生物多样性 ›› 2016, Vol. 24 ›› Issue (1): 40-47. DOI: 10.17520/biods.2015248
袁春明1,2, 耿云芬1,2, 柴勇1, 郝佳波1,2, 吴涛1,2,*()
收稿日期:
2015-09-15
接受日期:
2015-12-08
出版日期:
2016-01-20
发布日期:
2016-06-12
通讯作者:
吴涛
基金资助:
Chunming Yuan1,2, Yunfen Geng1,2, Yong Chai1, Jiabo Hao1,2, Tao Wu1,2,*()
Received:
2015-09-15
Accepted:
2015-12-08
Online:
2016-01-20
Published:
2016-06-12
Contact:
Wu Tao
摘要:
全球范围内森林片断化现象日益严重。与其他木本植物(乔木和灌木)相比, 木质藤本更趋向于分布在片断化森林的边缘, 因而了解木质藤本对边缘效应的响应对于进一步了解其对森林动态的影响极其必要。本文对哀牢山中山湿性常绿阔叶林林缘到林内环境梯度上木质藤本的变化进行了调查。在形成年龄分别为13年、35年和53年的3种类型的林缘, 设置从林缘向林内连续延伸的长方形样地(20 m × 50 m)各10个(总面积3 ha), 每个样地再划分为5个20 m × 10 m的样方。在每个样方内对胸径≥ 0.2 cm且长度≥ 2.0 m的木质藤本进行了每木调查。在3 ha的林缘样地中共记录到木质藤本植物2,426株, 隶属于14科19属31种。木质藤本的物种丰富度和多度均随距林缘距离的增加而降低, 边缘效应深度在35年林缘的边缘为30 m, 13和53年林缘的边缘则为20 m; 它们的胸高断面积在53年林缘的边缘效应深度为20 m, 但在13和35年林缘的不同距离上差异不显著。木质藤本对边缘效应的响应在物种水平上存在显著差异, 主要呈现正向和中性的响应格局, 包括只分布于林缘的物种, 和从林缘到林内环境梯度上密度逐渐降低的物种; 也有对边缘效应不敏感的物种。典范对应分析(CCA)表明, 林冠开度、边缘形成年龄和土壤水分是决定木质藤本在片断化森林边缘分布的重要影响因子。
袁春明, 耿云芬, 柴勇, 郝佳波, 吴涛 (2016) 哀牢山中山湿性常绿阔叶林木质藤本对边缘效应的响应. 生物多样性, 24, 40-47. DOI: 10.17520/biods.2015248.
Chunming Yuan, Yunfen Geng, Yong Chai, Jiabo Hao, Tao Wu (2016) Response of lianas to edge effects in mid-montane moist evergreen broad- leaved forests in the Ailao Mountains, SW China. Biodiversity Science, 24, 40-47. DOI: 10.17520/biods.2015248.
图1 哀牢山中山湿性常绿阔叶林从林缘到林内环境梯度上木质藤本的变化: (a)物种丰富度、(b)多度和(c)胸高断面积(平均值±标准差)
Fig. 1 Variation of lianas’ species richness (a), abundance (b) and breast height area (c) along the edge-to-interior gradient in the mid-montane moist evergreen broad-leaved forests in the Ailao Mountains (means ± SD)
![]() |
表1 哀牢中山湿性常绿阔叶林丛林缘到林内环境梯度上木质藤本密度的变化(平均值±标准差)
Table 1 Density of lianas along the edge-to-interior gradient in the mid-montane moist evergreen board-leaved forests in Ailao Mountains (mean±SD)
![]() |
项目 Items | 排序轴1 Axis 1 | 排序轴2 Axis 2 | 排序轴3 Axis 3 |
---|---|---|---|
特征值 Eigenvalues | 0.350 | 0.176 | 0.131 |
变化的累积百分比 Cumulative percentage variance | |||
物种数据 Species data | 6.3 | 9.4 | 11.7 |
物种-环境关系 Species-environment relation | 45.8 | 68.7 | 85.9 |
环境变量 Environmental variables | |||
坡向 Aspect | 0.2348 | -0.0557 | 0.8233 |
海拔 Altitude | 0.2724 | -0.2123 | -0.5633 |
林冠开度 Crown illumination | 0.9655 | 0.1555 | -0.0541 |
土壤水分 Soil moisture | -0.3979 | 0.5921 | -0.4261 |
边缘年龄 Edge age | -0.0992 | -0.6194 | -0.0546 |
表2 特征值及环境变量与典范对应分析(CCA)前3个排序轴的相关系数
Table 2 Eigenvalues and correlation coefficients between the first three axes and environmental variables in the canonical correspondence analysis (CCA)
项目 Items | 排序轴1 Axis 1 | 排序轴2 Axis 2 | 排序轴3 Axis 3 |
---|---|---|---|
特征值 Eigenvalues | 0.350 | 0.176 | 0.131 |
变化的累积百分比 Cumulative percentage variance | |||
物种数据 Species data | 6.3 | 9.4 | 11.7 |
物种-环境关系 Species-environment relation | 45.8 | 68.7 | 85.9 |
环境变量 Environmental variables | |||
坡向 Aspect | 0.2348 | -0.0557 | 0.8233 |
海拔 Altitude | 0.2724 | -0.2123 | -0.5633 |
林冠开度 Crown illumination | 0.9655 | 0.1555 | -0.0541 |
土壤水分 Soil moisture | -0.3979 | 0.5921 | -0.4261 |
边缘年龄 Edge age | -0.0992 | -0.6194 | -0.0546 |
图2 基于30个样地木质藤本植物多度的典范对应分析排序图。CII, 林冠开度; SM, 土壤水分; SAI, 坡向; AGE, 边缘年龄; AL, 海拔高度。物种代码见表1。
Fig. 2 Ordination diagrams from the canonical correspondence analysis of liana species abundance data on 30 plots. CII: crown illumination index; SM: soil moisture; SAI: slope aspect index; AGE: edge age; AL: altitude. Species codes are as defined in Table 1.
1 | Carter GA, Teramura AH (1988) Vines photosynthesis and relationships to climbing mechanics in a forest understory. American Journal of Botany, 75, 1011-1018. |
2 | Chen J, Franklin JF, Spies TA (1993) Contrasting microclimates among clearcut, edge, and interior of old-growth Douglas-fir forest. Agricultural and Forest Meteorology, 63, 219-237. |
3 | Chen J, Franklin JF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications, 5, 74-86. |
4 | DeWalt SJ, Schnitzer SA, Julie S, Denslow JS (2000) Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 16, 1-19. |
5 | Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica, 31, 17-30. |
6 | Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biological Conservation, 81, 117-142. |
7 | Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed- mesophytic forest fragments. Plant Ecology, 147, 21-35. |
8 | Gerwing JJ (2004) Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management, 190, 57-72. |
9 | Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt S, Ewango CEN, Foster R, Kenfack D, Martinez-Ramos M, Parren M, Parthasarathy N, Perez-Salicrup D, Putz FE, Thomas DW (2006) A standard protocol for liana censuses. Biotropica, 38, 256-261. |
10 | Gilbert B, Wright SJ, Muller-Landau HC, Kitajima K, Hernandez A (2006) Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281-1288. |
11 | Harper KA, Macdonald SE, Burton PJ, Chen JQ, Brosofske KD, Saunders SC, Euskirchen ES, Roberts D, Jaiteh MS, Esseen P (2005) Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology, 19, 768-782. |
12 | Hegarty EE, Caballe G (1991) Distribution and abundance of vines in forest communities. In: The Biology of Vines (eds Putz EF, Mooney HA), pp. 263-282. Cambridge University Press, Cambridge. |
13 | Jin ZZ (1983) On the characteristic and nature of the evergreen broad-leaved forest in Xujiaba region, Ailao Mts. In: Research of Forest Ecosystems on Ailao Mountains (ed. Wu ZY), pp. 204-214. Yunnan Science and Technology Press, Kunming. (in Chinese with English abstract) |
[金振洲 (1983) 论哀牢山徐家坝地区常绿阔叶林的特征和性质. 见: 云南哀牢山森林生态系统研究. 吴征镒主编, pp. 204-214. 云南科技出版社, 昆明.] | |
14 | Keeling HC, Phillips OL (2007) A calibration method for the crown illumination index for assessing forest light environments. Forest Ecology and Management, 242, 431-437. |
15 | Kurzel BP, Schnitzer SA, Carson WP (2006) Predicting liana crown location from stem diameter in three Panamanian lowland forests. Biotropica, 38, 262-266. |
16 | Kusumoto B, Enoki T, Watanabe Y (2008) Community structure and topographic distribution of lianas in a watershed on Okinawa, south-western Japan. Journal of Tropical Ecology, 24, 675-683. |
17 | Laurance WF (1999) Reflections on the tropical deforestation crisis. Biological Conservation, 91, 109-117. |
18 | Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Layrance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conservation Biology, 16, 605-618. |
19 | Laurance WF, Perez-Salicrup DR, Delamonica P, Fearnside PM, Angelo SD, Jerozolinski A, Pohl L, Lovejoy TE (2001) Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105-116. |
20 | Li XS, Liu WY, Chen JW, Tang CQ, Yuan CM (2010) Regeneration pattern of primary forest species across forest-field gradients in the subtropical mountains of southwestern China. Journal of Plant Research, 123, 751-762. |
21 | Liu WJ, Tang JW, Bai KJ (2001) Microclimate edge effects within and between Shorea chinensis forest fragments in Xishuangbanna. Acta Phytoecologica Sinica, 25, 616-622. (in Chinese with English abstract) |
[刘文杰, 唐建维, 白坤甲 (2001) 西双版纳片断化望天树林小气候边缘效应比较研究. 植物生态学报, 25, 616-622.] | |
22 | Londre RA, Schnitzer SA (2006) The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 2973-2978. |
23 | Matlack GR (1993) Microenvironmental variation within and among forest edge sites in the eastern United States. Biological Conservation, 66, 185-194. |
24 | Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution, 10, 58-62. |
25 | Palik BJ, Murphy PG (1990) Disturbance versus edge effects in sugar-maple/beech forest fragments. Forest Ecology and Management, 32, 187-202. |
26 | Putz FE (1984) The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713-1724. |
27 | Qiu XZ, Xie SC (1998) Studies on the Forest Ecosystem in Ailao Mountains. Yunnan Science and Technology Press, Kunming. (in Chinese) |
[邱学忠, 谢寿昌 (1998) 哀牢山森林生态系统研究. 云南科技出版社, 昆明.] | |
28 | Richards PW (1996) The Tropical Rain Forest. Cambridge University Press, Cambridge |
29 | Sanches MC, Válio IFM (2002) Seed and seedling survival of some climber species in a southeast Brazilian tropical forest. Biotropica, 34, 323-327. |
30 | Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5, 18-32. |
31 | Schnitzer SA, Bongers F (2002) The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 17, 223-230. |
32 | Schnitzer SA, Carson WP (2001) Treefall gaps and the maintainance of species diversity in a tropical forest. Ecology, 82, 913-919. |
33 | Wu YN, Tao JP, Zhao K, Hao JH (2010) Edge effects of a natural secondary forest on liana communities in Bawangling, Hainan Island. Scientia Silvae Sinicae, 46(5), 1-6. (in Chinese with English abstract) |
[乌玉娜, 陶建平, 赵科, 郝建辉 (2010) 海南霸王岭天然次生林边缘效应下木质藤本的变化. 林业科学, 46(5), 1-6.] | |
34 | Yuan CM, Liu WY, Tang CQ, Li XS (2009) Species composition, diversity and abundance of lianas in different secondary and primary forests in a subtropical mountainous area, SW China. Ecological Research, 24, 1361-1370. |
35 | Yuan CM, Liu WY, Yang GP (2015) Diversity and spatial dis- tribution of lianas in a mid-montane moist evergreen broad-leaved forest in the Ailao Mountains, SW China. Biodiversity Science, 23, 332-340. (in Chinese with English abstract) |
[袁春明, 刘文耀, 杨国平 (2015) 哀牢山中山湿性常绿阔叶林木质藤本植物的多样性与空间分布. 生物多样性, 23, 332-340.] | |
36 | Zhang JT (2004) Quantitative Ecology. Science Press, Beijing. |
(in Chinese) [张金屯 (2004) 数量生态学. 科学出版社, 北京.] | |
37 | Zhu H, Xu ZF, Wang H, Li BG (2004) Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biodiversity and Conservation, 13, 1355-1372. |
[1] | 程建伟, 徐满厚, 窦永静, 王亚东, 王桠楠, 刘新民, 李永宏. 内蒙古典型草原马粪分解过程中节肢动物群落的季节动态变化[J]. 生物多样性, 2024, 32(6): 24018-. |
[2] | 邝起宇, 胡亮. 广东东海岛与硇洲岛海域底栖贝类物种多样性及其地理分布[J]. 生物多样性, 2024, 32(5): 24065-. |
[3] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[4] | 赵勇强, 阎玺羽, 谢加琪, 侯梦婷, 陈丹梅, 臧丽鹏, 刘庆福, 隋明浈, 张广奇. 退化喀斯特森林自然恢复中不同生活史阶段木本植物物种多样性与群落构建[J]. 生物多样性, 2024, 32(5): 23462-. |
[5] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[6] | 吕燕文, 王子韵, 肖钰, 何梓晗, 吴超, 胡新生. 谱系分选理论与检测方法的研究进展[J]. 生物多样性, 2024, 32(4): 23400-. |
[7] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[8] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[9] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[10] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[11] | 冉辉, 杨天友, 米小其. 贵州省爬行动物更新名录[J]. 生物多样性, 2024, 32(4): 23348-. |
[12] | 王启蕃, 刘小慧, 朱紫薇, 刘磊, 王鑫雪, 汲旭阳, 周绍春, 张子栋, 董红雨, 张明海. 黑龙江北极村国家级自然保护区鸟类与兽类多样性[J]. 生物多样性, 2024, 32(4): 24024-. |
[13] | 吴琪, 张晓青, 杨雨婷, 周艺博, 马毅, 许大明, 斯幸峰, 王健. 浙江钱江源-百山祖国家公园庆元片区叶附生苔多样性及其时空变化[J]. 生物多样性, 2024, 32(4): 24010-. |
[14] | 冯志荣, 陈明波, 杨小芳, 王刚, 董乙乂, 彭艳琼, 陈华燕, 王波. 榕树繁育系统及榕小蜂资源利用塑造了榕小蜂群落[J]. 生物多样性, 2024, 32(3): 23307-. |
[15] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn