张红勇, 白映禄. 兴隆山国家级自然保护区不同生境的蝴蝶群落结构与种-多度分布[J]. 生物多样性, 2020, 28(8): 983-992. |
[9] | 赵志霞, 赵常明, 邓舒雨, 申国珍, 谢宗强, 熊高明, 李俊清. 重度砍伐后极小种群野生植物崖柏群落结构动态[J]. 生物多样性, 2020, 28(3): 333-339. |
[10] | 胡芮, 王儒晓, 杜诗雨, 李萌, 邢雨辉, 潘达, 徐海根, 孙红英. 扬州宝应湖底栖大型无脊椎动物的生物多样性及其变化[J]. 生物多样性, 2020, 28(12): 1558-1569. |
[11] | 宋础良. 结构稳定性: 概念、方法和应用[J]. 生物多样性, 2020, 28(11): 1345-1361. |
[12] | 孙蓓蓓, 俞存根, 刘惠, 颜文超, 张文俊, 戴冬旭. 南麂列岛东侧海域春秋季虾蟹类生物多样性[J]. 生物多样性, 2019, 27(7): 787-795. |
[13] | 邢圆,吴小平,欧阳珊,张君倩,徐靖,银森录,谢志才. 赣江水系大型底栖动物多样性与受胁因子初探[J]. 生物多样性, 2019, 27(6): 648-657. |
[14] | 谢峰淋,周全,史航,舒枭,张克荣,李涛,冯水园,张全发,党海山. 秦岭落叶阔叶林25 ha森林动态监测样地物种组成与群落特征[J]. 生物多样性, 2019, 27(4): 439-448. |
[15] | 杨陆飞, 陈琳琳, 李晓静, 周政权, 刘博, 宋博, 李秉钧, 李宝泉. 烟台牟平海洋牧场季节性低氧对大型底栖动物群落的生态效应[J]. 生物多样性, 2019, 27(2): 200-210. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn