生物多样性 ›› 2023, Vol. 31 ›› Issue (9): 23131. DOI: 10.17520/biods.2023131
段晓敏1,3, 李佳佳1, 李靖宇1,2,3,*(), 李艳楠1, 袁存霞1, 王英娜1, 刘建利1,2,3
收稿日期:
2023-04-26
接受日期:
2023-08-08
出版日期:
2023-09-20
发布日期:
2023-08-29
通讯作者:
*E-mail: lijingyu1986@126.com
基金资助:
Xiaomin Duan1,3, Jiajia Li1, Jingyu Li1,2,3,*(), Yannan Li1, Cunxia Yuan1, Yingna Wang1, Jianli Liu1,2,3
Received:
2023-04-26
Accepted:
2023-08-08
Online:
2023-09-20
Published:
2023-08-29
Contact:
*E-mail: lijingyu1986@126.com
摘要:
藓结皮作为干旱半干旱地区生物土壤结皮发育演替的稳定阶段, 参与了荒漠生态系统的物质循环和能量流动, 为微生物多样性的维持提供了微生境。了解藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性对认识藓结皮的生态过程具有重要意义。本研究采用Illumina MiSeq技术对藓结皮植物-土壤连续体以及结皮下层不同粒径土壤微生物多样性和群落结构进行了分析。测序结果得到10,730个细菌变异序列(ASVs)和3,035个真菌ASVs。藓结皮附着土细菌群落α多样性指数低于结皮下层, 而藓结皮附着土真菌群落α多样性指数显著高于结皮下层和结皮抖落土。藓结皮层常见的细菌门有放线菌门、变形菌门、绿弯菌门、酸杆菌门、蓝细菌门、拟杆菌门, 结皮下层土壤常见的细菌门有放线菌门、变形菌门、绿弯菌门、酸杆菌门, 藓结皮附着土细菌群落变形菌门和拟杆菌门相对多度高于不同粒径藓结皮抖落土及藓结皮下层土。藓结皮层和藓结皮下层常见的真菌门有子囊菌门和担子菌门。藓结皮附着土与不同粒径抖落土在细菌群落微枝形杆菌属(Microvirga)、红色杆菌属(Rubrobacter)、苔藓杆菌属(Bryobacter)、土壤红杆菌属(Solirubrobacter)、地嗜皮菌属(Geodermatophilus)、鞘氨醇单胞菌属(Sphingomonas)、芽生球菌属(Blastococcus)、诺卡氏菌属(Nocardioides)、Rubellimicrobium、贫养杆菌属(Modestobacter)相对多度存在显著差异, 藓结皮附着土与不同粒径抖落土在真菌群落曲霉属(Aspergillus)、Knufia、Darksidea、粉褶蕈属(Entoloma)、Monosporascus、Bhatiellae、亚隔孢壳属(Didymella)、链格孢属(Alternaria)、Cladosporium、镰刀菌属(Fusarium)相对多度上存在显著差异。藓结皮附着土细菌和真菌共现性网络比不同粒径藓结皮抖落土和藓结皮下层土细菌和真菌共现性网络更复杂且连通性更好。这些研究结果有助于在微环境尺度探究生物土壤结皮参与荒漠生态系统生物地球化学循环的微生物多样性的变化规律。
段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利 (2023) 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性. 生物多样性, 31, 23131. DOI: 10.17520/biods.2023131.
Xiaomin Duan, Jiajia Li, Jingyu Li, Yannan Li, Cunxia Yuan, Yingna Wang, Jianli Liu (2023) Microbial community diversity among different soil particle sizes of mossy biocrusts-soil continuum in the southeastern Tengger Desert. Biodiversity Science, 31, 23131. DOI: 10.17520/biods.2023131.
图1 藓结皮层及下层不同粒径土壤处理示意图。BS0.5: 粒径大于0.5 mm且小于1 mm的藓结皮下层土; BS0.2: 粒径大于0.2 mm且小于0.5 mm的藓结皮下层土; BS: 粒径小于0.2 mm的藓结皮下层土; BSS0.2: 粒径大于0.2 mm且小于1 mm的藓结皮层抖落土; BSS: 粒径小于0.2 mm的藓结皮层抖落土; BAS: 粒径小于0.3 mm的藓结皮层附着土。
Fig. 1 Schematic diagram of soil treatment with different particle sizes of mossy biocrusts and biocrust sublayer. BS0.5, The soil of mossy crust sublayer with particle size greater than 0.5 mm and less than 1 mm; BS0.2, The soil of mossy crust sublayer with particle size greater than 0.2 mm and less than 0.5 mm; BS, The soil of mossy biocrust sublayer with particle size less than 0.2 mm; BSS0.2, The sifting soil of mossy biocrust layer with particle size greater than 0.2 mm and less than 1 mm; BSS, The sifting soil of mossy biocrust layer with particle size less than 0.2 mm; BAS, The adhesion soil of mossy biocrust layer with particle size less than 0.3 mm.
样品 Sample | 硝态氮 Nitrate nitrogen (mg/kg) | 铵态氮 Ammonium nitrogen (mg/kg) | 全氮 Total nitrogen (g/kg) | 有机碳 Organic carbon (g/kg) | 全磷 Total phosphorus (g/kg) |
---|---|---|---|---|---|
藓结皮下层土 Mossy biocrust sublayer soil (BS) | 2.462 ± 2.569b | 0.762 ± 0.016b | 0.076 ± 0.000c | 2.066 ± 0.231c | 0.140 ± 0.000b |
藓结皮抖落土 Mossy biocrust sifting soil (BSS) | 2.756 ± 3.001b | 0.732 ± 0.007b | 0.158 ± 0.000b | 3.834 ± 0.116b | 0.178 ± 0.000a |
藓结皮附着土 Mossy biocrust adhesion soil (BAS) | 4.981 ± 0.929a | 1.162 ± 0.038a | 0.240 ± 0.000a | 7.398 ± 0.196a | 0.190 ± 0.000a |
表1 研究样地土壤理化性质
Table 1 Physicochemical properties of soil in this study
样品 Sample | 硝态氮 Nitrate nitrogen (mg/kg) | 铵态氮 Ammonium nitrogen (mg/kg) | 全氮 Total nitrogen (g/kg) | 有机碳 Organic carbon (g/kg) | 全磷 Total phosphorus (g/kg) |
---|---|---|---|---|---|
藓结皮下层土 Mossy biocrust sublayer soil (BS) | 2.462 ± 2.569b | 0.762 ± 0.016b | 0.076 ± 0.000c | 2.066 ± 0.231c | 0.140 ± 0.000b |
藓结皮抖落土 Mossy biocrust sifting soil (BSS) | 2.756 ± 3.001b | 0.732 ± 0.007b | 0.158 ± 0.000b | 3.834 ± 0.116b | 0.178 ± 0.000a |
藓结皮附着土 Mossy biocrust adhesion soil (BAS) | 4.981 ± 0.929a | 1.162 ± 0.038a | 0.240 ± 0.000a | 7.398 ± 0.196a | 0.190 ± 0.000a |
图2 藓结皮不同粒径土壤微生物α多样性指数。细菌群落α指数: (a) Sobs指数; (b) Chao 1指数; (c) Shannon指数; (d) Simpson指数。真菌群落α指数: (e) Sobs指数。(f) Chao 1指数。(g) Shannon指数。(h) Simpson指数。BS0.5、BS0.2、BS、BSS0.2、BSS、BAS的含义见图1。不同小写字母表示土壤微生物多样性在藓结皮不同土壤粒径上的差异显著(P < 0.05)。
Fig. 2 α diversity of soil microbial communities on different particle sizes of mossy biocrusts. α diversity of bacterial communities: (a) Sobs index; (b) Chao 1 index; (c) Shannon index; (d) Simpson index. α diversity of fungal communities: (e) Sobs index; (f) Chao 1 index; (g) Shannon index; (h) Simpson index. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1. Different lowercase letters indicate significant differences (P < 0.05) in soil microbial diversity across soil particle sizes of mossy biocrusts.
图3 藓结皮不同粒径土壤细菌和真菌群落结构组成。(a)细菌门水平群落结构组成; (b)真菌门水平群落结构组成; (c)细菌属水平群落结构组成; (d)真菌属水平群落结构组成。BS0.5、BS0.2、BS、BSS0.2、BSS、BAS的含义见图1。
Fig. 3 The community structure of soil bacteria and fungi on different particle sizes of mossy biocrusts. (a) The community structure of bacterial phyla; (b) The community structure of fungal phyla; (c) The community structure of bacterial genera; (d) The community structure of fungal genera. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
图4 藓结皮不同粒径土壤细菌和真菌群落Venn图和PCoA分析。(a)细菌Venn图; (b)真菌Venn图; (c)细菌PCoA图; (d)真菌PCoA图。BS0.5、BS0.2、BS、BSS0.2、BSS、BAS的含义见图1。
Fig. 4 Venn diagram and principal coordinate analysis (PCoA) of soil bacterial and fungal communities in mossy biocrusts with different particle sizes. (a) Bacterial Venn diagram; (b) Fungal Venn diagram; (c) Bacterial PCoA analysis; (d) Fungal PCoA analysis. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
图5 藓结皮不同粒径土壤重要细菌与真菌基于属水平的相对多度差异。(a)细菌; (b)真菌。BS0.5、BS0.2、BS、BSS0.2、BSS、BAS的含义见图1。P < 0.01表示有显著差异。
Fig. 5 Differences in the relative abundance of important soil bacteria and fungi based on genus level in mossy biocrusts with different particle sizes. (a) Bacteria; (b) Fungi. The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1. P < 0.01 indicates significant difference.
图6 藓结皮层与结皮下层微生物基于属水平相对多度差异。(a)细菌; (b)真菌。B: 结皮层(BSS0.2、BSS、BAS); BS: 结皮下层(BS0.5、BS0.2、BS); P < 0.01表示有显著差异。
Fig. 6 Relative abundance differences between mossy biocrusts and biocrust sublayer’s microbial communities based on genus level. (a) Bacteria; (b) Fungi. B, Biocrust layer (BSS0.2, BSS and BAS); BS, Biocrust sublayer (BS0.5, BS0.2 and BS); P < 0.01 indicates significant difference.
属性 Property | BS0.5 | BS0.2 | BS | BSS0.2 | BSS | BAS | |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 边 Edge | 1,511 | 787 | 915 | 816 | 1,104 | 1,564 |
节点 Note | 194 | 162 | 170 | 158 | 182 | 196 | |
平均聚类数 Average clustering coefficient | 0.609 | 0.546 | 0.538 | 0.576 | 0.551 | 0.547 | |
密度 Density | 0.081 | 0.06 | 0.064 | 0.066 | 0.067 | 0.082 | |
平均路径长度 Average path length | 3.681 | 3.936 | 3.765 | 3.833 | 3.657 | 3.574 | |
平均度 Average degree | 15.77 | 9.716 | 10.765 | 10.329 | 12.132 | 15.959 | |
真菌 Fungi | 边 Edge | 64 | 46 | 72 | 110 | 249 | 397 |
节点 Note | 38 | 37 | 46 | 64 | 90 | 94 | |
平均聚类数 Average clustering coefficient | 0.721 | 0.548 | 0.608 | 0.561 | 0.522 | 0.565 | |
密度 Density | 0.091 | 0.069 | 0.608 | 0.055 | 0.062 | 0.091 | |
平均路径长度 Average path length | 2.217 | 4.133 | 3.826 | 5.430 | 4.448 | 3.970 | |
平均度 Average degree | 3.368 | 2.486 | 3.13 | 3.438 | 5.533 | 8.447 |
表2 藓结皮不同粒径土壤微生物共线网络参数表
Table 2 Parameters of soil microbial network for different particle sizes of mossy biocrusts
属性 Property | BS0.5 | BS0.2 | BS | BSS0.2 | BSS | BAS | |
---|---|---|---|---|---|---|---|
细菌 Bacteria | 边 Edge | 1,511 | 787 | 915 | 816 | 1,104 | 1,564 |
节点 Note | 194 | 162 | 170 | 158 | 182 | 196 | |
平均聚类数 Average clustering coefficient | 0.609 | 0.546 | 0.538 | 0.576 | 0.551 | 0.547 | |
密度 Density | 0.081 | 0.06 | 0.064 | 0.066 | 0.067 | 0.082 | |
平均路径长度 Average path length | 3.681 | 3.936 | 3.765 | 3.833 | 3.657 | 3.574 | |
平均度 Average degree | 15.77 | 9.716 | 10.765 | 10.329 | 12.132 | 15.959 | |
真菌 Fungi | 边 Edge | 64 | 46 | 72 | 110 | 249 | 397 |
节点 Note | 38 | 37 | 46 | 64 | 90 | 94 | |
平均聚类数 Average clustering coefficient | 0.721 | 0.548 | 0.608 | 0.561 | 0.522 | 0.565 | |
密度 Density | 0.091 | 0.069 | 0.608 | 0.055 | 0.062 | 0.091 | |
平均路径长度 Average path length | 2.217 | 4.133 | 3.826 | 5.430 | 4.448 | 3.970 | |
平均度 Average degree | 3.368 | 2.486 | 3.13 | 3.438 | 5.533 | 8.447 |
图7 藓结皮不同粒径土壤微生物的共现网络。红色的边表示正相关, 绿色的边表示负相关; BS0.5、BS0.2、BS、BSS0.2、BSS、BAS的含义见图1。
Fig. 7 Soil microbial co-occurrence network with different particle sizes in mossy biocrusts. The red edges represent positive correlation, the green edges represent negative correlation; The meanings of BS0.5, BS0.2, BS, BSS0.2, BSS and BAS are shown in Fig. 1.
[1] |
Bello A, Han Y, Zhu HF, Deng LT, Yang W, Meng QX, Sun Y, Egbeagu UU, Sheng SY, Wu XT, Jiang X, Xu XH (2020) Microbial community composition, co-occurrence network pattern and nitrogen transformation genera response to biochar addition in cattle manure-maize straw composting. Science of the Total Environment, 721, 137759.
DOI URL |
[2] |
Bowker MA, Maestre FT, Escolar C (2010) Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biology and Biochemistry, 42, 405-417.
DOI URL |
[3] |
Cheng C, Li YJ, Long MZ, Gao M, Zhang YD, Lin JY, Li XN (2020) Moss biocrusts buffer the negative effects of karst rocky desertification on soil properties and soil microbial richness. Plant and Soil, 475, 153-168.
DOI |
[4] |
Dun YQ, Qu JJ, Kang WY, Wang T (2021) Progress and prospect of research on the protective system of Shapotou section of the Baotou-Lanzhou Railway. Journal of Desert Research, 41, 66-74. (in Chinese with English abstract)
DOI |
[顿耀权, 屈建军, 康文岩, 王涛 (2021) 包兰铁路沙坡头段防护体系研究综述. 中国沙漠, 41, 66-74.]
DOI |
|
[5] | Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences, USA, 112, 911-920. |
[6] |
Ehrlich R, Schulz S, Schloter M, Steinberger Y (2015) Effect of slope orientation on microbial community composition in different particle size fractions from soils obtained from desert ecosystems. Biology and Fertility of Soils, 51, 507-510.
DOI URL |
[7] |
Fan KK, Cardona C, Li YT, Shi Y, Xiang XJ, Shen CC, Wang HF, Gilbert JA, Chu HY (2017) Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biology and Biochemistry, 113, 275-284.
DOI URL |
[8] |
Finzi AC, Austin AT, Cleland EE, Frey SD, Houlton BZ, Wallenstein MD (2011) Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Frontiers in Ecology and the Environment, 9, 61-67.
DOI URL |
[9] | Gao GL, Ding GD, Zhao YY, Feng W, Bao YF, Liu ZW (2014) Effect of biological soil crusts on soil particle size characteristics in Mu Us sand land. Transactions of the Chinese Society of Agricultural Machinery, 45, 115-120. (in Chinese with English abstract) |
[高广磊, 丁国栋, 赵媛媛, 冯薇, 包岩峰, 刘紫葳 (2014) 生物结皮发育对毛乌素沙地土壤粒度特征的影响. 农业机械学报, 45, 115-120.] | |
[10] |
Han S, Delgado-Baquerizo M, Luo XS, Liu YR, Van Nostrand JD, Chen WL, Zhou JZ, Huang QY (2021) Soil aggregate size-dependent relationships between microbial functional diversity and multifunctionality. Soil Biology and Biochemistry, 154, 108143.
DOI URL |
[11] |
Hemkemeyer M, Christensen BT, Martens R, Tebbe CC (2015) Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biology and Biochemistry, 90, 255-265.
DOI URL |
[12] | Jiao S, Peng ZH, Qi JJ, Gao JM, Wei GH (2021) Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. mSystems, 6, e01052-20. |
[13] |
Jin XY, Zhang XC, Jin D, Chen Y, Li JY (2020) Diversity and seasonal dynamics of bacteria among different biological soil crusts in the southeast Tengger Desert. Biodiversity Science, 28, 718-726. (in Chinese with English abstract)
DOI |
[靳新影, 张肖冲, 金多, 陈韵, 李靖宇 (2020) 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 28, 718-726.]
DOI |
|
[14] |
Lan SB, Wu L, Zhang DL, Hu CX (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environmental Earth Sciences, 65, 77-88.
DOI URL |
[15] | Li JY, Zhang X (2017) Microbial diversity analysis of different biological soil in Tengger Desert. Ecological Science, 36, 36-42. (in Chinese with English abstract) |
[李靖宇, 张琇 (2017) 腾格里沙漠不同生物土壤结皮微生物多样性分析. 生态科学, 36, 36-42.] | |
[16] |
Li XR, Jia RL, Zhang ZS, Zhang P, Hui R (2018) Hydrological response of biological soil crusts to global warming: A ten-year simulative study. Global Change Biology, 24, 4960-4971.
DOI URL |
[17] | Li XR, Zhang YM, Zhao YG (2009) A study of biological soil crusts: Recent development, trend and prospect. Advances in Earth Science, 24, 11-24. (in Chinese with English abstract) |
[李新荣, 张元明, 赵允格 (2009) 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.]
DOI |
|
[18] |
Ling N, Wang TT, Kuzyakov Y (2022) Rhizosphere bacteriome structure and functions. Nature Communications, 13, 836.
DOI PMID |
[19] |
Liu Z, Ye XW, Wang JP, Cheng YT, Qian L, Xiao JS, Wu L (2022) Seasonal dynamics of the physicochemical properties of biological crusts exopolysaccharides and the microbial community structure. Chinese Journal of Applied Ecology, 33, 1801-1809. (in Chinese with English abstract)
DOI |
[刘哲, 叶兴旺, 王吉平, 程永韬, 钱隆, 肖敬尚, 吴丽 (2022) 生物结皮胞外多糖理化特性及菌群结构的季节动态. 应用生态学报, 33, 1801-1809.]
DOI |
|
[20] |
Luan HA, Zhang XM, Liu YR, Huang SH, Chen J, Guo TF, Liu Y, Guo SP, Qi GH (2022) The microbial-driven C dynamics within soil aggregates in walnut orchards of different ages based on microbial biomarkers analysis. Catena, 211, 105999.
DOI URL |
[21] | Pang JW, Bu CF, Guo Q, Ju MC, Jiang M, Mo QX, Wang HM (2022) Spatial distribution and the influencing factor of organic carbon of biological crusts on regional scale in Mu Us sandy land. Chinese Journal of Applied Ecology, 33, 1755-1763. (in Chinese with English abstract) |
[庞景文, 卜崇峰, 郭琦, 鞠孟辰, 江熳, 莫秋霞, 王鹤鸣 (2022) 毛乌素沙地区域尺度生物结皮有机碳空间分布特征及其影响因素. 应用生态学报, 33, 1755-1763.]
DOI |
|
[22] |
Rabbi SMF, Wilson BR, Lockwood PV, Daniel H, Young IM (2015) Aggregate hierarchy and carbon mineralization in two oxisols of New South Wales, Australia. Soil and Tillage Research, 146, 193-203.
DOI URL |
[23] |
Ren C, Liu KS, Dou PP, Li JH, Wang K (2022) The changes in soil microorganisms and soil chemical properties affect the heterogeneity and stability of soil aggregates before and after grassland conversion. Agriculture, 12, 307.
DOI URL |
[24] |
Seaton FM, George PBL, Lebron I, Jones DL, Creer S, Robinson DA (2020) Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biology and Biochemistry, 144, 107766.
DOI URL |
[25] |
She WW, Chen N, Zhang YQ, Qin SG, Bai YX, Feng W, Lai ZR, Qiao YG, Liu L, Zhang WJ, Miao C (2022) Precipitation and nitrogen deposition alter biocrust-vascular plant coexistence in a desert ecosystem: Threshold and mechanisms. Journal of Ecology, 110, 772-783.
DOI URL |
[26] | Shen XL, Wang LL, Zhao JN, Li G, Xiu WM, Yang QC, Zhang GL (2021) Effects of tillage managements on soil microbial community structure in soil aggregates of fluvo-aquic soil. Chinese Journal of Applied Ecology, 32, 2713-2721. (in Chinese with English abstract) |
[沈晓琳, 王丽丽, 赵建宁, 李刚, 修伟明, 杨其琛, 张贵龙 (2021) 耕作方式对潮土土壤团聚体微生物群落结构的影响. 应用生态学报, 32, 2713-2721.]
DOI |
|
[27] |
Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 79, 7-31.
DOI URL |
[28] |
Srivastava P, Singh R, Bhadouria R, Tripathi S, Raghubanshi AS (2020) Temporal change in soil physicochemical, microbial, aggregate and available C characteristic in dry tropical ecosystem. Catena, 190, 104553.
DOI URL |
[29] | Tang K, Gao XD, Jia LJ, Xu HX, Li H, Meng JY, Tao Y, Feng FY (2018) Community structure and diversity of diazotrophs in biological soil crusts and soil underneath crust of Hunshandake deserts. Microbiology China, 45, 293-301. (in Chinese with English abstract) |
[唐凯, 高晓丹, 贾丽娟, 徐慧欣, 李蘅, 孟建宇, 陶羽, 冯福应 (2018) 浑善达克沙地生物土壤结皮及其下层土壤中固氮细菌群落结构和多样性. 微生物学通报, 45, 293-301.] | |
[30] |
Wu LK, Lin XM, Lin WX (2014) Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310. (in Chinese with English abstract)
DOI |
[吴林坤, 林向民, 林文雄 (2014) 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI |
|
[31] | Wu N, Zhang YM, Pan HX, Qiu D (2014) Characterization of the diversity of culturable bacteria in moss crusts of the Gurbantunggut Desert. Arid Land Geography, 37, 250-258. (in Chinese with English abstract) |
[吴楠, 张元明, 潘惠霞, 邱东 (2014) 古尔班通古特沙漠苔藓结皮中可培养细菌多样性特征. 干旱区地理, 37, 250-258.] | |
[32] | Xie T, Li YF, Li XJ (2021) Organic carbon mineralization of biological soil crusts and subsoils in the revegetated areas of the southeast fringe of the Tengger Desert. Acta Ecologica Sinica, 41, 2339-2348. (in Chinese with English abstract) |
[谢婷, 李云飞, 李小军 (2021) 腾格里沙漠东南缘固沙植被区生物土壤结皮及下层土壤有机碳矿化特征. 生态学报, 41, 2339-2348.] | |
[33] |
Xie ZM, Liu YD, Hu CX, Chen LZ, Li DH (2007) Relationships between the biomass of algal crusts in fields and their compressive strength. Soil Biology and Biochemistry, 39, 567-572.
DOI URL |
[34] | Yan DR, Zhang SN, Wu ZT (2019) Characteristics of humus composition in crusts of bryophytes. Arid Land Geography, 42, 1354-1358. (in Chinese with English abstract) |
[闫德仁, 张胜男, 吴振廷 (2019) 苔藓生物结皮层腐殖质组成变化特征研究. 干旱区地理, 42, 1354-1358.] | |
[35] |
Ye F, Wang XX, Wang Y, Wu SJ, Wu JP, Hong YG (2021) Different pioneer plant species have similar rhizosphere microbial communities. Plant and Soil, 464, 165-181.
DOI |
[36] |
Yuan MM, Guo X, Wu LW, Zhang Y, Xiao NJ, Ning DL, Shi Z, Zhou XS, Wu LY, Yang YF, Tiedje JM, Zhou JZ (2021) Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
DOI |
[37] | Zhang JH, Wang JY, Meng ZX, He J, Dong ZH, Liu KQ, Chen WQ (2022) Soil microbial richness predicts ecosystem multifunctionality through co-occurrence network complexity in alpine meadow. Acta Ecologica Sinica, 42, 2542-2558. (in Chinese with English abstract) |
[张君红, 王健宇, 孟泽昕, 何佳, 董政宏, 刘凯茜, 陈文青 (2022) 土壤微生物多样性通过共现网络复杂性表征高寒草甸生态系统多功能性. 生态学报, 42, 2542-2558.] | |
[38] |
Zhang KP, Adams JM, Shi Y, Yang T, Sun RB, He D, Ni YY, Chu HY (2017) Environment and geographic distance differ in relative importance for determining fungal community of rhizosphere and bulk soil. Environmental Microbiology, 19, 3649-3659.
DOI PMID |
[39] | Zhang YM, Cao T, Pan BR (2002) A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. (in Chinese with English abstract) |
[张元明, 曹同, 潘伯荣 (2002) 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[40] | Zhao YL, Zhang XJ, Jin YD, Feng FY (2011) Characterization of fungi community structure in biological crusts from Mu Us Desert. Journal of Inner Mongolia Agricultural University (Natural Science Edition), 32, 170-174. (in Chinese with English abstract) |
[赵宇龙, 张晓军, 金一荻, 冯福应 (2011) 毛乌素沙漠生物土壤结皮真菌群落多样性分析. 内蒙古农业大学学报(自然科学版), 32, 170-174.] | |
[41] |
Zheng JL, Li SS, Peng CR, Li DH (2017) The influence of desiccation on the recovery process of nitrogenase activity in restored biological soil crusts. Science China: Life Sciences, 60, 1283-1285.
DOI URL |
[42] | Zhou H, Liu YX (2022) Effects of crusts on physicochemical properties of shallow soil in alpine sandy area. Journal of Arid Land Resources and Environment, 36, 154-160. (in Chinese with English abstract) |
[周虹, 刘雲祥 (2022) 高寒沙区土壤结皮对浅层土壤理化性质的影响. 干旱区资源与环境, 36, 154-160.] |
[1] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn