生物多样性 ›› 2023, Vol. 31 ›› Issue (8): 23146. DOI: 10.17520/biods.2023146
吴春玲1, 罗竹慧1, 李意德2, 许涵2, 陈德祥2, 丁琼1,*()
收稿日期:
2023-05-08
接受日期:
2023-06-30
出版日期:
2023-08-20
发布日期:
2023-07-10
通讯作者:
*E-mail: dingqiong@hainu.edu.cn
基金资助:
Chunling Wu1, Zhuhui Luo1, Yide Li2, Han Xu2, Dexiang Chen2, Qiong Ding1,*()
Received:
2023-05-08
Accepted:
2023-06-30
Online:
2023-08-20
Published:
2023-07-10
Contact:
*E-mail: dingqiong@hainu.edu.cn
摘要:
揭示热带木本豆科与樟科植物的叶内生细菌群落的物种与代谢功能群组成差异及其驱动因子有助于理解热带森林的植物适应性和生物多样性维持机制。本研究采用Illumina Miseq测序平台检测海南尖峰岭热带山地雨林中豆科与樟科植物叶内生细菌, 并采用FAPROTAX微生物地球化学循环代谢功能数据库注解内生细菌功能。从豆科植物的长脐红豆(Ormosia balansae)、软荚红豆(O. semicastrata)与樟科植物的厚壳桂(Cryptocarya chinensis)、硬壳桂(C. chingii)共4种植物检测到叶内生细菌可操作分类单元(operational taxonomic units, OTUs)达1,123个, 隶属于21门36纲51目92科160属, 其中有600个OTUs被鉴定为变形菌门, 72个OTUs为酸杆菌门, 分别占总细菌序列数的57.17%和15.12%; 噬纤维菌目的薄层菌属(Hymenobacter)及根瘤菌目的甲基杆菌属(Methylobacterium)的细菌物种最丰富, 分别达37和27个OTUs。叶内生细菌物种组成在豆科与樟科植物之间存在显著差异(ANOSIM: R = 0.5792, P = 0.004)。基于群落非参数性检验的环境向量拟合分析(environmental vector fitting, Envfit)结果表明, 对叶内生细菌群落物种组成影响最大的是叶全钾含量(leaf potassium content, LKC)与比叶面积(specific leaf area, SLA)。有明确分类信息且功能已注释的叶内生细菌OTUs占总OTU数的54.63%, 涉及28类代谢功能群, 其中固氮功能群、好氧化能异养功能群、纤维素分解功能群、甲醇氧化功能群、甲烷氧化功能群、尿素分解功能群等6类功能群的相对多度在非豆科的厚壳桂属(Cryptocarya)显著高于豆科的红豆属(Ormosia)植物。非度量多维尺度分析(non-metric multidimensional scaling, NMDS)结果表明, 细菌代谢功能群主要受SLA和叶全磷含量(leaf phosphorus content, LPC)影响。尖峰岭热带山地雨林非豆科植物叶内生细菌群落中相对多度较高的碳、氮代谢功能群可能是其对低有效养分的土壤环境的适应性机制之一。
吴春玲, 罗竹慧, 李意德, 许涵, 陈德祥, 丁琼 (2023) 热带山地雨林木本豆科和樟科植物叶内生细菌群落: 物种与功能群多样性及驱动因子. 生物多样性, 31, 23146. DOI: 10.17520/biods.2023146.
Chunling Wu, Zhuhui Luo, Yide Li, Han Xu, Dexiang Chen, Qiong Ding (2023) Foliar endophytic bacterial communities of woody Fabaceae and Lauraceae plants in tropical mountain rainforests: Understanding species and functional diversity and their driving factors. Biodiversity Science, 31, 23146. DOI: 10.17520/biods.2023146.
图1 4种豆科与樟科植物叶内生细菌多样性比较。A: 各门内生细菌物种数(左柱)与序列数百分比(右柱); B: 叶内生细菌物种数; C: Shannon-Wiener指数)。
Fig. 1 A comparison of foliar endophytic bacteria diversity among the 4 species of Fabaceae and Lauraceae. A, Percent species richness (left column) and sequence reads (right column) at phylum level; B, Species richness; C, Shannon-Wiener’s index.
图2 4种豆科与樟科植物叶内生细菌群落物种组成的PCoA分析及ANOSIM检验
Fig. 2 Principal coordinate analysis (PCoA) and analysis of similarity (ANOSIM) of foliar endophytic bacterial community of four Fabaceae and Lauraceae plants
图3 樟科与豆科植物叶内生细菌功能群组成的热图(A)及主要功能的相对多度(B)
Fig. 3 Heatmap of functional group profiles (A) and key functional groups (B) of foliar endophytic bacteria in the Lauraceae and Fabaceae plant species
图4 宿主植物叶性状与叶内生细菌群落物种(A)及功能群(B)组成的相关性。SLA: 比叶面积; FW: 鲜重; DW: 干重; LDMC: 叶干物质含量; LWC: 叶含水量; LA: 叶面积; LKC: 叶全钾含量; LNC: 叶全氮含量; LPC: 叶全磷含量; LCaC: 叶全钙含量。
Fig. 4 Correlation between host plant leaf traits and foliar endophytic bacterial community species (A) and functional group (B) compositions. SLA, Specific leaf area; FW, Fresh weight; DW, Dry weight; LDMC, Leaf dry matter content; LWC, Leaf water content; LA, Leaf area; LKC, Leaf potassium content; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; LCaC, Leaf calcium content.
[1] |
Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B (2021) Diversity and abundance of culturable nitrogen-fixing bacteria in the phyllosphere of maize. Journal of Applied Microbiology, 131, 898-912.
DOI PMID |
[2] | Bao SD (2000) Soil and Agricultural Chemistry Analysis, 3nd edn. China Agricultural Press, Beijing. (in Chinese) |
[ 鲍士旦 (2000) 土壤农化分析(第三版). 中国农业出版社, 北京.] | |
[3] |
Bao ZH, Okubo T, Kubota K, Kasahara Y, Tsurumaru H, Anda M, Ikeda S, Minamisawa K (2014) Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Applied and Environmental Microbiology, 80, 5043-5052.
DOI PMID |
[4] | Barman D, Dkhar MS (2019) Plant growth-promoting potential of endophytic bacteria isolated from Costus speciosus in tropical deciduous forest of eastern Himalaya. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 89, 841-852. |
[5] |
Batterman SA, Hedin LO, van Breugel M, Ransijn J, Craven DJ, Hall JS (2013) Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature, 502, 224-227.
DOI |
[6] | Bērtiņš M, Klūga A, Dubova L, Petrēvics P, Alsiņa I, Vīksna A (2021) Study of rhizobia impact on nutritional element concentration in legumes. Proceedings of the Latvian Academy of Sciences Section B Natural, Exact, and Applied Sciences, 75, 457-462. |
[7] |
Cornelissen J, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden M (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[8] |
Cunha HFV, Andersen KM, Lugli LF, Santana FD, Aleixo IF, Moraes AM, Garcia S, Di Ponzio R, Mendoza EO, Brum B, Rosa JS, Cordeiro AL, Portela BTT, Ribeiro G, Coelho SD, de Souza ST, Silva LS, Antonieto F, Pires M, Salomão AC, Miron AC, de Assis RL, Domingues TF, Aragão LEOC, Meir P, Camargo JL, Manzi AO, Nagy L, Mercado LM, Hartley IP, Quesada CA (2022) Direct evidence for phosphorus limitation on Amazon forest productivity. Nature, 608, 558-562.
DOI |
[9] | Deng FL, Xu H, Chen J, Lin MX, Li YD (2022) Effects of leguminous trees on neighboring tree species in the tropical mountainous rainforest of Jianfengling. Forest Research, 35(3), 1-8. (in Chinese with English abstract) |
[ 邓方立, 许涵, 陈洁, 林明献, 李意德 (2022) 尖峰岭热带山地雨林豆科树木对邻体树种的影响. 林业科学研究, 35(3), 1-8.] | |
[10] | Ding T, Ulrich M, Lorenzo B (2016) Influences of plant species, season and location on leaf endophytic bacterial communities of non-cultivated plants. PLoS ONE, 11, e0150895. |
[11] |
Donald J, Roy M, Suescun U, Iribar A, Manzi S, Péllissier L, Gaucher P, Chave J, Singh B (2020) A test of community assembly rules using foliar endophytes from a tropical forest canopy. Journal of Ecology, 108, 1605-1616.
DOI URL |
[12] |
Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. Journal of Basic Microbiology, 52, 248-260.
DOI PMID |
[13] | Epihov DZ, Saltonstall K, Batterman SA, Hedin LO, Hall JS, van Breugel M, Leake JR, Beerling DJ (2021) Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proceedings of the National Academy of Sciences, USA, 118, e2022241118. |
[14] |
Fang JY, Li YD, Zhu B, Liu GH, Zhou GY (2004) Community structure, species diversity, and position in the global rainforest of Jianfengling mountainous rainforest on Hainan Island in China. Biodiversity Science, 12, 29-43. (in Chinese with English abstract)
DOI URL |
[ 方精云, 李意德, 朱彪, 刘国华, 周光益 (2004) 海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位. 生物多样性, 12, 29-43.]
DOI |
|
[15] |
Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. The ISME Journal, 2, 561-570.
DOI |
[16] |
Holland-Moritz H, Stuart JEM, Lewis LR, Miller SN, Mack MC, Ponciano JM, McDaniel SF, Fierer N (2021) The bacterial communities of Alaskan mosses and their contributions to N-fixation. Microbiome, 9, 53.
DOI PMID |
[17] |
Hong CE, Jo SH, Moon JY, Lee JS, Kwon SY, Park JM (2015) Isolation of novel leaf-inhabiting endophytic bacteria in Arabidopsis thaliana and their antagonistic effects on phytophathogens. Plant Biotechnology Reports, 9, 451-458.
DOI URL |
[18] |
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330.
DOI |
[19] | Huang CW, Liao YH, Ding Q (2017) Two sample pooling strategies revealed different root-associated fungal diversity of Rhododendron species. Acta Microbiologica Sinica, 57, 571-518. (in Chinese with English abstract) |
[ 黄彩微, 廖映辉, 丁琼 (2017) 两种混合样品策略对揭示杜鹃花根部真菌多样性的影响. 微生物学报, 57, 571-581.] | |
[20] |
Ikeda S, Sasaki K, Okubo T, Yamashita A, Terasawa K, Bao ZH, Liu DY, Watanabe T, Murase J, Asakawa S, Eda SM, Mitsui H, Sato T, Minamisawa K (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes and Environments, 29, 50-59.
PMID |
[21] |
Jung SW, Kang JS, Park JS, Joo HM, Suh SS, Kang D, Lee TK, Kim HJ (2021) Dynamic bacterial community response to Akashiwo sanguinea (Dinophyceae) bloom in indoor marine microcosms. Scientific Reports, 11, 6983.
DOI |
[22] |
Kandasamy GD, Kathirvel P (2023) Insights into bacterial endophytic diversity and isolation with a focus on their potential applications—A review. Microbiological Research, 266, 127256.
DOI URL |
[23] | Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proceedings of the National Academy of Sciences, USA, 111, 13715-13720. |
[24] |
Kim M, Singh D, Lai-Hoe A, Go R, Rahim RA, Ainuddin AN, Chun J, Adams JM (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microbial Ecology, 63, 674-681.
DOI PMID |
[25] |
Li S, Wu CB, Liu H, Lyu XC, Xiao FS, Zhao SH, Ma CM, Yan C, Liu ZL, Li HY, Wang XL, Gong ZP (2023) Systemic regulation of nodule structure and assimilated carbon distribution by nitrate in soybean. Frontiers in Plant Science, 14, 1101074.
DOI URL |
[26] |
Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science, 353, 1272-1277.
DOI PMID |
[27] | Lu RK (2000) Methods of Soil Agricultural Chemical Analysis. China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[ 鲁如坤 (2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
[28] |
Luo D, Cheng RM, Shi ZM, Wang WX, Xu GX, Liu SR (2016) Impacts of nitrogen-fixing and non-nitrogen-fixing tree species on soil respiration and microbial community composition during forest management in subtropical China. Ecological Research, 31, 683-693.
DOI URL |
[29] |
Moreira JCF, Brum M, de Almeida LC, Barrera-Berdugo S, de Souza AA, de Camargo PB, Oliveira RS, Alves LF, Rosado BHP, Lambais MR (2021) Asymbiotic nitrogen fixation in the phyllosphere of the Amazon forest: Changing nitrogen cycle paradigms. Science of the Total Environment, 773, 145066.
DOI URL |
[30] |
Nurbolat S, Lv GH, Jiang LM, Zhang L (2022) Convergent variation in the leaf traits of desert plants in the Ebinur Lake basin. Frontiers in Environmental Science, 10, 927572.
DOI URL |
[31] |
Rivett DW, Bell T (2018) Abundance determines the functional role of bacterial phylotypes in complex communities. Nature Microbiology, 3, 767-772.
DOI PMID |
[32] | Shi LL, Luo TS, Xu H, Lin MX, Yang H, Chen DX, Li YD (2012) The fine scale spatial heterogeneity of soil physical properties in a primary tropical montane rainforest of Jianfengling, Hainan Island, China. Forest Research, 25, 285-293. (in Chinese with English abstract) |
[ 时雷雷, 骆土寿, 许涵, 林明献, 杨怀, 陈德祥, 李意德 (2012) 尖峰岭热带山地雨林土壤物理性质小尺度空间异质性研究. 林业科学研究, 25, 285-293.] | |
[33] | Sinclair L, Osman OA, Bertilsson S, Eiler A (2015) Microbial community composition and diversity via 16S rRNA gene amplicons: Evaluating the Illumina platform. PLoS ONE, 10, e0116955. |
[34] |
Sprent JI, Ardley J, James EK (2017) Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytologist, 215, 40-56.
DOI PMID |
[35] |
Sun F, Song CJ, Wang M, Lai DYF, Tariq A, Zeng FJ, Zhong QP, Wang FM, Li ZA, Peng CL (2020) Long-term increase in rainfall decreases soil organic phosphorus decomposition in tropical forests. Soil Biology and Biochemistry, 151, 108056.
DOI URL |
[36] | Tang X, Liu SR, Xu H, Zhang YG (2019) Estimation of soil microbial species in the 60-hm2 dynamic monitoring plot of tropical mountain rainforest in Jianfengling, Hainan Island. Scientia Silvae Sinicae, 55(12), 84-92. (in Chinese with English abstract) |
[ 唐欣, 刘世荣, 许涵, 张于光 (2019) 海南尖峰岭热带山地雨林60 hm2动态监测样地土壤微生物物种估算. 林业科学, 55(12), 84-92.] | |
[37] |
Trivedi P, Leach JE, Tringe SG, Sa TM, Singh BK (2020) Plant-microbiome interactions: From community assembly to plant health. Nature Reviews Microbiology, 18, 607-621.
DOI |
[38] |
Wei YQ, Lan GY, Wu ZX, Chen BQ, Quan F, Li MM, Sun SQ, Du HN (2022) Phyllosphere fungal communities of rubber trees exhibited biogeographical patterns, but not bacteria. Environmental Microbiology, 24, 3777-3790.
DOI PMID |
[39] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[40] |
Xu H, Detto M, Fang S, Chazdon RL, Li Y, Hau BCH, Fischer GA, Weiblen GD, Hogan JA, Zimmerman JK, Uriarte M, Thompson J, Lian J, Cao K, Kenfack D, Alonso A, Bissiengou P, Memiaghe HR, Valencia R, Yap SL, Davies SJ, Mi X, Yao TL (2020) Soil nitrogen concentration mediates the relationship between leguminous trees and neighbor diversity in tropical forests. Communications Biology, 3, 317.
DOI PMID |
[41] |
Xu H, Li YD, Lin MX, Wu JH, Luo TS, Zhou Z, Chen DX, Yang H, Li GJ, Liu SR (2015) Community structure and characteristics of the 60 ha dynamic monitoring plot of tropical mountain rainforest in Jianfengling, Hainan Island. Biodiversity Science, 23, 192-201. (in Chinese with English abstract)
DOI URL |
[ 许涵, 李意德, 林明献, 吴建辉, 骆土寿, 周璋, 陈德祥, 杨怀, 李广建, 刘世荣 (2015) 海南尖峰岭热带山地雨林60 ha动态监测样地群落结构特征. 生物多样性, 23, 192-201.]
DOI |
|
[42] |
Xu NH, Zhao QQ, Zhang ZY, Zhang Q, Wang Y, Qin GY, Ke MJ, Qiu DY, Peijnenburg WJGM, Lu T, Qian HF (2022) Phyllosphere microorganisms: Sources, drivers, and their interactions with plant hosts. Journal of Agricultural and Food Chemistry, 70, 4860-4870.
DOI PMID |
[43] |
Yoneyama T, Terakado-Tonooka J, Bao Z, Minamisawa K (2019) Molecular analyses of the distribution and function of diazotrophic rhizobia and methanotrophs in the tissues and rhizosphere of non-leguminous plants. Plants, 8, 408.
DOI URL |
[44] | Zhu YG, Peng JJ, Chen C, Xiong C, Li SL, Ge AH, Wang ET Liesack W, (2023) Harnessing biological nitrogen fixation in plant leaves. Trends in Plant Science, doi: 10.1016/j.tplants.2023.05.009. |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 王腾, 李纯厚, 王广华, 赵金发, 石娟, 谢宏宇, 刘永, 刘玉. 西沙群岛七连屿珊瑚礁鱼类的物种组成与演替[J]. 生物多样性, 2024, 32(6): 23481-. |
[5] | 宋芬, 周芸芸, 黄太福, 杨存存, 于桂清, 田书荣, 向左甫. 基于红外相机技术的林麝行为PAE编码与多样性[J]. 生物多样性, 2024, 32(6): 24042-. |
[6] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[7] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[8] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[9] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[10] | 姚祝, 魏雪, 马金豪, 任晓, 王玉英, 胡雷, 吴鹏飞. 气候暖湿化对高寒草甸土壤线虫群落的短期影响[J]. 生物多样性, 2024, 32(5): 23483-. |
[11] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[12] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[13] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[14] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[15] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn