Biodiversity Science ›› 2020, Vol. 28 ›› Issue (2): 166-175.doi: 10.17520/biods.2019319

• Original Papers • Previous Article     Next Article

Path analysis of zooplankton diversity and environmental factors in the water sources rivers, Zhejiang Province

Gongguo Li1, *(), Ping Li1, Hangying Xu2, Haiyan Yu2, Jian Yu2   

  1. 1 College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100
    2 Zhejiang Environment Monitoring Center, Hangzhou, Zhejiang 310007
  • Received:2019-10-13 Accepted:2020-01-18 Online:2020-03-08
  • Gongguo Li E-mail:ligongguo@zwu.edu.cn

In order to understand zooplankton diversity and their relationship with water environmental factors, we monitored zooplankton abundance as a measure of water quality. Forty samples were collected at two sampling stations (H1 and H2) of water sources rivers, Zhejiang Province in the winter (January), spring (April), summer (July) and autumn (October), annually from 2010 to 2014. We also measured environmental variables at the stations. The average abundance of zooplankton in stations H1 and H2 were 1,387.4 ind./L and 873 ind./L, respectively. The abundance of small zooplankton (rotifer + copepod nauplii) accounted for 92.8% of the abundance at station H1 and 91.5% at station H2. Dominant species of Rotifera, Cladocera and Copepoda in the two sampling stations were Polyarthra trigla, Diaphanosoma brachyurum and Thermocyclops sp., respectively. Multivariate stepwise regression and path analysis showed that N∶P was the limiting factor for Shannon-Wiener diversity index (H') of rotifers in winter and had indirect effects (+) on the rotifers mainly through TP. N∶P was also the deciding factor for H' of rotifers in spring and could have greater indirect effects (+) on rotifers in autumn through TN. The content of NH4 +-N and TN were the deciding and limiting factors, respectively, for size diversity index (Hs) of crustaceans in winter. DO was a limiting factor for species richness of total zooplankton (d) in summer, having a large indirect effect (+) mainly through pH. We believe this to be due to significant increases in H' of rotifers with the rising DO (P < 0.01), while the Hs index of crustacean declined significantly (P < 0.05). The relationship between water environmental factors and zooplankton diversity in water source rivers provides the possibility for ecological monitoring of water sources.

Key words: rivers, Rotifera, crustacean, diversity index, path analysis, water sources

Fig. 1

Distribution of plankton sampling stations in the water sources rivers, Zhejiang"

Table 1

Environmental factors, species and abundance of zooplankton in water sources rivers of Zhejiang from 2010 to 2014 (mean ± SD)"

月份
Month
采样站
Station
pH 溶解氧
Dissolved oxygen
(mg/L)
总氮 Total
nitrogen
(mg/L)
总磷 Total
phosphorus
(mg/L)
氨氮
NH4+-N
(mg/L)
氮磷比
N∶P
藻类密度
Algal density
(× 104 ind./L)
种类数
No. of
species
丰度
Abundance
(ind./L)
1 H1 7.43 ± 0.11 4.92 ± 1.62b 6.29 ± 1.13a 0.235 ± 0.084b 2.35 ± 0.81a 30.0 ± 11.5a 21.2 ± 20.6b 19.4 ± 3.4 684 ± 548ab
H2 7.50 ± 0.23 6.66 ± 2.47a 4.57 ± 1.78abc 0.280 ± 0.157b 1.94 ± 1.19ab 17.9 ± 4.7bc 54.9 ± 70.1ab 14.0 ± 4.8 293 ± 533b
4 H1 7.41 ± 0.23 4.06 ± 1.38b 5.50 ± 1.43ab 0.262 ± 0.097b 2.44 ± 0.98a 25.1 ± 14.4ab 66.6 ± 60.8ab 15.4 ± 2.7 1,693 ± 1,192ab
H2 7.50 ± 0.16 6.58 ± 0.70a 5.33 ± 1.38ab 0.276 ± 0.119b 1.19 ± 0.88bc 22.0 ± 8.8ab 115.1 ± 126.2a 16.2 ± 3.3 942 ± 846ab
7 H1 7.33 ± 0.11 2.84 ± 1.69b 3.96 ± 1.48bc 0.449 ± 0.088a 1.88 ± 0.97ab 8.8 ± 2.4c 44.0 ± 67.9ab 22.0 ± 5.1 2,419 ± 2,681a
H2 7.46 ± 0.19 6.96 ± 2.61a 3.84 ± 1.57bc 0.433 ± 0.084a 0.66 ± 0.47c 9.0 ± 3.2c 32.8 ± 21.3b 21.0 ± 7.7 1,762 ± 2,132ab
10 H1 7.30 ± 0.13 3.45 ± 1.15b 3.39 ± 1.59c 0.201 ± 0.047b 0.96 ± 0.61bc 16.3 ± 4.8bc 26.9 ± 23.0b 22.8 ± 6.6 508 ± 395b
H2 7.44 ± 0.21 6.18 ± 1.53a 2.97 ± 1.52c 0.170 ± 0.066b 0.26 ± 0.13c 18.6 ± 9.9bc 37.9 ± 19.6ab 13.6 ± 4.0 407 ± 421b

Fig. 2

Measured data of environmental factors in the water sources rivers of Zhejiang from 2010 to 2014"

Fig. 3

Species richness of zooplankton, Shannon-Wiener diversity index of rotifers and size diversity index of crustaceans in the water sources rivers of Zhejiang from 2010 to 2014"

Table 2

Multiple stepwise regression equations between diversity indices (d, H′, Hs) of zooplankton and water environmental factors in the rivers"

季节
Season
项目
Items
样本数
n
多元回归方程
Multiple regression equation
重要因子 Important factor R P
决策因子
Deciding factor
限制因子
Limiting factor
冬季
Winter
d 10 -
H 10 H′ = 4.67 + 0.71TN - 13.45TP - 0.13N∶P NH4+-N (0.532) N∶P (-4.569) 0.903 0.0130
Hs 10 Hs = 1.89 - 0.21TN + 0.38NH4+-N + 0.04N∶P -0.01PD TN (-1.342) 0.987 0.0005
春季
Spring
d 10 -
H 10 H′ = 1.75 + 0.26TN - 0.13NH4+-N - 0.02N∶P N∶P (0.388) 0.868 0.0295
Hs 10 -
夏季
Summer
d 10 d = -57.11 + 8.70pH - 0.38DO - 4.39TP - 0.01PD DO (-1.351) 0.898 0.0493
H 10 H′ = 0.28 + 0.13DO + 2.92TP + 0.002PD DO (0.706) 0.968 0.0006
Hs 10 Hs = 2.96 - 0.12DO 0.680 0.0307
秋季
Autumn
d 10 -
H 10 H′ = 2.21 + 0.65TN - 0.07N∶P - 0.03PD PD (0.109) 0.863 0.0326
Hs 10 -

Table 3

Results of correlation and path analysis between Shannon-Wiener diversity index (H′) of rotifers and main environmental factors in winter (spring)"

因子
Factor
相关系数
Correlative
coefficient
直接作用系数
Direct path
coefficient
间接作用系数之和
Total of indirect
path coefficient
间接作用系数 Indirect path coefficient
→Total nitrogen →Total phosphorus →NH4+-N →N∶P
Total nitrogen 0.093 (0.565) 1.683 (0.784) -1.590 (-0.219) -0.845 (-0.226) -0.745 (0.007)
Total phosphorus -0.467 -2.322 1.856 0.612 1.244
NH4+-N (0.267) (-0.325) (0.592) (0.544) (0.047)
N∶P 0.222 (-0.623) -1.927 (-0.638) 2.149 (0.015) 0.651 (-0.009) 1.498 (0.024)

Table 4

Results of correlation and path analysis between size diversity index (Hs) of crustaceans and main environmental factors in winter"

因子
Factor
相关系数
Correlative
coefficient
直接作用系数
Direct path
coefficient
间接作用系数之和
Total of indirect
path coefficient
间接作用系数 Indirect path coefficient
→Total nitrogen →NH4+-N →N∶P →PD
Total nitrogen 0.763 -0.624 1.387 0.376 0.311 0.699
NH4+-N 0.732 0.674 0.058 -0.348 -0.097 0.503
N∶P 0.352 0.806 -0.454 -0.241 -0.081 -0.132
PD -0.719 -0.937 0.218 0.466 -0.362 0.113

Table 5

Results of correlation and path analysis between species richness of zooplankton (H′ indexes of rotifers) and main environmental factors in summer"

因子
Factor
相关系数
Correlative
coefficient
直接作用系数
Direct path
coefficient
间接作用系数之和
Total of indirect
path coefficient
间接作用系数 Indirect path coefficient
→pH →Dissolved oxygen →Total phosphorus →PD
pH 0.401 1.473 -1.072 -1.004 0.069 -0.137
Dissolved oxygen -0.034 (0.840) -1.197 (0.842) 1.163 (-0.002) 1.235 0.047 (-0.066) -0.119 (0.064)
Total phosphorus -0.351 (0.331) -0.370 (0.513) 0.019 (-0.182) -0.273 0.153 (-0.108) 0.139 (-0.074)
PD -0.115 (0.285) -0.395 (0.211) 0.280 (-0.074) 0.511 -0.361 (0.254) 0.130 (-0.180)

Fig. 4

Relationship between dissolved oxygen content and diversity indices of different group of zooplankton in summer"

Table 6

Results of correlation and path analysis between Shannon-Wiener diversity index (H′) of rotifers and main environmental factors in autumn"

因子
Factor
相关系数
Correlative
coefficient
直接作用
Direct path
coefficient
间接作用之和
Total of indirect
path coefficient
间接作用 Indirect path coefficient
→Total nitrogen →N∶P →PD
Total nitrogen 0.455 1.088 -0.633 -0.352 -0.281
N∶P 0.179 -0.468 0.647 0.818 -0.170
PD -0.447 -0.748 0.301 0.408 -0.106
[1] Chen P, Ye H, Liu JH (2006) Population dynamics of Bactrocera dorsalis (Diptera: Tephritidae) along with analysis on the factors influencing the population in Ruili, Yunnan Province. Acta Ecologica Sinica, 26, 2801-2809. (in Chinese with English abstract)
doi: 10.1016/S1872-2032&#40;06&#41;60044-9
[ 陈鹏, 叶辉, 刘建宏 (2006) 云南瑞丽桔小实蝇成虫种群数量变动及其影响因子分析. 生态学报, 26, 2801-2809.]
doi: 10.1016/S1872-2032&#40;06&#41;60044-9
[2] Feng MW, Wu YH, Feng SX, Wu YY (2008) Effect of different N/P ratios on algal growth. Ecology and Environment, 17, 1759-1763. (in Chinese with English abstract)
[ 丰茂武, 吴云海, 冯仕训, 吴云影 (2008) 不同氮磷比对藻类生长的影响. 生态环境, 17, 1759-1763.]
[3] Jiang XZ, Du NS (1979) Fauna Sinica: Freshwater Cladocera. Science Press, Beijing. (in Chinese)
[ 蒋燮治, 堵南山 (1979) 中国动物志(淡水枝角类). 科学出版社, 北京.]
[4] Lazareva VI, Kopylov AI (2011) Zooplankton productivity at the peak of eutrophication of a plain reservoir ecosystem: The role of invertebrate predators. Biology Bulletin Reviews, 1, 542-551.
doi: 10.1134/S2079086411060041
[5] Li ZB, Song C, Ji L, Barry K, Chen JZ (2015) Path analysis of effects of environmental factors on Chlorophyll-a in tilapia aquaculture ponds. Environmental Science & Technology, 38(12), 110-116. (in Chinese with English abstract)
[ 李志波, 宋超, 季丽, Barry K, 陈家长 (2015) 罗非鱼池塘环境因子对叶绿素a影响的通径分析. 环境科学与技术, 38(12), 110-116.]
[6] Margalef DR (1958) Information theory in ecology. General Systems, 3, 36-71.
[7] Mouchet MA, Villéger S, Mason NW, Mouillot D (2010) Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Functional Ecology, 24, 867-876.
doi: 10.1111/fec.2010.24.issue-4
[8] Ning JJ, Liu H, Gu BH, Liu ZW (2012) Carbon and nitrogen stable isotope characteristics of particulate organic matter and zooplankton in Liuxihe Reservoir. Acta Ecologica Sinica, 32, 1502-1509. (in Chinese with English abstract)
doi: 10.5846/stxb
[ 宁加佳, 刘辉, 古滨河, 刘正文 (2012) 流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征. 生态学报, 32, 1502-1509.]
doi: 10.5846/stxb
[9] Petchey OL, Gaston KJ (2006) Functional diversity: Back to basics and looking forward. Ecology Letters, 9, 741-758.
doi: 10.1111/j.1461-0248.2006.00924.x pmid: 16706917
[10] Quintana XD, Arim M, Badosa A, Blanco JM, Boix D, Brucet S, Compte J, Egozcue JJ, Eyto E, Gaedke U, Gascón S, Solá LG, Irvine K, Jeppesen E, Lauridsen TL (2015) Predation and competition effects on the size diversity of aquatic communities. Aquatic Sciences, 77, 45-57.
doi: 10.1007/s00027-014-0368-1
[11] Redfield AC (1958) The biological control of chemical factors in the environment. American Scientist, 46, 205-221.
[12] Reissig M, Trochine C, Queimaliños C, Balseiro E, Modenutti B (2006) Impact of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, 132, 437-447.
doi: 10.1016/j.biocon.2006.04.036
[13] Roman MR, Pierson JJ, Kimmel DG, Boicourt WC, Zhang X (2012) Impacts of hypoxia on zooplankton spatial distributions in the northern gulf of Mexico. Estuaries and Coasts, 35, 1261-1269.
doi: 10.1007/s12237-012-9531-x
[14] Shen JR (1979) Fauna Sinica: Freshwater Copepoda. Science Press, Beijing. (in Chinese)
[ 沈嘉瑞 (1979) 中国动物志(淡水桡足类). 科学出版社, 北京.]
[15] Symons CC, Arnott SE, Sweetman JN (2012) Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia, 694, 131-141.
doi: 10.1007/s10750-012-1137-6
[16] Tang QY, Feng MG (2002) DPS Data Processing System: Experimental Design, Statistical Analysis and Data Mining. Science Press, Beijing. (in Chinese)
[ 唐启义, 冯明光 (2002) DPS数据处理系统: 实验设计、统计分析及数据挖掘. 科学出版社, 北京.]
[17] Thakur RK, Jindal R, Singh UB, Ahluwalia AS (2013) Plankton diversity and water quality assessment of three freshwater lakes of Mandi (Himachal Pradesh) with special reference to planktonic indicators. Environmental Monitoring and Assessment, 185, 8355-8373.
doi: 10.1007/s10661-013-3178-3
[18] United States Environmental Protection Agency (2016) Standard Operating Procedure for Zooplankton Analysis. LG403.
[19] Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indexes for a multifaceted framework in functional ecology. Ecology, 89, 2290-2301.
doi: 10.1890/07-1206.1 pmid: 18724739
[20] Wang J, Jiao Y, Ren YP, Xue Y, Ji YP, Xu BD (2015) Comparative study on two computing methods for estimating Shannon-Wiener diversity index. Journal of Fisheries of China, 39, 1257-1263. (in Chinese with English abstract)
doi: 10.11964/jfc.20150509886
[ 王晶, 焦燕, 任一平, 薛莹, 纪毓鹏, 徐宾铎 (2015) Shannon-Wiener多样性指数两种计算方法的比较研究. 水产学报, 39, 1257-1263.]
doi: 10.11964/jfc.20150509886
[21] Wang JJ (1961) Freshwater Rotifera of China. Science Press, Beijing. (in Chinese)
[ 王家楫 (1961) 中国淡水轮虫志. 科学出版社, 北京.]
[22] Wu SK, Wang SB, Zhou Q (2005) Changes of inorganic nitrogen and TN/TP in shallow lakes in the middle and lower reaches of the Yangtze River and their biological regulation mechanisms. Chinese Science (D): Earth Sciences, 35(Suppl.), 111-120. (in Chinese)
[ 吴世凯, 王松波, 周琼 (2005) 长江中下游地区浅水湖泊群中无机氮和TN/TP变化的模式及生物调控机制. 中国科学(D辑): 地球科学, 35(增刊), 111-120.]
[23] Xie P (2005) Biological driving mechanism of seasonal variation of endogenous phosphorus load in shallow lakes. Chinese Science (D): Earth Sciences, 35(Suppl.), 11-23. (in Chinese)
[ 谢平 (2005) 浅水湖泊内源磷负荷季节变化的生物驱动机制. 中国科学(D辑): 地球科学, 35(增刊), 11-23.]
[24] Xu HY, Yu HY, Yu J, Han MC, Xu ZH, Li GG, Huang Y (2017) A preliminary study on size diversity of zooplankton and their association with trophic level in the drinking water sources, Zhejiang Province. Acta Hydrobiologica Sinica, 41, 407-413. (in Chinese with English abstract)
[ 徐杭英, 于海燕, 俞建, 韩明春, 徐智焕, 李共国, 黄艺 (2017) 浙江饮用水源地浮游动物体积多样性及水质响应. 水生生物学报, 41, 407-413.]
[25] Ye L, Chang CY, Carmen GC, Gong GC, Hsieh CH (2013) Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning. Journal of Animal Ecology, 82, 1052-1061.
doi: 10.1111/1365-2656.12067 pmid: 23506226
[26] Yin Y, Wu ZX, Liu ML, He JB, Yu ZM (2014) Dynamic distributions of dissolved oxygen in lake Qiandaohu and its environmental influence factors. Environmental Science, 35, 2539-2546. (in Chinese with English abstract)
[ 殷燕, 吴志旭, 刘明亮, 何剑波, 虞左明 (2014) 千岛湖溶解氧的动态分布特征及其影响因素分析. 环境科学, 35, 2539-2546.]
[27] Yuan ZF, Zhou JY, Guo MC, Lei XQ, Xie XL (2001) Decision coefficient: The decision index of path analysis. Journal of Northwest Sci-Tech University of Agriculture and Forestry, 29(5), 131-133. (in Chinese with English abstract)
[ 袁志发, 周静芋, 郭满才, 雷雪芹, 解小莉 (2001) 决策系数——通径分析中的决策指标. 西北农林科技大学学报, 29(5), 131-133.]
[28] Yu J, Li HM, Wang J, Lin G, Fu ZH (2013) The current environmental status of urban centralized drinking water sources, Zhejiang Province and the protection countermeasures. Environmental Pollution & Control, 35(7), 105-109. (in Chinese with English abstract)
[ 俞洁, 李华明, 王静, 林广, 傅智慧 (2013) 浙江省城镇集中式饮用水水源地环境现状及保护对策研究. 环境污染与防治, 35(7), 105-109.]
[29] Zhang H, Liu DF, Zhang JL, Yan GH, Ye HS (2017) Algae growth curve under two different ratios of nitrogen to phosphorus. Journal of Hubei University of Technology, 32(4), 75-79. (in Chinese with English abstract)
[ 张欢, 刘德富, 张佳磊, 严广寒, 叶海松 (2017) 两种不同氮磷比下的藻类生长曲线. 湖北工业大学学报, 32(4), 75-79.]
[30] Zhang ZS, Huang XF (1991) Methods for Study on Freshwater Plankton. Science Press, Beijing. (in Chinese)
[ 章宗涉, 黄祥飞 (1991) 淡水浮游生物研究方法. 科学出版社, 北京.]
[1] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[2] Wang Guoping, Xue Dayuan, Wen Yi, Cheng Gong, Min Qingwen. (2019) Diversity of traditional knowledge related to utilization of biological resources by Tu nationality in China . Biodiv Sci, 27(7): 735-742.
[3] Ma Yanjie, He Haopeng, Shen Wenjing, Liu Biao, Xue Kun. (2019) Effects of transgenic maize on arthropod diversity . Biodiv Sci, 27(4): 419-432.
[4] CHEN Ding-Shuai, DONG Zheng-Wu, GAO Lei, CHEN Xiao-Min, PENG Xin-Hua, SI Bing-Cheng, ZHAO Ying. (2017) Water-use process of two desert shrubs along a precipitation gradient in Horqin Sandy Land . Chin J Plan Ecolo, 41(12): 1262-1272.
[5] Yang Yang,Jie Han,Ye Liu,Ciren Zhongyong,Songlin Shi,Cili Sina,Yue Xu,Lingxiao Ying,Wanjun Zhang,Zehao Shen. (2016) A comparison of the altitudinal patterns in plant species diversity within the dry valleys of the Three Parallel Rivers region, northwestern Yunnan . Biodiv Sci, 24(4): 440-452.
[6] Wei Zhou,Minghui Li,Youlan Li. (2016) Fish diversity in four nature reserves in Southwest Yunnan, China and the evaluation indicators . Biodiv Sci, 24(3): 313-320.
[7] Qiang Wu,Zhongyi Li,Fangqun Dai,Ruisheng Chen,Jun Wang,Xiujuan Shan,Xianshi Jin. (2016) Taxonomic diversity of crustaceans in Yellow Sea and Bohai Sea . Biodiv Sci, 24(11): 1306-1314.
[8] Bei Huang,Na Wei,Weijie Meng,Mingxia Zhang. (2016) Marine biodiversity evaluation based on the pressure-state-response (PSR) model of Changhai County, Liaoning Province . Biodiv Sci, 24(1): 48-54.
[9] TAN Li-Ping,LIU Su-Xia,MO Xing-Guo,YANG Li-Hu,LIN Zhong-Hui. (2015) Environmental controls over energy, water and carbon fluxes in a plantation in Northern China . Chin J Plan Ecolo, 39(8): 773-784.
[10] Zhe Liu,Qi Li,Dongdong Chen,Wenting Zhai,Liang Zhao,Shixiao Xu,Xinquan Zhao. (2015) Patterns of plant species diversity along an altitudinal gradient and its effect on above-ground biomass in alpine meadows in Qinghai-Tibet Plateau . Biodiv Sci, 23(4): 451-462.
[11] Dawei Guan, Li Li, Xin Jiang, Mingchao Ma, Fengming Cao, Baoku Zhou, Jun Li. (2015) Influence of long-term fertilization on the community structure and diversity of soybean rhizobia in black soil . Biodiv Sci, 23(1): 68-78.
[12] WANG Dai-Hua, WANG You-Fang, ZUO Qin, LI Min, WU Wen-Ying, HUANG Jian-Hua, and ZHAO Ming-Shui. (2012) Bryophyte species diversity in seven typical forests of the West Tianmu Mountain in Zhejiang, China . Chin J Plan Ecolo, 36(6): 550-559.
[13] WANG You-Shi, CHU Cheng-Jin. (2011) A brief introduction of structural equation model and its application in ecology . Chin J Plan Ecolo, 35(3): 337-344.
[14] Jing Yang, Xueli He, Lili Zhao. (2011) Species diversity of arbuscular mycorrhizal fungi in the rhizosphere of Salix psammophila in Inner Mongolia desert . Biodiv Sci, 19(3): 377-385.
[15] Zengxiang Qi, Weihua Xu, Xingyao Xiong, Zhiyun Ouyang, Hua Zheng, Dexin Gan. (2011) Assessment of potential habitat for Ursus thibetanus in the Qinling Mountains . Biodiv Sci, 19(3): 343-352.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed