生物多样性 ›› 2021, Vol. 29 ›› Issue (12): 1687-1699. DOI: 10.17520/biods.2021141
所属专题: 土壤生物与土壤健康
戴冬1,2, 邢华1,2, 杨佳绒1,2, 刘雅静1,2, 蔡焕满3, 刘宇1,2,4,*()
收稿日期:
2021-04-14
接受日期:
2021-07-20
出版日期:
2021-12-20
发布日期:
2021-11-12
通讯作者:
刘宇
作者简介:
*E-mail: yuliu@des.ecnu.edu.cn基金资助:
Dong Dai1,2, Hua Xing1,2, Jiarong Yang1,2, Yajing Liu1,2, Huanman Cai3, Yu Liu1,2,4,*()
Received:
2021-04-14
Accepted:
2021-07-20
Online:
2021-12-20
Published:
2021-11-12
Contact:
Yu Liu
摘要:
自Janzen-Connell (J-C)假说提出后半个世纪以来, 生态学家在热带及亚热带森林对该假说开展的大量实证研究表明, 由专性天敌导致的J-C效应所引起的负密度制约是维持森林多样性和决定群落组成的重要驱动力, 该假说成功地解释了热带及亚热带森林的丰富多样性。土壤病原真菌所引起的植物-土壤负反馈是J-C效应最主要的表现形式。然而, 对于植物-土壤负反馈是否能够维持森林群落中的大量稀有种仍然存在许多争议。基于当代物种共存理论的“稀有种优势”假说认为, 只有在满足“可入侵准则” (即物种在稀有时具有种群增加的趋势)的前提下, 稀有种才能在群落中与其他物种长期共存。然而, 当前基于土壤反馈的实验结果与该理论预测相悖, 因此在稀有种的维持机制方面仍存在较大的分歧。本文通过介绍植物-土壤反馈理论, 整合了可能对稀有种维持有较大影响的因素, 包括共生菌根真菌、土壤养分以及植物细根性状等在影响土壤负反馈方面的相关研究, 并对这些因素如何影响群落中物种多度和稀有种在群落中的维持进行了探讨。最后, 我们也从其他角度探讨了一些对稀有种维持的研究。我们认为在未来对稀有种的研究中, 探讨使其长期存续的“优势”和制约其种群扩大的“限制”同等重要, 将当代物种共存理论与新技术、新方法相结合对于探究稀有种的维持机制具有重要的意义, 可为稀有种保护提供理论依据。
戴冬, 邢华, 杨佳绒, 刘雅静, 蔡焕满, 刘宇 (2021) 植物群落稀有种维持机制与土壤反馈的研究进展. 生物多样性, 29, 1687-1699. DOI: 10.17520/biods.2021141.
Dong Dai, Hua Xing, Jiarong Yang, Yajing Liu, Huanman Cai, Yu Liu (2021) Advances in mechanisms of rare species maintenance and plant-soil feedback in plant communities. Biodiversity Science, 29, 1687-1699. DOI: 10.17520/biods.2021141.
图1 Barro Colorado Island (BCI) 50 ha热带森林动态监测样地物种频度与物种多度的关系。曲线为趋势线。每个直方图宽度表示的多度跨度为50 (如第一个直方为多度1-50;由于图幅限制, 多度显示不完全); 数据来源: BCI样地2015年复查数据。
Fig. 1 The relationship between tree species frequency and species abundance in Barro Colorado Island (BCI) 50 ha tropical forest dynamics plot. The curve is the trend line. Width of each bar represents abundance span for 50 (e.g. the fist bar for the abundance from 1 to 50; the abundance is not complete due to the limitation of the picture size).
图2 植物-土壤反馈的调控因素及其对植物多度影响的框架
Fig. 2 The framework of factors formulating plant-soil feedback (PSF) and consequently determining abundance of plant species
[1] |
Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecology Letters, 10, 95-104.
DOI URL |
[2] |
Ai D, Chu CJ, Ellwood MDF, Hou R, Wang G (2013) Migration and niche partitioning simultaneously increase species richness and rarity. Ecological Modelling, 258, 33-39.
DOI URL |
[3] |
Augspurger CK (1984) Seedling survival of tropical tree species: Interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65, 1705-1712.
DOI URL |
[4] |
Augspurger CK, Kelly CK (1984) Pathogen mortality of tropical tree seedlings: Experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia, 61, 211-217.
DOI PMID |
[5] |
Bachelot B, Kobe RK (2013) Rare species advantage? Richness of damage types due to natural enemies increases with species abundance in a wet tropical forest. Journal of Ecology, 101, 846-856.
DOI URL |
[6] |
Bachelot B, Kobe RK, Vriesendorp C (2015) Negative density- dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia, 179, 853-861.
DOI URL |
[7] |
Bachelot B, Uriarte M, McGuire KL, Thompson J, Zimmerman J (2017) Arbuscular mycorrhizal fungal diversity and natural enemies promote coexistence of tropical tree species. Ecology, 98, 712-720.
DOI URL |
[8] |
Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature, 506, 85-88.
DOI URL |
[9] |
Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany, 62, 1049-1060.
DOI PMID |
[10] |
Bayandala, Masaka K, Seiwa K (2017) Leaf diseases drive the Janzen-Connell mechanism regardless of light conditions: A 3-year field study. Oecologia, 183, 191-199.
DOI PMID |
[11] |
Bell T, Freckleton RP, Lewis OT (2006) Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters, 9, 569-574.
DOI URL |
[12] |
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
DOI PMID |
[13] |
Bever JD (1999) Dynamics within mutualism and the maintenance of diversity: Inference from a model of interguild frequency dependence. Ecology Letters, 2, 52-61.
DOI URL |
[14] | Bever JD (2002) Negative feedback within a mutualism:Host-specific growth of mycorrhizal fungi reduces plant benefit. Proceedings of the Royal Society B: Biological Sciences, 269, 2595-2601. |
[15] |
Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Molecular Plant Microbe Interactions, 23, 915-926.
DOI URL |
[16] |
Brown JH (1984) On the relationship between abundance and distribution of species. The American Naturalist, 124, 255- 279.
DOI URL |
[17] |
Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil, 320, 37-77.
DOI URL |
[18] |
Cameron DD, Neal AL, van Wees SCM, Ton J (2013) Mycorrhiza-induced resistance: More than the sum of its parts? Trends in Plant Science, 18, 539-545.
DOI PMID |
[19] |
Caughley G (1994) Directions in conservation biology. Journal of Animal Ecology, 63, 215-244.
DOI URL |
[20] |
Chapman ASA, Tunnicliffe V, Bates AE (2018) Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities. Diversity and Distributions, 24, 568-578.
DOI URL |
[21] |
Chen L, Swenson NG, Ji NN, Mi XC, Ren HB, Guo LD, Ma KP (2019) Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science, 366, 124-128.
DOI PMID |
[22] |
Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366.
DOI URL |
[23] | Chesson P (2008) Quantifying and testing species coexistence mechanisms. In: Unity in Diversity: Reflections on Ecology after the Legacy of Ramon Margalef (eds Valladares F, Camacho A, Elosegui A, Gracia C, Estrada M, Senar JC, Gili JM), pp. 119-164. BBVA, Bilbao, Spain. |
[24] |
Chu CJ, Wang YS, Liu Y, Jiang L, He FL (2017) Advances in species coexistence theory. Biodiversity Science, 25, 345-354. (in Chinese with English abstract)
DOI URL |
[ 储诚进, 王酉石, 刘宇, 蒋林, 何芳良 (2017) 物种共存理论研究进展. 生物多样性, 25, 345-354.]
DOI |
|
[25] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010) Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[26] | Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: Dynamics of Populations (eds Boer PJD, Gradwell GR), pp. 298-312. Center for Agriculture Publishing and Documentation, Wageningen. |
[27] |
Connell JH, Tracey JG, Webb LJ (1984) Compensatory recruitment, growth, and mortality as factors maintaining rain forest tree diversity. Ecological Monographs, 54, 141-164.
DOI URL |
[28] |
Corrales A, Mangan SA, Turner BL, Dalling JW (2016) An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecology Letters, 19, 383-392.
DOI PMID |
[29] |
Cortois R, Schröder-Georgi T, Weigelt A, van der Putten WH, De Deyn GB (2016) Plant-soil feedbacks: Role of plant functional group and plant traits. Journal of Ecology, 104, 1608-1617.
DOI URL |
[30] |
Dawson W, Fischer M, van Kleunen M (2012) Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecology Letters, 15, 873-880.
DOI PMID |
[31] |
Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. Journal of Plant Nutrition, 15, 763-782.
DOI URL |
[32] |
Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, Jørgensen PM, Roehrdanz PR, Thiers BM, Burger JR, Corlett RT, Couvreur TLP, Dauby G, Donoghue JC, Foden W, Lovett JC, Marquet PA, Merow C, Midgley G, Morueta-Holme N, Neves DM, Oliveira-Filho AT, Kraft NJB, Park DS, Peet RK, Pillet M, Serra-Diaz JM, Sandel B, Schildhauer M, Šímová I, Violle C, Wieringa JJ, Wiser SK, Hannah L, Svenning JC, McGill BJ (2019) The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 5, eaaz0414.
DOI URL |
[33] |
Forrister DL, Endara MJ, Younkin GC, Coley PD, Kursar TA (2019) Herbivores as drivers of negative density dependence in tropical forest saplings. Science, 363, 1213-1216.
DOI PMID |
[34] |
Gaston KJ, Blackburn TM, Lawton JH (1997) Interspecific abundance-range size relationships: An appraisal of mechanisms. Journal of Animal Ecology, 66, 579-601.
DOI URL |
[35] |
Grainger TN, Levine JM, Gilbert B (2019) The invasion criterion: A common currency for ecological research. Trends in Ecology & Evolution, 34, 925-935.
DOI URL |
[36] |
Grinnell J (1917) The niche-relationships of the California thrasher. The Auk, 34, 427-433.
DOI URL |
[37] |
Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ (2008) Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683.
DOI URL |
[38] |
Gustafson DJ, Casper BB (2004) Nutrient addition affects AM fungal performance and expression of plant/fungal feedback in three serpentine grasses. Plant and Soil, 259, 9-17.
DOI URL |
[39] | Harnik PG, Simpson C, Payne JL (2012) Long-term differences in extinction risk among the seven forms of rarity. Proceedings of the Royal Society B: Biological Sciences, 279, 4969-4976. |
[40] |
Hart TB, Hart JA, Murphy PG (1989) Monodominant and species-rich forests of the humid tropics: Causes for their co-occurrence. The American Naturalist, 133, 613-633.
DOI URL |
[41] |
He FL (2009) Price of prosperity: Economic development and biological conservation in China. Journal of Applied Ecology, 46, 511-515.
DOI URL |
[42] |
Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Functional Plant Biology, 32, 737-748.
DOI URL |
[43] | Hubbell SP, Foster RB (1986) Canopy gaps and the dynamics of a Neotropical forest. In: Plant Ecology (ed.ed. Crawley MJ), pp. 77-96. Blackwell, Oxford. |
[44] |
Hyatt LA, Rosenberg MS, Howard TG, Bole G, Fang W, Anastasia J, Brown K, Grella R, Hinman K, Kurdziel JP, Gurevitch J (2003) The distance dependence prediction of the Janzen-Connell hypothesis: A meta-analysis. Oikos, 103, 590-602.
DOI URL |
[45] |
in’t Zandt D, van den Brink A, de Kroon H, Visser EJW (2019) Plant-soil feedback is shut down when nutrients come to town. Plant and Soil, 439, 541-551.
DOI |
[46] |
Jain M, Flynn DFB, Prager CM, Hart GM, DeVan CM, Ahrestani FS, Palmer MI, Bunker DE, Knops JMH, Jouseau CF, Naeem S (2014) The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecology and Evolution, 4, 104-112.
DOI URL |
[47] |
Janzen DH (1970) Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528.
DOI URL |
[48] |
Jia SH, Wang XG, Yuan ZQ, Lin F, Ye J, Lin GG, Hao ZQ, Bagchi R (2020) Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11, 286.
DOI URL |
[49] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012) Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI PMID |
[50] |
Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology, 38, 651-664.
DOI URL |
[51] |
Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170.
DOI URL |
[52] |
Kempel A, Rindisbacher A, Fischer M, Allan E (2018) Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. Ecology, 99, 597-606.
DOI PMID |
[53] |
Klironomos JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature, 417, 67-70.
DOI URL |
[54] |
Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology, 84, 2292- 2301.
DOI URL |
[55] |
Kobae Y, Ohmori Y, Saito C, Yano K, Ohtomo R, Fujiwara T (2016) Phosphate treatment strongly inhibits new arbuscule development but not the maintenance of arbuscule in mycorrhizal rice roots. Plant Physiology, 171, 566-579.
DOI URL |
[56] |
Kos M, Veendrick J, Bezemer TM (2013) Local variation in conspecific plant density influences plant-soil feedback in a natural grassland. Basic and Applied Ecology, 14, 506-514.
DOI URL |
[57] |
Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC (2016) Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology, 104, 1299-1310.
DOI URL |
[58] |
Laliberté E, Lambers H, Burgess TI, Wright SJ (2015) Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. New Phytologist, 206, 507-521.
DOI PMID |
[59] |
Laliberté E, Turner BL, Costes T, Pearse SJ, Wyrwoll KH, Zemunik G, Lambers H (2012) Experimental assessment of nutrient limitation along a 2-million-year dune chronosequence in the south-western Australia biodiversity hotspot. Journal of Ecology, 100, 631-642.
DOI URL |
[60] | Le Bagousse-Pinguet Y, Gross N, Saiz H, Maestre FT, Ruiz S, Dacal M, Asensio S, Ochoa V, Gozalo B, Cornelissen JHC, Deschamps L, García C, Maire V, Milla R, Salinas N, Wang JT, Singh BK, García-Palacios P (2021) Functional rarity and evenness are key facets of biodiversity to boost multifunctionality. Proceedings of the National Academy of Sciences, USA, 118, e2019355118. |
[61] |
Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942-952.
DOI URL |
[62] | Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel C, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proceedings of the Royal Society B: Biological Sciences, 283, 20160084. |
[63] |
Li RB, Yu SX, Wang YF, Staehelin C, Zang RG (2009) Distance-dependent effects of soil-derived biota on seedling survival of the tropical tree legume Ormosia semicastrata. Journal of Vegetation Science, 20, 527-534.
DOI URL |
[64] |
Liang MX, Liu XB, Etienne RS, Huang FM, Wang YF, Yu SX (2015) Arbuscular mycorrhizal fungi counteract the Janzen- Connell effect of soil pathogens. Ecology, 96, 562-574.
DOI URL |
[65] |
Liang MX, Liu XB, Gilbert GS, Zheng Y, Luo S, Huang FM, Yu SX (2016) Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecology Letters, 19, 1448-1456.
DOI URL |
[66] |
Liu Y, Yu SX, Xie ZP, Staehelin C (2012) Analysis of a negative plant-soil feedback in a subtropical monsoon forest. Journal of Ecology, 100, 1019-1028.
DOI URL |
[67] |
Liu Y, Fang SQ, Chesson P, He FL (2015) The effect of soil-borne pathogens depends on the abundance of host tree species. Nature Communications, 6, 10017.
DOI PMID |
[68] |
Liu Y, He FL (2019) Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Functional Ecology, 33, 1211-1222.
DOI |
[69] |
Lloyd KM, Lee WG, Wilson JB (2002) Competitive abilities of rare and common plants: Comparisons using Acaena (Rosaceae) and Chionochloa (Poaceae) from New Zealand. Conservation Biology, 16, 975-985.
DOI URL |
[70] |
Lynch JP, Ho MD (2005) Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant and Soil, 269, 45-56.
DOI URL |
[71] |
MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
DOI URL |
[72] | MacArthur R (1972) Geographical Ecology. Princeton University Press, Princeton. |
[73] | MacDougall AS, Rillig MC, Klironomos JN (2011) Weak conspecific feedbacks and exotic dominance in a species- rich savannah. Proceedings of the Royal Society B: Biological Sciences, 278, 2939-2945. |
[74] |
Mangan SA, Herre EA, Bever JD (2010a) Specificity between Neotropical tree seedlings and their fungal mutualists leads to plant-soil feedback. Ecology, 91, 2594-2603.
DOI URL |
[75] |
Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010b) Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755.
DOI URL |
[76] |
Marden JH, Mangan SA, Peterson MP, Wafula E, Fescemyer HW, Der JP, dePamphilis CW, Comita LS (2017) Ecological genomics of tropical trees: How local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Molecular Ecology, 26, 2498- 2513.
DOI PMID |
[77] |
Maron JL, Laney Smith A, Ortega YK, Pearson DE, Callaway RM (2016) Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology, 97, 2055-2063.
DOI PMID |
[78] |
Marx DH (1972) Ectomycorrhizae as biological deterrents to pathogenic root infections. Annual Review of Phytopathology, 10, 429-454.
PMID |
[79] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M (2015) Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI PMID |
[80] |
McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology, 88, 567-574.
PMID |
[81] |
Mi XC, Sun ZH, Song YF, Liu XJ, Yang J, Wu JJ, Ci XQ, Li J, Lin LX, Cao M, Ma KP (2021) Rare tree species have narrow environmental but not functional niches. Functional Ecology, 35, 511-520.
DOI URL |
[82] | Mi XC, Swenson NG, Valencia R, Kress WJ, Erickson DL, Pérez ÁJ, Ren HB, Su SH, Gunatilleke N, Gunatilleke S, Hao ZQ, Ye WH, Cao M, Suresh HS, Dattaraja HS, Sukumar R, Ma KP (2012) The contribution of rare species to community phylogenetic diversity across a global network of forest plots. The American Naturalist, 180, E17-E30. |
[83] |
Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. Journal of Ecology, 83, 991-1000.
DOI URL |
[84] |
Packer A, Clay K (2000) Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281.
DOI URL |
[85] |
Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature, 520, 542-544.
DOI URL |
[86] |
Petermann JS, Fergus AJF, Turnbull LA, Schmid B (2008) Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology, 89, 2399-2406.
PMID |
[87] |
Pimm SL, Jones HL, Diamond J (1988) On the risk of extinction. The American Naturalist, 132, 757-785.
DOI URL |
[88] |
Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science, 269, 347-350.
PMID |
[89] |
Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiology, 30, 1129-1139.
DOI PMID |
[90] |
Porter SS, Sachs JL (2020) Agriculture and the disruption of plant-microbial symbiosis. Trends in Ecology & Evolution, 35, 426-439.
DOI URL |
[91] |
Pregitzer KS (2002) Fine roots of trees-A new perspective. New Phytologist, 154, 267-270.
DOI PMID |
[92] |
Preston FW (1962) The canonical distribution of commonness and rarity: Part I. Ecology, 43, 185-215.
DOI URL |
[93] | Rabinowitz D (1981) Seven forms of rarity. In:The Biological Aspects of Rare Plant Conservation (ed.ed. Synge H), pp.205-217. John Wiley & Sons, Chichester. |
[94] |
Regus JU, Wendlandt CE, Bantay RM, Gano-Cohen KA, Gleason NJ, Hollowell AC, O’Neill MR, Shahin KK, Sachs JL (2017) Nitrogen deposition decreases the benefits of symbiosis in a native legume. Plant and Soil, 414, 159-170.
DOI URL |
[95] |
Reich PB (2014) The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. Journal of Ecology, 102, 275-301.
DOI URL |
[96] |
Rousseau JVD, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytologist, 128, 639-644.
DOI URL |
[97] |
Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA (2020) Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nature Communications, 11, 2204.
DOI PMID |
[98] |
Schroeder JW, Martin JT, Angulo DF, Barbosa JM, Perea R, Arias-Del Razo I, Sebastián-González E, Dirzo R (2018) Community composition and diversity of Neotropical root- associated fungi in common and rare trees. Biotropica, 50, 694-703.
DOI URL |
[99] |
Siepielski AM, McPeek MA (2010) On the evidence for species coexistence: A critique of the coexistence program. Ecology, 91, 3153-3164.
PMID |
[100] |
Smith MD, Knapp AK (2003) Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509-517.
DOI URL |
[101] | Smith SE, Read DJ (1997) Mycorrhizal Symbioses. Academic Press, London. |
[102] |
Stump SM, Marden JH, Beckman NG, Mangan SA, Comita LS (2020) Resistance genes affect how pathogens maintain plant abundance and diversity. The American Naturalist, 196, 472-486.
DOI URL |
[103] |
Umaña MN, Zhang CC, Cao M, Lin LX, Swenson NG (2015) Commonness, rarity, and intraspecific variation in traits and performance in tropical tree seedlings. Ecology Letters, 18, 1329-1337.
DOI URL |
[104] |
van de Voorde TFJ, van der Putten WH, Bezemer TM (2012) The importance of plant-soil interactions, soil nutrients, and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of old-fields. Oikos, 121, 1251-1262.
DOI URL |
[105] |
van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology, 79, 2082-2091.
DOI URL |
[106] |
Vermeij GJ, Grosberg RK (2018) Rarity and persistence. Ecology Letters, 21, 3-8.
DOI PMID |
[107] |
Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia, 53, 197-201.
DOI URL |
[108] | Xi XQ, Yang YHS, Tylianakis JM, Yang SH, Dong YR, Sun SC (2020) Asymmetric interactions of seed-predation network contribute to rare-species advantage. Ecology, 101, e03050. |
[109] |
Yenni G, Adler PB, Morgan Ernest SK (2012) Strong self- limitation promotes the persistence of rare species. Ecology, 93, 456-461.
DOI URL |
[110] |
Yenni G, Adler PB, Morgan Ernest SK (2017) Do persistent rare species experience stronger negative frequency dependence than common species? Global Ecology and Biogeography, 26, 513-523.
DOI URL |
[111] |
Yu WB, Li SP (2020) Modern coexistence theory as a framework for invasion ecology. Biodiversity Science, 28, 1362-1375. (in Chinese with English abstract)
DOI URL |
[ 于文波, 黎绍鹏 (2020) 基于现代物种共存理论的入侵生态学概念框架. 生物多样性, 28, 1362-1375.] | |
[112] |
Zemunik G, Turner BL, Lambers H, Laliberté E (2015) Diversity of plant nutrient-acquisition strategies increases during long-term ecosystem development. Nature Plants, 1, 15050.
DOI URL |
[113] |
Zhang ZJ, van Kleunen M (2019) Common alien plants are more competitive than rare natives but not than common natives. Ecology Letters, 22, 1378-1386.
DOI URL |
[114] |
Zhu Y, Mi XC, Ma KP (2009) A mechanism of plant species coexistence: The negative density-dependent hypothesis. Biodiversity Science, 17, 594-604. (in Chinese with English abstract)
DOI URL |
[ 祝燕, 米湘成, 马克平 (2009) 植物群落物种共存机制: 负密度制约假说. 生物多样性, 17, 594-604.]
DOI |
[1] | 徐伟强, 苏强. 分形模型与一般性物种多度分布关系的检验解析:以贝类和昆虫群落为例[J]. 生物多样性, 2024, 32(4): 23410-. |
[2] | 沈诗韵, 潘远飞, 陈丽茹, 土艳丽, 潘晓云. 喜旱莲子草原产地和入侵地种群的植物-土壤反馈差异[J]. 生物多样性, 2023, 31(3): 22436-. |
[3] | 武英达, 满孝武, 员瑗, 戴玉成. 中国各省植物园中多孔菌种类、分布和组成[J]. 生物多样性, 2022, 30(7): 22213-. |
[4] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[5] | 刘旻霞, 李全弟, 蒋晓轩, 夏素娟, 南笑宁, 张娅娅, 李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
[6] | 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41. |
[7] | 丁晖, 方炎明, 杨新虎, 袁发银, 何立恒, 姚剑飞, 吴俊, 迟斌, 李垚, 陈水飞, 陈婷婷, 徐海根. 黄山亚热带常绿阔叶林的群落特征[J]. 生物多样性, 2016, 24(8): 875-887. |
[8] | 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华. 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局[J]. 生物多样性, 2016, 24(6): 629-638. |
[9] | 许格希, 史作民, 唐敬超, 许涵, 杨怀, 刘世荣, 李意德, 林明献. 物种多度和径级尺度对于评价群落系统发育结构的影响: 以尖峰岭热带山地雨林为例[J]. 生物多样性, 2016, 24(6): 617-628. |
[10] | 郭印, 王云泉, 陈磊, 米湘成, 任海保, 陈声文, 陈建华. 不同取样强度下古田山木本植物幼苗组成 及其分布格局比较[J]. 生物多样性, 2016, 24(10): 1093-1104. |
[11] | 刘何铭, 杨庆松, 方晓峰, 马遵平, 沈国春, 张志国, 王樟华, 王希华. 亚热带常绿阔叶林林窗物种丰富度的影响因素[J]. 生物多样性, 2015, 23(2): 149-156. |
[12] | 王婷, 任思远, 袁志良, 祝燕, 潘娜, 李鹿鑫, 叶永忠. 密度制约对宝天曼落叶阔叶林锐齿栎死亡前后分布格局的影响[J]. 生物多样性, 2014, 22(4): 449-457. |
[13] | 程佳佳, 米湘成, 马克平, 张金屯. 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应[J]. 生物多样性, 2011, 19(2): 168-177. |
[14] | 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云. 群落构建的中性理论和生态位理论[J]. 生物多样性, 2009, 17(6): 579-593. |
[15] | 覃林, 余世孝. 森林群落复杂性分析: 以广东黑石顶森林为例[J]. 生物多样性, 2004, 12(3): 354-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn