生物多样性 ›› 2023, Vol. 31 ›› Issue (4): 22500. DOI: 10.17520/biods.2022500
所属专题: 青藏高原生物多样性与生态安全
杨清1,2, 李晓东1,2, 杨胜娴1,2, 巢欣1,2, 刘惠秋1,2, 巴桑1,2,*()
收稿日期:
2022-08-30
接受日期:
2022-11-20
出版日期:
2023-04-20
发布日期:
2023-04-20
通讯作者:
*E-mail: 基金资助:
Qing Yang1,2, Xiaodong Li1,2, Shengxian Yang1,2, Xin Chao1,2, Huiqiu Liu1,2, Sang Ba1,2,*()
Received:
2022-08-30
Accepted:
2022-11-20
Online:
2023-04-20
Published:
2023-04-20
Contact:
*E-mail: 摘要:
为了解雅鲁藏布江中游干流及支流丰水期原生动物的群落多样性特征, 于2021年7月利用18S rDNA高通量测序技术开展雅鲁藏布江中游原生动物多样性研究, 并现场测定水体理化因子。结果表明: 雅鲁藏布江中游原生动物在干流和支流两个河段上均以丝足虫门、纤毛虫门和双鞭毛虫门为主。群落Shannon多样性在河段间存在显著性差异; β多样性在两个河段上均以周转组分为主。研究区域原生动物群落存在显著的地理距离-衰减趋势; 物种互作关系以协同作用为主导; 影响支流原生动物群落的主要理化因子为pH、水温、海拔组合, 影响干流原生动物群落的主要理化因子为电导率。原生动物群落受到地理距离、物种互作关系和理化因子的共同影响。本研究结果明确了雅鲁藏布江中游丰水期原生动物群落多样性变化特征及其驱动因素, 可为后续雅鲁藏布江原生动物研究以及青藏高原水环境保护提供数据支撑和参考。
杨清, 李晓东, 杨胜娴, 巢欣, 刘惠秋, 巴桑 (2023) 雅鲁藏布江中游丰水期原生动物群落多样性及其影响因子. 生物多样性, 31, 22500. DOI: 10.17520/biods.2022500.
Qing Yang, Xiaodong Li, Shengxian Yang, Xin Chao, Huiqiu Liu, Sang Ba (2023) Protozoan community diversity and its impact factor in the middle reaches of the Yarlung Zangbo River in the wet season. Biodiversity Science, 31, 22500. DOI: 10.17520/biods.2022500.
图2 研究区域各样点及河段门级水平上原生动物群落组成(a)、各样点丰度(b)和各河段丰度(c)。M: 干流; T: 支流; σ: 方差。
Fig. 2 Protozoan community composition at the phylum level at each site and reach in the study area (a), abundance at each site (b) and abundance at each reach (c). M, Mainstream; T, Tributary; σ, Variance.
图4 研究区域原生动物群落β多样性分析。总β多样性及各组分占比(a), 群落β多样性组分分解(b)。All: 全河段; M: 干流; T: 支流; *: 平均值; n: 样点对; Repl和Richdiff表示β多样性的两种组分。
Fig. 4 β diversity analysis of protozoan communities in the study area. Total β diversity of the protozoan community and the proportion of each component (a). Decomposition of the β diversity component of the community (b). All, All river reaches; M, Mainstream; T, Tributary; *, Mean; n, Sample point pair; Repl and Richdiff denote the two components of β diversity.
图5 研究区域原生动物群落PCoA分析(a)和全河段(b)、干流河段(c)、支流河段(d)地理格局分析。All: 全河段; M: 干流; T: 支流。
Fig. 5 Protozoan community PCoA analysis (a) and geographic pattern analysis for the all river section (b), mainstream section (c), and tributary section (d) in the study area. All, All river reaches; M, Mainstream; T, Tributary.
图6 研究区域原生动物群落共现模式分析。共有ASVs (a)及其所属类群(b), 群落共现网络(c)。All: 全河段; M: 干流; T: 支流。
Fig. 6 Protozoan community co-occurrence pattern analysis in the study area. Shared ASVs (a) and the taxa they belong to (b), community co-occurrence network (c). All, All river reaches; M, Mainstream; T, Tributary.
网络拓扑指标 Network topology indicators | 全河段 All river reaches (All) | 干流 Mainstream (M) | 支流 Tributary (T) |
---|---|---|---|
连接数 Number of connections | 4,171 | 6,397 | 5,044 |
平均度 Average degree | 27.807 | 42.647 | 33.627 |
网络直径 Network diameter | 8 | 4 | 6 |
平均路径长度 Mean path length | 2.641 | 2.201 | 2.422 |
图密度 Density of figure | 0.093 | 0.143 | 0.112 |
模块化系数 Modularity coefficient | 0.815 | 1.410 | 0.909 |
平均聚类系数 Mean clustering coefficient | 0.614 | 0.511 | 0.557 |
正相关占比 Positive correlation (%) | 82.6 | 64.5 | 73.5 |
负相关占比 Negative correlation (%) | 17.4 | 35.5 | 26.5 |
表1 原生动物群落共现网络的拓扑结构特征
Table 1 The topological characteristics of co-occurrence networks of protozoan communities
网络拓扑指标 Network topology indicators | 全河段 All river reaches (All) | 干流 Mainstream (M) | 支流 Tributary (T) |
---|---|---|---|
连接数 Number of connections | 4,171 | 6,397 | 5,044 |
平均度 Average degree | 27.807 | 42.647 | 33.627 |
网络直径 Network diameter | 8 | 4 | 6 |
平均路径长度 Mean path length | 2.641 | 2.201 | 2.422 |
图密度 Density of figure | 0.093 | 0.143 | 0.112 |
模块化系数 Modularity coefficient | 0.815 | 1.410 | 0.909 |
平均聚类系数 Mean clustering coefficient | 0.614 | 0.511 | 0.557 |
正相关占比 Positive correlation (%) | 82.6 | 64.5 | 73.5 |
负相关占比 Negative correlation (%) | 17.4 | 35.5 | 26.5 |
图7 研究区域原生动物群落与理化因子相关性分析。EC: 电导率; WT: 水温; DO: 溶解氧; TUR: 浊度; TN: 总氮; TP: 总磷; NH4+-N: 铵态氮; COD: 化学需氧量; WS: 水流速度; ALT: 海拔; M: 干流; T: 支流。
Fig. 7 Correlation analysis between protozoan communities and environmental factors in the study area. EC, Electrical conductivity; WT, Water temperature; DO, Dissolved oxygen; TUR, Turbidity; TN, Total nitrogen; TP, Total phosphorus; NH4+-N, Ammonia nitrogen; COD, Chemical oxygen demand; WS, Waterflow speed; ALT, Altitude; M, Mainstream; T, Tributary.
样点 Site | pH | EC (mg/L) | WT (℃) | DO (mg/L) | TUR (NTU) | TN (mg/L) | TP (mg/L) | NH4+-N (mg/L) | COD (mg/L) | WS (m/s) | ALT (km) | 河段 Reach |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L1 | 8.21 ± 0.03 | 230.67 ± 1.25 | 17.04 ± 0.11 | 5.53 ± 0.74 | 248.67 ± 17.91 | 0.74 | 0.04 | 0.02 | 20.00 | 0.00 | 3.54 | M |
L2 | 8.66 ± 0.02 | 223.67 ± 0.47 | 21.02 ± 0.00 | 5.40 ± 0.02 | 530.00 ± 56.79 | 0.35 | 0.02 | 0.11 | 13.00 | 0.40 | 3.53 | M |
L3 | 4.99 ± 0.12 | 457.67 ± 0.82 | 15.17 ± 0.06 | 5.78 ± 0.20 | 81.33 ± 2.73 | 0.57 | 0.14 | 0.14 | 98.00 | 0.70 | 3.71 | T |
L4 | 6.76 ± 0.64 | 317.00 ± 0.82 | 12.44 ± 0.22 | 5.45 ± 0.08 | 14.07 ± 0.51 | 0.45 | 12.50 | 0.11 | 5.00 | 0.60 | 4.11 | T |
L5 | 4.86 ± 0.12 | 248.00 ± 0.82 | 10.48 ± 0.06 | 4.87 ± 0.20 | 6.08 ± 1.09 | 0.89 | 0.08 | 0.28 | 4.00 | 1.10 | 4.51 | T |
L6 | 7.62 ± 0.12 | 117.00 ± 0.00 | 6.58 ± 0.02 | 6.33 ± 0.24 | 10.93 ± 0.62 | 0.22 | 0.04 | 0.21 | 12.00 | 1.70 | 4.22 | T |
L7 | 7.89 ± 0.04 | 148.67 ± 0.47 | 6.15 ± 0.04 | 6.08 ± 0.07 | 10.63 ± 0.87 | 0.24 | 0.01 | 0.06 | 2.00 | 0.40 | 4.74 | T |
L8 | 8.23 ± 0.01 | 226.67 ± 0.47 | 19.34 ± 0.04 | 5.24 ± 0.10 | 269.67 ± 11.09 | 0.45 | 0.01 | 0.03 | 2.00 | 0.00 | 3.51 | M |
L9 | 8.08 ± 0.07 | 366.00 ± 0.00 | 13.72 ± 0.00 | 6.01 ± 0.01 | 394.33 ± 4.11 | 0.56 | 0.03 | 0.15 | 6.00 | 0.60 | 3.57 | T |
L10 | 8.32 ±0.02 | 321.33 ± 6.60 | 13.25 ± 0.01 | 5.26 ± 0.39 | 59.43 ± 3.72 | 0.27 | 0.01 | 0.06 | 2.00 | 1.30 | 3.88 | M |
L11 | 8.22 ± 0.04 | 105.00 ± 0.00 | 11.20 ±0.02 | 6.47 ± 0.33 | 26.33 ± 0.93 | 0.36 | 0.01 | 0.15 | 2.00 | 0.40 | 3.51 | T |
L12 | 8.27 ± 0.02 | 99.00 ± 0.82 | 9.87 ± 0.47 | 6.18 ± 0.20 | 9.97 ± 0.09 | 0.25 | 0.01 | 0.16 | 2.00 | 0.70 | 3.75 | T |
L13 | 8.34 ± 0.04 | 219.00 ± 0.00 | 18.76 ± 0.00 | 8.26 ± 0.08 | 137.00 ± 3.56 | 0.80 | 0.01 | 0.10 | 2.00 | 1.90 | 3.17 | M |
L14 | 8.16 ± 0.20 | 96.00 ± 0.00 | 10.01 ± 0.01 | 6.78 ± 0.11 | 5.85 ± 0.40 | 0.23 | 0.05 | 0.24 | 2.00 | 1.90 | 3.37 | T |
L15 | 8.16 ± 0.03 | 108.33 ± 0.94 | 9.83 ± 0.07 | 6.23 ± 0.06 | 6.32 ± 0.52 | 0.16 | 0.01 | 0.32 | 5.00 | 0.50 | 4.14 | T |
L16 | 8.40 ± 0.03 | 215.00 ± 0.00 | 19.35 ± 0.04 | 6.38 ± 0.09 | 118.33 ± 7.32 | 0.74 | 0.02 | 0.08 | 7.00 | 0.20 | 3.12 | M |
L17 | 8.37 ± 0.06 | 208.00 ± 0.00 | 18.38 ± 0.00 | 6.76 ± 0.13 | 154.67 ± 3.68 | 0.96 | 0.04 | 0.02 | 2.00 | 0.60 | 3.68 | M |
L18 | 8.05 ± 0.22 | 244.00 ± 5.19 | 10.83 ± 0.00 | 7.14 ± 0.08 | 37.97 ± 1.81 | 0.44 | 0.05 | 0.16 | 2.00 | 1.60 | 3.01 | T |
L19 | 8.47 ± 0.02 | 181.00 ± 0.00 | 9.66 ± 0.05 | 7.02 ± 0.12 | 9.86 ± 0.60 | 0.61 | 0.01 | 0.06 | 4.00 | 1.00 | 3.48 | T |
L20 | 8.38 ± 0.01 | 204.00 ± 0.00 | 18.25 ± 0.08 | 6.51 ± 0.04 | 113.33 ± 0.47 | 1.69 | 0.04 | 0.13 | 2.00 | 0.70 | 2.95 | M |
L21 | 8.38 ± 0.03 | 202.00 ± 0.00 | 18.21 ± 0.02 | 6.34 ± 0.18 | 118.33 ± 4.50 | 0.50 | 0.04 | 0.22 | 2.00 | 0.10 | 2.93 | M |
L22 | 8.33 ± 0.00 | 69.33 ± 0.94 | 11.41 ± 0.01 | 7.03 ± 0.02 | 10.61 ± 0.64 | 0.26 | 0.02 | 0.08 | 2.00 | 1.00 | 2.96 | T |
L23 | 8.29 ± 0.06 | 75.00 ± 0.00 | 10.63 ± 0.00 | 6.71 ± 0.08 | 8.11 ± 0.34 | 0.24 | 0.01 | 0.05 | 14.00 | 3.10 | 3.20 | T |
L24 | 8.27 ± 0.06 | 166.00 ± 0.00 | 16.68 ± 0.00 | 6.69 ± 0.05 | 93.30 ± 3.00 | 0.63 | 0.01 | 0.20 | 11.00 | 0.10 | 2.91 | M |
L25 | 8.07 ± 0.10 | 71.33 ± 0.47 | 10.42 ± 0.03 | 7.21 ± 0.10 | 1.00 ± 0.10 | 0.51 | 20.90 | 0.08 | 94.00 | 1.20 | 2.91 | T |
L26 | 8.21 ± 0.06 | 77.00 ± 0.00 | 9.73 ± 0.66 | 7.15 ± 0.06 | 1.00 ± 0.16 | 0.16 | 0.03 | 0.10 | 43.00 | 0.70 | 2.79 | T |
L27 | 8.21 ± 0.01 | 142.00 ± 0.00 | 16.71 ± 0.09 | 6.74 ± 0.04 | 75.27 ± 1.20 | 0.34 | 0.04 | 0.24 | 6.00 | 0.10 | 2.89 | M |
L28 | 8.24 ± 0.02 | 135.00 ± 0.00 | 18.54 ± 0.25 | 6.54 ± 0.21 | 78.90 ± 3.52 | 0.60 | 0.04 | 0.34 | 8.00 | 0.00 | 2.87 | M |
表2 雅鲁藏布江中游水体理化因子。EC: 电导率; WT: 水温; DO: 溶解氧; TUR: 浊度; TN: 总氮; TP: 总磷; NH4+-N: 铵态氮; COD: 化学需氧量; WS: 水流速度; ALT: 海拔; T: 支流; M: 干流。
Table 2 Physicochemical factors of water bodies in the middle reaches of the Yarlung Zangbo River. EC, Electrical conductivity; WT, Water temperature; DO, Dissolved oxygen; TUR, Turbidity; TN, Total nitrogen; TP, Total phosphorus; NH4+-N, Ammonia nitrogen; COD, Chemical oxygen demand; WS, Water flow speed; ALT, Altitude. T, Tributary; M, Mainstream.
样点 Site | pH | EC (mg/L) | WT (℃) | DO (mg/L) | TUR (NTU) | TN (mg/L) | TP (mg/L) | NH4+-N (mg/L) | COD (mg/L) | WS (m/s) | ALT (km) | 河段 Reach |
---|---|---|---|---|---|---|---|---|---|---|---|---|
L1 | 8.21 ± 0.03 | 230.67 ± 1.25 | 17.04 ± 0.11 | 5.53 ± 0.74 | 248.67 ± 17.91 | 0.74 | 0.04 | 0.02 | 20.00 | 0.00 | 3.54 | M |
L2 | 8.66 ± 0.02 | 223.67 ± 0.47 | 21.02 ± 0.00 | 5.40 ± 0.02 | 530.00 ± 56.79 | 0.35 | 0.02 | 0.11 | 13.00 | 0.40 | 3.53 | M |
L3 | 4.99 ± 0.12 | 457.67 ± 0.82 | 15.17 ± 0.06 | 5.78 ± 0.20 | 81.33 ± 2.73 | 0.57 | 0.14 | 0.14 | 98.00 | 0.70 | 3.71 | T |
L4 | 6.76 ± 0.64 | 317.00 ± 0.82 | 12.44 ± 0.22 | 5.45 ± 0.08 | 14.07 ± 0.51 | 0.45 | 12.50 | 0.11 | 5.00 | 0.60 | 4.11 | T |
L5 | 4.86 ± 0.12 | 248.00 ± 0.82 | 10.48 ± 0.06 | 4.87 ± 0.20 | 6.08 ± 1.09 | 0.89 | 0.08 | 0.28 | 4.00 | 1.10 | 4.51 | T |
L6 | 7.62 ± 0.12 | 117.00 ± 0.00 | 6.58 ± 0.02 | 6.33 ± 0.24 | 10.93 ± 0.62 | 0.22 | 0.04 | 0.21 | 12.00 | 1.70 | 4.22 | T |
L7 | 7.89 ± 0.04 | 148.67 ± 0.47 | 6.15 ± 0.04 | 6.08 ± 0.07 | 10.63 ± 0.87 | 0.24 | 0.01 | 0.06 | 2.00 | 0.40 | 4.74 | T |
L8 | 8.23 ± 0.01 | 226.67 ± 0.47 | 19.34 ± 0.04 | 5.24 ± 0.10 | 269.67 ± 11.09 | 0.45 | 0.01 | 0.03 | 2.00 | 0.00 | 3.51 | M |
L9 | 8.08 ± 0.07 | 366.00 ± 0.00 | 13.72 ± 0.00 | 6.01 ± 0.01 | 394.33 ± 4.11 | 0.56 | 0.03 | 0.15 | 6.00 | 0.60 | 3.57 | T |
L10 | 8.32 ±0.02 | 321.33 ± 6.60 | 13.25 ± 0.01 | 5.26 ± 0.39 | 59.43 ± 3.72 | 0.27 | 0.01 | 0.06 | 2.00 | 1.30 | 3.88 | M |
L11 | 8.22 ± 0.04 | 105.00 ± 0.00 | 11.20 ±0.02 | 6.47 ± 0.33 | 26.33 ± 0.93 | 0.36 | 0.01 | 0.15 | 2.00 | 0.40 | 3.51 | T |
L12 | 8.27 ± 0.02 | 99.00 ± 0.82 | 9.87 ± 0.47 | 6.18 ± 0.20 | 9.97 ± 0.09 | 0.25 | 0.01 | 0.16 | 2.00 | 0.70 | 3.75 | T |
L13 | 8.34 ± 0.04 | 219.00 ± 0.00 | 18.76 ± 0.00 | 8.26 ± 0.08 | 137.00 ± 3.56 | 0.80 | 0.01 | 0.10 | 2.00 | 1.90 | 3.17 | M |
L14 | 8.16 ± 0.20 | 96.00 ± 0.00 | 10.01 ± 0.01 | 6.78 ± 0.11 | 5.85 ± 0.40 | 0.23 | 0.05 | 0.24 | 2.00 | 1.90 | 3.37 | T |
L15 | 8.16 ± 0.03 | 108.33 ± 0.94 | 9.83 ± 0.07 | 6.23 ± 0.06 | 6.32 ± 0.52 | 0.16 | 0.01 | 0.32 | 5.00 | 0.50 | 4.14 | T |
L16 | 8.40 ± 0.03 | 215.00 ± 0.00 | 19.35 ± 0.04 | 6.38 ± 0.09 | 118.33 ± 7.32 | 0.74 | 0.02 | 0.08 | 7.00 | 0.20 | 3.12 | M |
L17 | 8.37 ± 0.06 | 208.00 ± 0.00 | 18.38 ± 0.00 | 6.76 ± 0.13 | 154.67 ± 3.68 | 0.96 | 0.04 | 0.02 | 2.00 | 0.60 | 3.68 | M |
L18 | 8.05 ± 0.22 | 244.00 ± 5.19 | 10.83 ± 0.00 | 7.14 ± 0.08 | 37.97 ± 1.81 | 0.44 | 0.05 | 0.16 | 2.00 | 1.60 | 3.01 | T |
L19 | 8.47 ± 0.02 | 181.00 ± 0.00 | 9.66 ± 0.05 | 7.02 ± 0.12 | 9.86 ± 0.60 | 0.61 | 0.01 | 0.06 | 4.00 | 1.00 | 3.48 | T |
L20 | 8.38 ± 0.01 | 204.00 ± 0.00 | 18.25 ± 0.08 | 6.51 ± 0.04 | 113.33 ± 0.47 | 1.69 | 0.04 | 0.13 | 2.00 | 0.70 | 2.95 | M |
L21 | 8.38 ± 0.03 | 202.00 ± 0.00 | 18.21 ± 0.02 | 6.34 ± 0.18 | 118.33 ± 4.50 | 0.50 | 0.04 | 0.22 | 2.00 | 0.10 | 2.93 | M |
L22 | 8.33 ± 0.00 | 69.33 ± 0.94 | 11.41 ± 0.01 | 7.03 ± 0.02 | 10.61 ± 0.64 | 0.26 | 0.02 | 0.08 | 2.00 | 1.00 | 2.96 | T |
L23 | 8.29 ± 0.06 | 75.00 ± 0.00 | 10.63 ± 0.00 | 6.71 ± 0.08 | 8.11 ± 0.34 | 0.24 | 0.01 | 0.05 | 14.00 | 3.10 | 3.20 | T |
L24 | 8.27 ± 0.06 | 166.00 ± 0.00 | 16.68 ± 0.00 | 6.69 ± 0.05 | 93.30 ± 3.00 | 0.63 | 0.01 | 0.20 | 11.00 | 0.10 | 2.91 | M |
L25 | 8.07 ± 0.10 | 71.33 ± 0.47 | 10.42 ± 0.03 | 7.21 ± 0.10 | 1.00 ± 0.10 | 0.51 | 20.90 | 0.08 | 94.00 | 1.20 | 2.91 | T |
L26 | 8.21 ± 0.06 | 77.00 ± 0.00 | 9.73 ± 0.66 | 7.15 ± 0.06 | 1.00 ± 0.16 | 0.16 | 0.03 | 0.10 | 43.00 | 0.70 | 2.79 | T |
L27 | 8.21 ± 0.01 | 142.00 ± 0.00 | 16.71 ± 0.09 | 6.74 ± 0.04 | 75.27 ± 1.20 | 0.34 | 0.04 | 0.24 | 6.00 | 0.10 | 2.89 | M |
L28 | 8.24 ± 0.02 | 135.00 ± 0.00 | 18.54 ± 0.25 | 6.54 ± 0.21 | 78.90 ± 3.52 | 0.60 | 0.04 | 0.34 | 8.00 | 0.00 | 2.87 | M |
分组 Group | 级别 Rank | 理化因子 Physicochemical factors | 相关系数 Correlation coefficient (ρ) | 显著性 Significance (P) |
---|---|---|---|---|
T | 1 | pH、WT、ALT | 0.4971 | 0.01 |
2 | pH、WT、WS、ALT | 0.4966 | 0.01 | |
3 | WT、ALT | 0.4820 | 0.01 | |
4 | pH、EC、WT、WS、ALT | 0.4760 | 0.01 | |
5 | pH、EC、WT、DO、WS、ALT | 0.4663 | 0.01 | |
M | 1 | EC | 0.7565 | 0.01 |
2 | EC、ALT | 0.7513 | 0.01 | |
3 | EC、WT、ALT | 0.7369 | 0.01 | |
4 | pH、EC、WT、ALT | 0.6818 | 0.01 | |
5 | pH、EC、WT、TUR、ALT | 0.6818 | 0.01 |
表3 理化因子与原生动物群落的BIOENV分析。EC: 电导率; WT: 水温; DO: 溶解氧; TUR: 浊度; WS: 水流速度; ALT: 海拔; T: 支流; M: 干流。
Table 3 BIOENV analysis of physicochemical factors and protozoan communities. EC, Electrical conductivity; WT, Water temperature; DO, Dissolved oxygen; TUR, Turbidity; WS, Water flow speed; ALT, Altitude; T, Tributary; M, Mainstream.
分组 Group | 级别 Rank | 理化因子 Physicochemical factors | 相关系数 Correlation coefficient (ρ) | 显著性 Significance (P) |
---|---|---|---|---|
T | 1 | pH、WT、ALT | 0.4971 | 0.01 |
2 | pH、WT、WS、ALT | 0.4966 | 0.01 | |
3 | WT、ALT | 0.4820 | 0.01 | |
4 | pH、EC、WT、WS、ALT | 0.4760 | 0.01 | |
5 | pH、EC、WT、DO、WS、ALT | 0.4663 | 0.01 | |
M | 1 | EC | 0.7565 | 0.01 |
2 | EC、ALT | 0.7513 | 0.01 | |
3 | EC、WT、ALT | 0.7369 | 0.01 | |
4 | pH、EC、WT、ALT | 0.6818 | 0.01 | |
5 | pH、EC、WT、TUR、ALT | 0.6818 | 0.01 |
[1] | Ba S, Yang XL, Huang X, Wang Y, Liu Y (2017) Community characteristic of protozoan in middle and upper reaches of the Lhasa River during spring season. Journal of Northwest Normal University (Natural Science), 53, 70-76, 83. (in Chinese with English abstract) |
[ 巴桑, 杨欣兰, 黄香, 王芸, 刘洋 (2017) 拉萨河中上游春季原生动物群落特征. 西北师范大学学报(自然科学版), 53, 70-76, 83.] | |
[2] | Bao YF (2019) The Study of Hydrochemical Characteristics and Carbon Cycles in the Yarlung Zangbo River Basin. PhD dissertation, China Institute of Water Resources and Hydropower Research, Beijing. (in Chinese with English abstract) |
[ 包宇飞 (2019) 雅鲁藏布江水文水化学特征及流域碳循环研究. 博士学位论文, 中国水利水电科学研究院, 北京.] | |
[3] |
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Caporaso JG (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome, 6, 90.
DOI |
[4] |
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology, 37, 852-857.
DOI PMID |
[5] |
Chen SB, Ouyang ZY, Xu WH, Xiao Y (2010) A review of beta diversity studies. Biodiversity Science, 18, 323-335. (in Chinese with English abstract)
DOI |
[ 陈圣宾, 欧阳志云, 徐卫华, 肖燚 (2010) Beta多样性研究进展. 生物多样性, 18, 323-335.]
DOI |
|
[6] | Chen XM, Xu KD (2014) Progress in the biodiversity of protozoa in the deep-sea environment. Marine Sciences, 38, 119-126. (in Chinese) |
[ 陈旭淼, 徐奎栋 (2014) 深海原生动物多样性研究进展. 海洋科学, 38, 119-126.] | |
[7] | Cui G, Chen J, Wang PF, Wang C, Wang X, Zhang B, Wu C (2023) Biogeographic distribution patterns and ecological mechanisms of benthic eukaryotic microorganisms in Jinsha River. Environmental Science, 44, 839-846. (in Chinese with English abstract) |
[ 崔戈, 陈娟, 王沛芳, 王超, 王洵, 张波, 吴程 (2023) 金沙江底栖真核微生物地理分布特征及生态学机制. 环境科学, 44, 839-846.] | |
[8] | Dai MX, Zhu YF, Lin X, Mao SQ (2017) Interpretation of environmental factors affecting zooplanktonic beta diversity and its components in Xiangshan Bay. Acta Ecologica Sinica, 37, 5780-5789. (in Chinese with English abstract) |
[ 戴美霞, 朱艺峰, 林霞, 毛硕乾 (2017) 象山港浮游动物β多样性及其成分变化的环境因子解释. 生态学报, 37, 5780-5789.] | |
[9] |
Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ (2012) Molecular ecological network analyses. BMC Bioinformatics, 13, 113.
DOI PMID |
[10] | Du HC, Zhu TB, Gong JL, Hu FF, Chen K, Yang DG (2022) Zooplankton community structure and relationship to environmental factors in the Tibetan reach of the Lancang River. Freshwater Fisheries, 52(4), 56-64. (in Chinese with English abstract) |
[ 杜红春, 朱挺兵, 龚进玲, 胡飞飞, 陈康, 杨德国 (2022) 澜沧江西藏段浮游动物群落结构及其与环境因子的关系. 淡水渔业, 52(4), 56-64.] | |
[11] |
Elliott JA, Jones ID, Thackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia, 559, 401-411.
DOI URL |
[12] |
Fillinger L, Hug K, Griebler C (2019) Selection imposed by local environmental conditions drives differences in microbial community composition across geographically distinct groundwater aquifers. FEMS Microbiology Ecology, 95, fiz160.
DOI URL |
[13] | Gao PF, Wang P, Ding MJ, Zhang H, Nie MH, Huang GX (2022) Biogeographic patterns and assembly mechanisms of bacterial communities in lakes, China—Statistical analysis based on the published literature. China Environmental Science, 42, 2754-2763. (in Chinese with English abstract) |
[ 高鹏飞, 王鹏, 丁明军, 张华, 聂明华, 黄高翔 (2022) 中国湖泊细菌群落的生物地理分布格局及驱动机制——基于文献数据的统计分析. 中国环境科学, 42, 2754-2763.] | |
[14] | Gao Y, Wang C, Liu QF, Peng SY, Mai YZ, Lai ZN (2019) Dominant zooplankton species and their ecological niches under different hydrologic regimes in rivers of the Pearl River Delta. Journal of Hydroecology, 40(6), 37-44. (in Chinese with English abstract) |
[ 高原, 王超, 刘乾甫, 彭松耀, 麦永湛, 赖子尼 (2019) 珠三角河网不同水文期浮游动物优势种及生态位. 水生态学杂志, 40(6), 37-44.] | |
[15] | Gong SS, Wu JW, Chai Y, Luo JB, Tan FX, Yang DG, He YF (2021) Structural characteristics and seasonal changes in zooplankton community in Changhu Lake. Fisheries Science, 40, 329-338. (in Chinese with English abstract) |
[ 龚森森, 吴嘉伟, 柴毅, 罗静波, 谭凤霞, 杨德国, 何勇凤 (2021) 长湖浮游动物群落结构特征及其季节变化. 水产科学, 40, 329-338.] | |
[16] | Gong YC, Feng WS, Yu YH, Dai LL (2012) Characteristics of zooplankton community structure in Niyang River basin of Tibet. Journal of Hydroecology, 33(6), 35-43. (in Chinese with English abstract) |
[ 龚迎春, 冯伟松, 余育和, 代梨梨 (2012) 西藏尼洋河流域浮游动物群落结构研究. 水生态学杂志, 33(6), 35-43.] | |
[17] |
Gu XY, Ma YM, Ma WQ, Sun FL (2018) Climatic characteristics of surface radiation flux over the Qinghai-Tibetan Plateau. Plateau Meteorology, 37, 1458-1469. (in Chinese with English abstract)
DOI |
[ 谷星月, 马耀明, 马伟强, 孙方林 (2018) 青藏高原地表辐射通量的气候特征分析. 高原气象, 37, 1458-1469.]
DOI |
|
[18] | Guan ZH, Chen CY (1984) Rivers and Lakes in Tibet. Science Press, Beijing. (in Chinese) |
[ 关志华, 陈传友 (1984) 西藏河流与湖泊. 科学出版社, 北京.] | |
[19] |
Harrison S, Ross SJ, Lawton JH (1992) Beta-diversity on geographic gradients in Britain. Journal of Animal Ecology, 61, 151-158.
DOI URL |
[20] | Hu XY, Xu HY, Xie SG, Yu HY, Zhou SL, Du B (2017) Study on community structure of zooplankton and water quality health condition in Puyang River basin. Environmental Pollution & Control, 39, 549-554. (in Chinese with English abstract) |
[ 胡笑妍, 徐杭英, 谢曙光, 于海燕, 周胜利, 杜波 (2017) 浦阳江流域浮游动物群落结构及其评价水质健康状况的研究. 环境污染与防治, 39, 549-554.] | |
[21] | Ji SC, Li Y, Zhao W, Chen HX, Xie ZG, Zhang JW, Wei J, Cai ZL (2018) Study on the community structure of zooplankton in Biliuhe Reservoir and basin. Journal of Biology, 35, 68-73. (in Chinese with English abstract) |
[ 季世琛, 李媛, 赵文, 陈慧黠, 谢在刚, 张家卫, 魏杰, 蔡志龙 (2018) 碧流河水库及其流域河流浮游动物的群落结构研究. 生物学杂志, 35, 68-73.] | |
[22] |
Jiang CQ, Liu B, Zhang J, Gu SY, Liu ZC, Wang XY, Chen K, Xiong J, Lu YS, Miao W (2021) Diversity and seasonality dynamics of ciliate communities in four estuaries of Shenzhen, China (South China Sea). Journal of Marine Science and Engineering, 9, 260.
DOI URL |
[23] |
Jiang ZG (2018) Exploring the distribution patterns and conservation approaches of biodiversity on the Qinghai Tibetan Plateau. Biodiversity Science, 26, 107-110. (in Chinese)
DOI URL |
[ 蒋志刚 (2018) 探索青藏高原生物多样性分布格局与保育途径. 生物多样性, 26, 107-110.]
DOI |
|
[24] |
Kolmakov VI, Anishchenko OV, Ivanova EA, Gladyshev MI, Sushchik NN (2008) Estimation of periphytic microalgae gross primary production with DCMU-fluorescence method in Yenisei River (Siberia, Russia). Journal of Applied Phycology, 20, 289-297.
DOI URL |
[25] | Lane DJ (1991) 16S/23S sequencing. In: Nucleic Acid Technologies in Bacterial Systematic (eds Stackebrant E, Goodfellow M), pp.115-175. Wiley, New York. |
[26] |
Legendre P, Borcard D, Peres-Neto PR (2005) Analyzing beta diversity: Partitioning the spatial variation of community composition data. Ecological Monographs, 75, 435-450.
DOI URL |
[27] |
Lennon JJ, Koleff P, Greenwood JJD, Gaston KJ (2001) The geographical structure of British bird distributions: Diversity, spatial turnover and scale. Journal of Animal Ecology, 70, 966-979.
DOI URL |
[28] |
Leprieur F, Oikonomou A (2014) The need for richness-independent measures of turnover when delineating biogeographical regions. Journal of Biogeography, 41, 417-420.
DOI URL |
[29] |
Li FC, Kang XJ, Yang WB, Guan YQ, Zhang XH, Liu WW, Shen GM, Li JL, Wang HW (2006) Protozoan community character in relation to trophic level in the Beijing section of the Juma River. Biodiversity Science, 14, 327-332. (in Chinese with English abstract)
DOI |
[ 李凤超, 康现江, 杨文波, 管越强, 张晓慧, 刘炜炜, 沈公铭, 李继龙, 王宏伟 (2006) 拒马河北京段原生动物群落特征及其对河流营养状况的指示. 生物多样性, 14, 327-332.]
DOI |
|
[30] | Li HJ, Zhang N, Lin XT (2010) Spatio-temporal characteristics of Yarlung Zangbo River in Tibet. Journal of Henan Normal University (Natural Science Edition), 38, 126-130. (in Chinese with English abstract) |
[ 李红敬, 张娜, 林小涛 (2010) 西藏雅鲁藏布江水质时空特征分析. 河南师范大学学报(自然科学版), 38, 126-130.] | |
[31] |
Li MJ, Wu KY, Meng FF, Shen J, Liu YQ, Xiao NW, Wang JJ (2020) Beta diversity of stream bacteria in Hengduan Mountains: The effects of climatic and environmental variables. Biodiversity Science, 28, 1570-1580. (in Chinese with English abstract)
DOI URL |
[ 李明家, 吴凯媛, 孟凡凡, 沈吉, 刘勇勤, 肖能文, 王建军 (2020) 西藏横断山区溪流细菌beta多样性组分对气候和水体环境的响应. 生物多样性, 28, 1570-1580.] | |
[32] |
Li R, Hu C, Wang JN, Sun J, Wang Y, Jiao NZ, Xu DP (2021) Biogeographical distribution and community assembly of active protistan assemblages along an estuary to a basin transect of the northern South China Sea. Microorganisms, 9, 351.
DOI URL |
[33] |
Li ZF, Jiang XM, Wang J, Meng XL, Zhang JQ, Xie ZC (2022) Species diversity and driving factors of benthic macroinvertebrate assemblages in the middle and lower reaches of the Yarlung Zangbo River. Biodiversity Science, 30, 21431. (in Chinese with English abstract)
DOI |
[ 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才 (2022) 雅鲁藏布江中下游底栖动物物种多样性及其影响因素. 生物多样性, 30, 21431.]
DOI |
|
[34] | Liu G, Meng YF, Wu D, Bai HF, Guo GL, Wang HL, Yin XW, Bao L, Qiao Z (2018) Characteristics of zooplankton community structure and water quality assessment in Keluke Lake in the Qinghai-Tibetan Plateau. Journal of Dalian Ocean University, 33, 379-386. (in Chinese with English abstract) |
[ 刘钢, 孟云飞, 吴丹, 白海锋, 郭赣林, 王海雷, 殷旭旺, 包琳, 乔壮 (2018) 青藏高原可鲁克湖浮游动物群落结构特征及水质评价. 大连海洋大学学报, 33, 379-386.] | |
[35] | Liu JJ, Zhao YS, Huang X, Guo HC (2018) Spatiotemporal variations of hydrochemistry and its controlling factors in the Yarlung Tsangpo River. China Environmental Science, 38, 4289-4297. (in Chinese with English abstract) |
[ 刘佳驹, 赵雨顺, 黄香, 郭怀成 (2018) 雅鲁藏布江流域水化学时空变化及其控制因素. 中国环境科学, 38, 4289-4297.] | |
[36] |
Logares R, Deutschmann IM, Junger PC, Giner CR, Krabberød AK, Schmidt TSB, Rubinat-Ripoll L, Mestre M, Salazar G, Ruiz-González C, Sebastián M, de Vargas C, Acinas SG, Duarte CM, Gasol JM, Massana R (2020) Disentangling the mechanisms shaping the surface ocean microbiota. Microbiome, 8, 55.
DOI PMID |
[37] |
Lu LH, Zou X, Yang JX, Xiao Y, Wang YC, Guo JS, Li Z (2020) Biogeography of eukaryotic plankton communities along the upper Yangtze River: The potential impact of cascade dams and reservoirs. Journal of Hydrology, 590, 125495.
DOI URL |
[38] | Ma BS, Yang XF, Xie CX, Huo B, Ding HP (2015) Resource status and seasonal variation of plankton in the Xaitongmoin reach of the Yarlung zangbo river. Journal of Hydroecology, 36(6), 19-28. (in Chinese with English abstract) |
[ 马宝珊, 杨学峰, 谢从新, 霍斌, 丁慧萍 (2015) 雅鲁藏布江谢通门江段浮游生物资源现状及其季节动态. 水生态学杂志, 36(6), 19-28.] | |
[39] | Ma TX, Yang WG, Zhu LD, Zhang HL, Zhong Y, Xie L, Mai YJ, Luo L, Cao ZC (2022) Geomorphic parameters and their tectonic geomorphic significance in the middle reaches of Yarlung Zangbo River, China. Journal of Chengdu University of Technology (Science & Technology Edition), 49, 502-512. (in Chinese with English abstract) |
[ 马腾霄, 杨文光, 朱利东, 张洪亮, 钟摇, 解龙, 麦源君, 罗璐, 曹志超 (2022) 雅鲁藏布江中游地貌参数特征及其构造地貌意义. 成都理工大学学报(自然科学版), 49, 502-512.] | |
[40] |
Matthews TJ, Aspin TWH, Ulrich W, Baselga A, Kubota Y, Proios K, Triantis KA, Whittaker RJ, Strona G (2019) Can additive beta diversity be reliably partitioned into nestedness and turnover components? Global Ecology and Biogeography, 28, 1146-1154.
DOI |
[41] |
Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene, 71, 491-499.
DOI PMID |
[42] | Min WW, Huang FJ, Wang W (2021) Community structure of zooplankton in Chishui River in autumn and its relationship with environmental factors. Journal of Anhui Agricultural Sciences, 49(11), 75-79. (in Chinese with English abstract) |
[ 闵文武, 黄福江, 王伟 (2021) 赤水河秋季浮游动物群落结构及其与环境因子关系. 安徽农业科学, 49(11), 75-79.] | |
[43] | Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, 41, 590-596. |
[44] |
Selbmann L, Egidi E, Isola D, Onofri S, Zucconi L, de Hoog GS, Chinaglia S, Testa L, Tosi S, Balestrazzi A, Lantieri A, Compagno R, Tigini V, Varese GC (2013) Biodiversity, evolution and adaptation of fungi in extreme environments. Plant Biosystems, 147, 237-246.
DOI URL |
[45] | Shen YF (1999) Protozoology. Science Press, Beijing. (in Chinese) |
[ 沈韫芬 (1999) 原生动物学. 科学出版社, 北京.] | |
[46] |
Shu WS, Huang LN (2022) Microbial diversity in extreme environments. Nature Reviews Microbiology, 20, 219-235.
DOI |
[47] |
Si XF, Zhao YH, Chen CW, Ren P, Zeng D, Wu LB, Ding P (2017) Beta-diversity partitioning: Methods, applications and perspective. Biodiversity Science, 25, 464-480. (in Chinese with English abstract)
DOI URL |
[ 斯幸峰, 赵郁豪, 陈传武, 任鹏, 曾頔, 吴玲兵, 丁平 (2017) Beta多样性分解: 方法、应用与展望. 生物多样性, 25, 464-480.]
DOI |
|
[48] | State Environmental Protection Administration, Editorial Board of Water and Wastewater Monitoring and Analysis Methods (2002) Water and Wastewater Monitoring and Analysis Methods (Fourth Edition). China Environmental Science Press, Beijing. (in Chinese) |
[国家环境保护总局, 水和废水监测分析方法编委会 (2002) 水和废水监测分析方法 (第四版). 中国环境科学出版社, 北京.] | |
[49] | Sun SH, Chen J, Wang PF, Wang C, Wang X, Miao LZ, Liu S, Yuan QS (2020) Biogeographic distribution patterns of Diatoms in Lancang River and their key drivers. Environmental Science, 41, 5458-5469. (in Chinese with English abstract) |
[ 孙胜浩, 陈娟, 王沛芳, 王超, 王洵, 苗令占, 刘胜, 袁秋生 (2020) 澜沧江硅藻的地理分布模式与关键驱动因素. 环境科学, 41, 5458-5469. | |
[50] | Wang L, Cong YT, Lu YN, Wei J, Wang Y (2018) Benthic algal communities of Taizi River and its main tributaries in relation to environmental variables. Journal of Aquaculture, 39(7), 6-10. (in Chinese with English abstract) |
[ 王丽, 丛玉婷, 卢亚楠, 魏杰, 王媛 (2018) 太子河流域及其主要支流底栖藻类群落与环境因子的关系. 水产养殖, 39(7), 6-10.] | |
[51] | Wang R, Yao ZJ, Liu ZF, Wu SS, Jiang LG, Wang L (2015) Changes in climate and runoff in the middle course area of the Yarlung Zangbo River Basin. Resources Science, 37, 619-628. (in Chinese with English abstract) |
[ 王蕊, 姚治君, 刘兆飞, 吴珊珊, 姜丽光, 汪磊 (2015) 雅鲁藏布江中游地区气候要素变化及径流的响应. 资源科学, 37, 619-628.] | |
[52] | Wang WG (2018) Analysis of the beta diversity of snails in the lakes of mid-lower reaches of the Yangtze River. Ecological Science, 37, 122-130. (in Chinese with English abstract) |
[ 王魏根 (2018) 长江中下游湖泊螺类beta多样性分析. 生态科学, 37, 122-130.] | |
[53] |
Wang XG, Wiegand T, Wolf A, Howe R, Davies SJ, Hao ZQ (2011) Spatial patterns of tree species richness in two temperate forests. Journal of Ecology, 99, 1382-1393.
DOI URL |
[54] | Wen AB, Liu SZ, Fan JR, Zhu PY (2002) Current change on sedimentation and control its method in middle Yalungtsangpo River. Journal of Soil and Water Conservation, 16, 148-150. (in Chinese with English abstract) |
[ 文安邦, 刘淑珍, 范建容, 朱平一 (2002) 雅鲁藏布江中游地区河流泥沙近期变化及防治对策. 水土保持学报, 16, 148-150.] | |
[55] |
Wu L, Li YL, Chen YS (2015) Characteristics of community structures of zooplankton in the mainstream of Huaihe River. Journal of Lake Sciences, 27, 932-940. (in Chinese with English abstract)
DOI URL |
[ 吴利, 李源玲, 陈延松 (2015) 淮河干流浮游动物群落结构特征. 湖泊科学, 27, 932-940.] | |
[56] |
Wu WX, Logares R, Huang BQ, Hsieh CH (2017) Abundant and rare picoeukaryotic sub-communities present contras- ting patterns in the epipelagic waters of marginal seas in the northwestern Pacific Ocean. Environmental Microbiology, 19, 287-300.
DOI URL |
[57] | Xiao BC, Sun LY, Feng DX, Yu N, Chen LQ (2012) Meta-zooplankton community structure and its relationship with environmental factors in Wenruitang River. Journal of Hydroecology, 33(4), 14-20. (in Chinese with English abstract) |
[ 肖佰财, 孙陆宇, 冯德祥, 禹娜, 陈立侨 (2012) 温瑞塘河后生浮游动物群落结构及其与环境因子的关系. 水生态学杂志, 33(4), 14-20.] | |
[58] |
Xu H, Chen J, Zhu GW, Qin BQ, Zhang YL (2019) Effect of concentrations of phosphorus and nitrogen on the dominance of cyanobacteria. Journal of Lake Sciences, 31, 1239-1247. (in Chinese with English abstract)
DOI URL |
[ 许海, 陈洁, 朱广伟, 秦伯强, 张运林 (2019) 水体氮、磷营养盐水平对蓝藻优势形成的影响. 湖泊科学, 31, 1239-1247.] | |
[59] | Xu MQ, Kasprzar P (2001) Preliminary study of community diversity of Stechlin Lake in Berlin, Germany. Journal of Lake Science, 13, 322-330. (in Chinese with English abstract) |
[ 许木启, Kasprzar P (2001) 德国柏林市Stechlin湖原生动物群落多样性特征的初步研究. 湖泊科学, 13, 322-330.] | |
[60] | Xu MQ, Zhai JJ, Shao YY (1998) Water quality in Beijing Tonghui River, using PFU protozoan communities as indicators. Chinese Journal of Zoology, 33(4), 1-7. (in Chinese with English abstract) |
[ 许木启, 翟家骥, 邵永怡 (1998) 利用PFU原生动物群落多样性快速监测北京通惠河水质. 动物学杂志, 33(4), 1-7.] | |
[61] |
Xu R, Zhang MM, Lin HZ, Gao P, Yang ZH, Wang DB, Sun XX, Li BQ, Wang Q, Sun WM (2021) Response of soil protozoa to acid mine drainage in a contaminated terrace. Journal of Hazardous Materials, 421, 126790.
DOI URL |
[62] | Yang M, Bi YH, Ai Y, Hu JL, Zhu KX, Hu ZY (2012) A preliminary study on effect of artificial controlled flow velocity on phytoplankton in Xiangxi Bay. Resources and Environment in the Yangtze Basin, 21, 220-224. (in Chinese with English abstract) |
[ 杨敏, 毕永红, 艾鹰, 胡建林, 朱孔贤, 胡征宇 (2012) 人工控制条件下水流速对香溪河库湾浮游植物影响的初步研究. 长江流域资源与环境, 21, 220-224.] | |
[63] | Yang W, Deng DG, Meng XL, Liu ZG, Jin XW, Ding JH, Ge Q (2011) The community structure of crustacean zooplankton in the lower reaches and its tributary of the Ganjiang River. Ecological Science, 30, 547-552. (in Chinese with English abstract) |
[ 杨威, 邓道贵, 孟小丽, 刘足根, 金显文, 丁建华, 葛茜 (2011) 赣江下游及其支流浮游甲壳动物的群落结构. 生态科学, 30, 547-552.] | |
[64] | Yang XL, Ba S, Huang X (2019) Spatial and temporal variation in ciliate communities and relationships with environmental conditions in the middle and upper reaches of the Lhasa River. Acta Ecologica Sinica, 39, 3121-3132. (in Chinese with English abstract) |
[ 杨欣兰, 巴桑, 黄香 (2019) 拉萨河中上游夏秋季纤毛虫群落时空变动及其与环境的关系. 生态学报, 39, 3121-3132.] | |
[65] |
Zhang BG, Zhang J, Liu Y, Shi P, Wei GH (2018) Co-occurrence patterns of soybean rhizosphere microbiome at a continental scale. Soil Biology and Biochemistry, 118, 178-186.
DOI URL |
[66] | Zhang JT, Mi XC, Cao K (2022) Research progress of beta-diversity measurement methods. Journal of Shanxi University (Natural Science), 45, 826-843. (in Chinese with English abstract) |
[ 张金屯, 米湘成, 曹科 (2022) Beta多样性度量方法研究进展. 山西大学学报(自然科学版), 45, 826-843.] | |
[67] | Zhang M, Chen WD, Mao CQ, Liu C, Shao XY (2017) The community structure of protozoa and the evaluation of water quality in Taihu Lake basin in Zhejiang Province. Journal of Hangzhou Normal University (Natural Science Edition), 16(1), 69-74. (in Chinese with English abstract) |
[ 张敏, 陈玮东, 茆传奇, 刘忱, 邵晓阳 (2017) 浙江省太湖流域原生动物四季群落结构及水质评价. 杭州师范大学学报(自然科学版), 16(1), 69-74.] | |
[68] | Zhang P, Liu Y, An RZ, Qiao NQ, Da Z, Ba S (2022) Spatio-temporal niche of dominant protozoa species in the midstream and downstream of Lhasa River, Tibet, China. Scientia Silvae Sinicae, 2022, 58(1), 78-88. (in Chinese with English abstract) |
[ 张鹏, 刘洋, 安瑞志, 乔楠茜, 达珍, 巴桑 (2022) 西藏拉萨河中下游原生动物优势种时空生态位. 林业科学, 58(1), 78-88.] | |
[69] |
Zheng YY, Niu JG, Zhou Q, Xie CX, Ke ZX, Li DP, Gao YW (2018) Effects of resource availability and hydrological regime on autochthonous and allochthonous carbon in the food web of a large cross-border river (China). Science of the Total Environment, 612, 501-512.
DOI URL |
[70] | Zhou JZ, Deng Y, Luo F, He ZL, Tu QC, Zhi XY (2010) Functional molecular ecological networks. mBio, 1, e00169-10. |
[71] | Zhou LB, Chen FZ (2015) Effects of sediment resuspention on predation of planktivorous fish on zooplankton. Journal of Lake Science, 27, 911-916. (in Chinese with English abstract) |
[ 周礼斌, 陈非洲 (2015) 沉积物再悬浮对食浮游动物鱼类捕食浮游动物的影响. 湖泊科学, 27, 911-916.] | |
[72] |
Zhu XY, Huang W, Zeng JN, Jiang ZB, Liu JJ, Xu XQ, Chen QZ (2013) Effects of nitrogen and phosphorus ratios on phytoplankton community structure in winter. Chinese Journal of Applied and Environmental Biology, 19, 293-299. (in Chinese with English abstract)
DOI URL |
[ 朱旭宇, 黄伟, 曾江宁, 江志兵, 刘晶晶, 徐晓群, 陈全震 (2013) 氮磷比对冬季浮游植物群落结构的影响. 应用与环境生物学报, 19, 293-299.] |
[1] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[2] | 杨胜娴, 杨清, 李晓东, 巢欣, 刘惠秋, 魏蓝若雪, 巴桑. 确定性过程主导高原典型河流浮游植物地理分布格局和群落构建[J]. 生物多样性, 2023, 31(7): 23092-. |
[3] | 李正飞, 蒋小明, 王军, 孟星亮, 张君倩, 谢志才. 雅鲁藏布江中下游底栖动物物种多样性及其影响因素[J]. 生物多样性, 2022, 30(6): 21431-. |
[4] | 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629. |
[5] | 李玲娟, 熊勤犁, 潘开文, 张林. 土壤原生动物对川滇高山栎恢复时间的响应及生长季动态[J]. 生物多样性, 2015, 23(6): 793-801. |
[6] | 李凤超, 康现江, 杨文波, 管越强, 张晓慧, 刘炜炜, 沈公铭, 李继龙, 王宏伟. 拒马河北京段原生动物群落特征及其对河流营养状况的指示[J]. 生物多样性, 2006, 14(4): 327-332. |
[7] | 顾福康, 孙军, 何远, 田沁. 纤毛类原生动物中宿主-共生体系统的研究[J]. 生物多样性, 2001, 09(1): 38-43. |
[8] | 张锡元, 孙翀, 晏婷婷, 吴海, 郑翌, 李晓迎, 缪炜, 余育和, 沈韫芬. 螅状独缩虫(Cachesium polypinum)遗传多样性的 RAPD 分析[J]. 生物多样性, 2000, 08(3): 257-261. |
[9] | 沈韫芬. 中国淡水原生动物多样性及其所受威胁[J]. 生物多样性, 1998, 06(2): 81-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn