生物多样性 ›› 2016, Vol. 24 ›› Issue (6): 617-628. DOI: 10.17520/biods.2016054
许格希1, 史作民1,2,,A;*(), 唐敬超1, 许涵3, 杨怀4, 刘世荣1, 李意德3, 林明献4
收稿日期:
2016-02-25
接受日期:
2016-06-05
出版日期:
2016-06-20
发布日期:
2016-06-20
通讯作者:
史作民
基金资助:
Gexi Xu1, Zuomin Shi1,2,*(), Jingchao Tang1, Han Xu3, Huai Yang4, Shirong Liu1, Yide Li3, Mingxian Lin4
Received:
2016-02-25
Accepted:
2016-06-05
Online:
2016-06-20
Published:
2016-06-20
Contact:
Shi Zuomin
摘要:
研究不同径级尺度群落系统发育多样性有助于了解不同年龄模式下物种的亲缘关系及其群落系统发育结构; 但是关于物种多度对群落系统发育结构影响的研究较少。以海南尖峰岭热带山地雨林群落为例, 首先在不同径级尺度比较物种多度加权与否分别对4个广泛采用的系统发育指数的影响, 继而利用其中2个经过标准化处理的系统发育多样性指数: 净种间亲缘关系指数(net relatedness index, NRI)和净最近种间亲缘关系指数(nearest taxon index, NTI), 结合群落的生境类型来量度不同局域生境条件下不同径级尺度木本植物系统发育关系。结果发现: (1)未考虑物种多度加权的系统发育平均成对距离(mean pairwise distance, MPD)指数比考虑物种多度加权的MPD指数显著地高估了群落整体系统发育多样性, 且这种现象在小径级尺度(1 cm≤DBH<5 cm)最为明显。因此, 在森林监测样地中对于中、小径级群落系统发育结构研究中建议考虑物种多度信息。(2) 从群落组成整体系统发育结构来看, 尖峰岭热带山地雨林在几乎所有径级尺度和生境下均倾向于系统发育发散, 且随着径级的递增发散程度趋于明显(NRI<0)。(3)从群落组成局部系统发育结构来看, 尖峰岭热带山地雨林在中、小径级倾向于系统发育聚集(NTI>0), 而在大径级(DBH≥15 cm)则倾向于系统发育发散(NTI<0)。总之, 研究群落系统发育结构时应考虑物种多度的影响以及径级尺度效应。
许格希, 史作民, 唐敬超, 许涵, 杨怀, 刘世荣, 李意德, 林明献 (2016) 物种多度和径级尺度对于评价群落系统发育结构的影响: 以尖峰岭热带山地雨林为例. 生物多样性, 24, 617-628. DOI: 10.17520/biods.2016054.
Gexi Xu, Zuomin Shi, Jingchao Tang, Han Xu, Huai Yang, Shirong Liu, Yide Li, Mingxian Lin (2016) Effects of species abundance and size classes on assessing community phylogenetic structure: a case study in Jianfengling tropical montane rainforest. Biodiversity Science, 24, 617-628. DOI: 10.17520/biods.2016054.
径级 Size classes | 植株数量 Individuals | 种数 Species | 种百分比 Species percentage (%) | 属数 Genus | 属百分比 Genus percentage (%) | 科数 Families | 科百分比 Family pergentage (%) |
---|---|---|---|---|---|---|---|
DBH≥15 cm | 1,689 (7.48%) | 146 | 61.86 | 82 | 64.06 | 42 | 75.00 |
5 cm≤DBH<15 cm | 3,302 (14.64%) | 191 | 80.93 | 109 | 85.16 | 54 | 96.43 |
1 cm≤DBH<5 cm | 17,570 (77.88%) | 226 | 95.76 | 123 | 96.09 | 54 | 96.43 |
DBH≥1 cm | 22,561 | 236 | 100 | 128 | 100 | 56 | 100 |
表1 海南尖峰岭热带山地雨林群落不同径级尺度乔灌木植物科属种分布
Table 1 Distribution of species, genus and families of trees and shrubs in different DBH size classes in Jianfengling tropical montane rainforest community
径级 Size classes | 植株数量 Individuals | 种数 Species | 种百分比 Species percentage (%) | 属数 Genus | 属百分比 Genus percentage (%) | 科数 Families | 科百分比 Family pergentage (%) |
---|---|---|---|---|---|---|---|
DBH≥15 cm | 1,689 (7.48%) | 146 | 61.86 | 82 | 64.06 | 42 | 75.00 |
5 cm≤DBH<15 cm | 3,302 (14.64%) | 191 | 80.93 | 109 | 85.16 | 54 | 96.43 |
1 cm≤DBH<5 cm | 17,570 (77.88%) | 226 | 95.76 | 123 | 96.09 | 54 | 96.43 |
DBH≥1 cm | 22,561 | 236 | 100 | 128 | 100 | 56 | 100 |
系统发育多样性指数 Phylogenetic diversity indices | 径级 Size classes | |||
---|---|---|---|---|
DBH≥15 cm | 5 cm≤DBH<15 cm | 1 cm≤DBH<5 cm | DBH≥1 cm | |
MPD vs. AW-MPD | 0.797*** | 0.805*** | 0.473*** | 0.465*** |
MNTD vs. AW-MNTD | 0.895*** | 0.888*** | 0.725*** | 0.828*** |
NRI vs. AW-NRI | 0.876*** | 0.893*** | 0.621*** | 0.597*** |
NTI vs. AW-NTI | 0.149 | 0.406*** | 0.542*** | 0.687*** |
表2 物种多度加权前后系统发育多样性指数Pearson相关性
Table 2 Pearson correlation of phylogenetic diversity indices with and without species weighted abundance
系统发育多样性指数 Phylogenetic diversity indices | 径级 Size classes | |||
---|---|---|---|---|
DBH≥15 cm | 5 cm≤DBH<15 cm | 1 cm≤DBH<5 cm | DBH≥1 cm | |
MPD vs. AW-MPD | 0.797*** | 0.805*** | 0.473*** | 0.465*** |
MNTD vs. AW-MNTD | 0.895*** | 0.888*** | 0.725*** | 0.828*** |
NRI vs. AW-NRI | 0.876*** | 0.893*** | 0.621*** | 0.597*** |
NTI vs. AW-NTI | 0.149 | 0.406*** | 0.542*** | 0.687*** |
图1 物种多度加权对系统发育多样性指数的影响。虚线表示1:1线, 实线是一元线性回归拟合曲线。分布于虚线左侧的散点表示高估了系统发育多样性, 分布于虚线右侧的散点表示低估了系统发育多样性。
Fig. 1 Effects of species weighted abundance on phylogenetic diversity indices. The dash lines are 1:1 lines, and the solid lines are simulated lines based on simple linear regression. Scatter points distributed on the left side of the dash lines indicate overestimation of phylogenetic diversity, while those on the right side indicate underestimation of phylogenetic diversity. MPD, Mean pairwise distance; AW-MPD, Abundance weighted MPD; MNTD, Mean nearest taxon distance; AW-MNTD, Abundance weighted MNTD; NRI, Net relatedness index; AW-NRI, Abundance weighted NRI; NTI, Nearest taxon index; AW-NTI, Abundance weighted NTI.
图2 样方(20 m×20 m)群落不同径级尺度木本植物物种多度加权与否的NRI和NTI模式(Mean±SD)及其对生境异质性的响应
Fig. 2 The patterns (Mean±SD) of phylogenetic dispersion (NRI and NTI) with and without species weighted abundance for woody plants at different size classes in six habitat types at the spatial scale of 20 m×20 m. LS, Low slope; HS, High slope. Size classes: Small, 1 cm≤DBH<5 cm; Middle, 5 cm≤DBH<15 cm; Large, DBH≥15 cm.
生境 Habitat | 径级 Size classes | ||||
---|---|---|---|---|---|
DBH≥15 cm | 5 cm≤DBH<15 cm | 1 cm≤DBH<5 cm | DBH≥1 cm | ||
净种间亲缘关系指数 Net relatedness index (NRI) | 低沟 Valley | -0.81±0.70Ab | -0.25±1.00Aa | -0.21±0.73ABa | -0.57±0.82A |
低坡 Low slope | -0.87±1.37Aa | -0.66±0.91Aa | -0.57±0.69ABa | -1.16±0.88A | |
高坡 High slope | -0.90±0.52Aa | -0.63±0.98Aa | -0.62±0.52ABa | -0.79±0.48A | |
高沟 Gully | -1.33±1.03Ab | -0.26±0.76Aab | -0.53±0.59ABa | -1.10±0.76A | |
鞍部 Saddle | -0.91±1.10Aa | -0.67±0.91Aa | 0.30±0.42Aa | -0.51±0.69A | |
山脊 Ridge | -1.21±1.05Aa | -0.68±0.76Aa | -0.81±0.83Ba | -1.23±0.63A | |
物种多度加权净种间亲缘关系指数 Abundance weighted net relatedness index (AW-NRI) | 低沟 Valley | -0.81±0.61Ab | -0.14±0.71Aa | 0.19±0.37Aa | -0.01±0.46A |
低坡 Low slope | -1.13±0.81Aa | -0.79±0.58Aa | -0.68±0.71Ba | -1.01±0.22B | |
高坡 High slope | -0.87±0.40Aa | -0.52±0.69Aa | -0.62±0.24Ba | -0.75±0.26B | |
高沟 Gully | -1.48±0.54Ab | -0.19±0.58Aa | -0.46±0.29Ba | -0.78±0.20B | |
鞍部 Saddle | -0.68±0.71Ab | -0.43±0.59Aa | 0.31±0.40Aa | -0.13±0.36A | |
山脊 Ridge | -1.19±0.81Aa | -0.46±0.29Aa | -0.87±0.45Ba | -0.78±0.20B | |
净最近种间亲缘关系指数 Nearest taxon index (NTI) | 低沟 Valley | -0.24±0.73Ac | 0.20±0.69ABbc | 1.04±1.00Aa | 0.64±0.85AB |
低坡 Low slope | -0.18±0.66Aa | -0.04±0.82ABa | 0.36±0.90Aa | 0.16±0.93AB | |
高坡 High slope | -0.15±1.04Ab | 0.77±1.17Aa | 0.98±0.70Aa | 0.53±0.57AB | |
高沟 Gully | -0.64±1.44Ab | 0.24±0.78ABa | 1.00±0.57Aa | 0.39±0.95AB | |
鞍部 Saddle | -1.25±1.09Ab | -0.72±0.68Ba | 0.71±0.82Aa | -0.35±0.94B | |
山脊 Ridge | -0.49±1.38Ab | 0.90±0.76Aa | 1.43±0.78Aa | 0.93±0.64A | |
物种多度加权净最近种间亲缘关系指数 Abundance weighted nearest taxon index (AW-NTI) | 低沟 Valley | -0.31±0.73Ab | 0.64±0.85ABa | 0.63±0.66ABa | 0.25±0.53BC |
低坡 Low slope | -0.67±0.73Aa | 0.16±0.93ABa | 0.52±0.34ABa | -0.03±0.62BC | |
高坡 High slope | -0.36±0.84Ab | 0.53±0.57ABa | 0.92±0.41ABa | 0.51±0.40AB | |
高沟 Gully | -0.83±1.00Ab | 0.39±0.95ABa | 0.90±0.58ABa | 0.24±0.89BC | |
鞍部 Saddle | -1.04±0.57Aa | -0.35±0.94Ba | 0.07±0.79Ba | -0.41±0.71C | |
山脊 Ridge | -0.56±1.19Ab | 0.93±0.64Aa | 1.14±0.55Aa | 0.92±0.62A |
表3 物种多度加权与否的NRI和NTI (mean ± SD)关于径级和生境的Tukey多重比较
Table 3 Tukey multi-comparison for NRI and NTI (mean±SD) with and without species weighted abundance among different DBH size classes and habitat types.
生境 Habitat | 径级 Size classes | ||||
---|---|---|---|---|---|
DBH≥15 cm | 5 cm≤DBH<15 cm | 1 cm≤DBH<5 cm | DBH≥1 cm | ||
净种间亲缘关系指数 Net relatedness index (NRI) | 低沟 Valley | -0.81±0.70Ab | -0.25±1.00Aa | -0.21±0.73ABa | -0.57±0.82A |
低坡 Low slope | -0.87±1.37Aa | -0.66±0.91Aa | -0.57±0.69ABa | -1.16±0.88A | |
高坡 High slope | -0.90±0.52Aa | -0.63±0.98Aa | -0.62±0.52ABa | -0.79±0.48A | |
高沟 Gully | -1.33±1.03Ab | -0.26±0.76Aab | -0.53±0.59ABa | -1.10±0.76A | |
鞍部 Saddle | -0.91±1.10Aa | -0.67±0.91Aa | 0.30±0.42Aa | -0.51±0.69A | |
山脊 Ridge | -1.21±1.05Aa | -0.68±0.76Aa | -0.81±0.83Ba | -1.23±0.63A | |
物种多度加权净种间亲缘关系指数 Abundance weighted net relatedness index (AW-NRI) | 低沟 Valley | -0.81±0.61Ab | -0.14±0.71Aa | 0.19±0.37Aa | -0.01±0.46A |
低坡 Low slope | -1.13±0.81Aa | -0.79±0.58Aa | -0.68±0.71Ba | -1.01±0.22B | |
高坡 High slope | -0.87±0.40Aa | -0.52±0.69Aa | -0.62±0.24Ba | -0.75±0.26B | |
高沟 Gully | -1.48±0.54Ab | -0.19±0.58Aa | -0.46±0.29Ba | -0.78±0.20B | |
鞍部 Saddle | -0.68±0.71Ab | -0.43±0.59Aa | 0.31±0.40Aa | -0.13±0.36A | |
山脊 Ridge | -1.19±0.81Aa | -0.46±0.29Aa | -0.87±0.45Ba | -0.78±0.20B | |
净最近种间亲缘关系指数 Nearest taxon index (NTI) | 低沟 Valley | -0.24±0.73Ac | 0.20±0.69ABbc | 1.04±1.00Aa | 0.64±0.85AB |
低坡 Low slope | -0.18±0.66Aa | -0.04±0.82ABa | 0.36±0.90Aa | 0.16±0.93AB | |
高坡 High slope | -0.15±1.04Ab | 0.77±1.17Aa | 0.98±0.70Aa | 0.53±0.57AB | |
高沟 Gully | -0.64±1.44Ab | 0.24±0.78ABa | 1.00±0.57Aa | 0.39±0.95AB | |
鞍部 Saddle | -1.25±1.09Ab | -0.72±0.68Ba | 0.71±0.82Aa | -0.35±0.94B | |
山脊 Ridge | -0.49±1.38Ab | 0.90±0.76Aa | 1.43±0.78Aa | 0.93±0.64A | |
物种多度加权净最近种间亲缘关系指数 Abundance weighted nearest taxon index (AW-NTI) | 低沟 Valley | -0.31±0.73Ab | 0.64±0.85ABa | 0.63±0.66ABa | 0.25±0.53BC |
低坡 Low slope | -0.67±0.73Aa | 0.16±0.93ABa | 0.52±0.34ABa | -0.03±0.62BC | |
高坡 High slope | -0.36±0.84Ab | 0.53±0.57ABa | 0.92±0.41ABa | 0.51±0.40AB | |
高沟 Gully | -0.83±1.00Ab | 0.39±0.95ABa | 0.90±0.58ABa | 0.24±0.89BC | |
鞍部 Saddle | -1.04±0.57Aa | -0.35±0.94Ba | 0.07±0.79Ba | -0.41±0.71C | |
山脊 Ridge | -0.56±1.19Ab | 0.93±0.64Aa | 1.14±0.55Aa | 0.92±0.62A |
[12] | Erickson DL, Jones FA, Swenson NG, Pei NC, Bourg NA, Chen WN, Davies SJ, Ge XJ, Hao ZQ, Howe RW, Huang CL, Larson AJ, Lum SKY, Lutz JA, Ma KP, Meegaskumbura M, Mi XC, Parker JD, Sun IF, Wright SJ, Wolf AT, Ye WH, Xing DL, Zimmerman JK, Kress WJ (2014) Comparative evolutionary diversity and phylogenetic structure across multiple forest dynamics plots: a mega-phylogeny approach. Frontiers in Genetics, 5, 358. |
[13] | Guo ZG, Liu HX, Sun XG, Cheng GD (2003) Characteristics of species diversity of plant communities in the upper reaches of Bailong River. Acta Phytoecologica Sinica, 27, 388-395. (in Chinese with English abstract) |
[郭正刚, 刘慧霞, 孙学刚, 程国栋 (2003) 白龙江上游地区森林植物群落物种多样性的研究. 植物生态学报, 27, 388-395.] | |
[14] | He JS, Chen WL, Jiang MX, Jin YX, Hu D, Lu P (1998) Plant species diversity of the degraded ecosystems in the Three Gorges region. Acta Ecologica Sinica, 18, 399-407. (in Chinese with English abstract) |
[贺金生, 陈伟烈, 江明喜, 金兴义, 胡东, 路鹏 (1998) 长江三峡地区退化生态系统植物群落物种多样性特征. 生态学报, 18, 399-407.] | |
[15] | Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. The American Naturalist, 169, E68-E83. |
[16] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32). Princeton University Press, New Jersey. |
[17] | Huston M (1979) A general hypothesis of species diversity. The American Naturalist, 113, 81-101. |
[18] | Jiang YX, Lu JP (1991) Forest Ecosystem of Tropical Forest of Jianfengling Mountain, Hainan Island, China. Science Press, Beijing. (in Chinese) |
[蒋有绪, 卢俊培 (1991) 中国海南岛尖峰岭热带林生态系统. 科学出版社, 北京.] | |
[19] | Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464. |
[20] | Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930. |
[21] | Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Bermingham E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, USA, 106, 18621-18626. |
[22] | Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proceedings of the National Academy of Sciences, USA, 111, 5616-5621. |
[23] | Letcher SG, Lasky JR, Chazdon RL, Norden N, Wright SJ, Meave JA, Pérez-García EA, Muñoz R, Romero-Pérez E, Andrade A, Andrade JL, Balvanera P, Becknell JM, Bentos TV, Bhaskar R, Bongers F, Boukili V, Brancalion PHS, César RG, Clark DA, Clark DB, Craven D, DeFrancesco A, Dupuy JM, Finegan B, González-Jiménez E, Hall JS, Harms KE, Hernández-Stefanoni JL, Hietz P, Kennard D, Killeen TJ, Laurance SG, Lebrija-Trejos EE, Lohbeck M, Martínez-Ramos M, Massoca PES, Mesquita RCG, Mora F, Muscarella R, Paz H, Pineda-García F, Powers JS, Quesada-Monge R, Rodrigues RR, Sandor ME, Sanaphre-Villanueva L, Schüller E, Swenson NG, Tauro A, Uriarte M, van Breugel M, Vargas-Ramírez O, Viani RAG, Wendt AL, Williamson GB (2015) Environmental gradients and the evolution of successional habitat specialization: a test case with 14 Neotropical forest sites. Journal of Ecology, 103, 1276-1290. |
[24] | Li YD, Chen BF, Zhou GY, Wu ZM, Zeng QB, Luo TS, Huang SN, Xie MD, Huang Q (2002) Research and Conservation of Tropical Forest and the Biodiversity: A Species Reference to Hainan Island, China. China Forestry Publishing House, Beijing. (in Chinese) |
[李意德, 陈步峰, 周光益, 吴仲民, 曾庆波, 骆土寿, 黄世能, 谢明东, 黄全 (2002)中国海南岛热带森林及其生物多样性保护研究. 中国林业出版社, 北京.] | |
[25] | Li YD, Xu H, Luo TS, Chen DX, Lin MX (2012) Permant Monitoring and Research Dataset of Chinese Ecosystem: Forest Ecosystem: Jianfengling Station (Bio-Species Checklist). China Agriculture Press, Beijing. (in Chinese) |
[李意德, 许涵, 骆土寿, 陈德祥, 林明献 (2012) 中国生态系统定位观测与研究数据集: 森林生态系统卷: 海南尖峰岭站(生物物种数据集). 中国农业出版社, 北京] | |
[26] | Losos JB (1994) An approach to the analysis of comparative data when a phylogeny is unavailable or incomplete. Systematic Biology, 43, 117-123. |
[27] | Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995-1003. |
[28] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 247-248. (in Chinese) |
[马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 247-248.] | |
[29] | Magallón S, Castillo A (2009) Angiosperm diversification through time. American Journal of Botany, 96, 349-365. |
[30] | Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290. |
[31] | Pool TK, Grenouillet G, Villéger S (2014) Species contribute differently to the taxonomic, functional, and phylogenetic alpha and beta diversity of freshwater fish communities. Diversity and Distributions, 20, 1235-1244. |
[32] | R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Stastical Computing.2014. . |
[33] | Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24-43. |
[34] | Swenson NG (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98, 472-480. |
[1] | Andersen KM, Turner BL, Dalling JW (2014) Seedling performance trade-offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology, 95, 3399-3413. |
[2] | Anderson T, Lachance M, Starmer W (2004) The relationship of phylogeny to community structure: the cactus yeast community. The American Naturalist, 164, 709-721. |
[35] | Swenson NG (2013) The assembly of tropical tree communities —the advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276. |
[36] | Swenson NG (2014) Functional and Phylogenetic Ecology in R. Springer Science & Business Media, New York. |
[3] | Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Joseph Wright S, Salim AK, Zambrano AMA, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng XB, Detto M, Du XJ, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao ZQ, Hargrove WW, Hart TB, Hau BCH, He FL, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang MX, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li YD, Li XK, Liu SR, Lum SKY, Lutz JA, Ma KP, Maddalena DM, Makana J-R, Malhi Y, Marthews T, Serudin RM, McMahon SM, McShea WJ, Memiaghe HR, Mi XC, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, Ouden JD, Parker GG, Phillips RP, Sack L, Sainge MN, Sang WG, Sri-ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang XH, Wang XG, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2014) CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528-549. |
[4] | Bremer B, Bremer K, Chase M, Fay M, Reveal J, Soltis D, Soltis P, Stevens P (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161, 105-121. |
[5] | Castro SA, Escobedo VM, Aranda J, Carvallo GO (2014) Evaluating Darwin’s naturalization hypothesis in experimental plant assemblages: phylogenetic relationships do not determine colonization success. PLoS ONE, 9, e105535. |
[6] | CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797. |
[37] | Swenson NG, Enquist BJ, Thompson J, Zimmerman JK (2007) The influence of spatial and size scale on phylogenetic relatedness in tropical forest communities. Ecology, 88, 1770-1780. |
[38] | Swenson NG, Erickson DL, Mi XC, Bourg NA, Forero- Montaña J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thompson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ (2012) Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93, S112-S125. |
[39] | Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science, 277, 1300-1302. |
[7] | Chamberlain S, Vázquez DP, Carvalheiro L, Elle E, Vamosi JC (2014) Phylogenetic tree shape and the structure of mutualistic networks. Journal of Ecology, 102, 1234-1243. |
[8] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison With Other Plots. Springer Science & Business Media, New York. |
[40] | Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ (2011) Measuring phylogenetic biodiversity. In: Biological Diversity: Frontiers in Measurement and Assessment (eds Magurran A, McGill B), pp. 194-207. Oxford University Press, Oxford, UK. |
[41] | Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 143-155. |
[9] | Cooper N, Jetz W, Freckleton RP (2010) Phylogenetic comparative approaches for studying niche conservatism. Journal of Evolutionary Biology, 23, 2529-2539. |
[10] | Donoghue MJ (2008) A phylogenetic perspective on the distribution of plant diversity. Proceedings of the National Academy of Sciences, USA, 105, 11549-11555. |
[42] | Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[43] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[44] | Webb CO, Donoghue MJ (2005) Phylomatic: tree assembly for applied phylogenetics. Molecular Ecology Notes, 5, 181-183. |
[45] | Webb CO, Losos JB, Agrawal AA (2006) Integrating phylogenies into community ecology. Ecology, 87, S1-S2. |
[46] | Wickham H (2009) Ggplot2: Elegent Graphics for Data Analysis. Springer Science & Business Media, New York. |
[47] | Xu H, Li YD, Lin MX, Wu JH, Luo TS, Zhou Z, Chen DX, Yang H, Li GJ, Liu SR (2015) Community characteristics of a 60 ha dynamics plot in the tropical montane rain forest in Jianfengling, Hainan Island. Biodiversity Science, 23, 192-201. (in Chinese with English abstract) |
[许涵, 李意德, 林明献, 吴建辉, 骆土寿, 周璋, 陈德祥, 杨怀, 李广建, 刘世荣 (2015) 海南尖峰岭热带山地雨林60 ha动态监测样地群落结构特征. 生物多样性, 23, 192-201.] | |
[48] | Yang J, Ci XQ, Lu MN, Zhang GC, Cao M, Li J, Lin LX (2014) Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots. Journal of Plant Ecology, 7, 115-125. |
[49] | Yang J, Zhang GC, Ci XQ, Swenson NG, Cao M, Sha LQ, Li J, Baskin CC, Slik JWF, Lin LX (2013) Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Functional Ecology, 28, 520-529. |
[50] | Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, McGlinn DJ, O’Meara BC, Moles AT, Reich PB, Royer DL, Soltis DE, Stevens PF, Westoby M, Wright IJ, Aarssen L, Bertin RI, Calaminus A, Govaerts R, Hemmings F, Leishman MR, Oleksyn J, Soltis PS, Swenson NG, Warman L, Beaulieu JM (2014) Three keys to the radiation of angiosperms into freezing environments. Nature, 506, 89-92. |
[51] | Zeng QB, Li YD, Chen BF, Wu ZM, Zhou GY (1997) Research and Management of Tropical Forest Ecosystem. China Forestry Publishing House, Beijing. (in Chinese) |
[曾庆波, 李意德, 陈步峰, 吴仲民, 周光益 (1997) 热带森林生态系统研究与管理. 中国林业出版社, 北京.] | |
[52] | Zhu Y, Comita LS, Hubbell SP, Ma KP (2015) Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957-966. |
[11] | Eastman JM, Harmon LJ, Tank DC (2013) Congruification: support for time scaling large phylogenetic trees. Methods in Ecology and Evolution, 4, 688-691. |
[1] | 曹可欣, 王敬雯, 郑国, 武鹏峰, 李英滨, 崔淑艳. 降水格局改变及氮沉降对北方典型草原土壤线虫多样性的影响[J]. 生物多样性, 2024, 32(3): 23491-. |
[2] | 杨舒涵, 王贺, 陈磊, 廖蓥飞, 严光, 伍一宁, 邹红菲. 松嫩平原异质生境对土壤线虫群落特征的影响[J]. 生物多样性, 2024, 32(1): 23295-. |
[3] | 王明慧, 陈昭铨, 李帅锋, 黄小波, 郎学东, 胡子涵, 尚瑞广, 刘万德. 云南普洱季风常绿阔叶林不同种子扩散方式的优势种空间点格局分析[J]. 生物多样性, 2023, 31(9): 23147-. |
[4] | 谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善. 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素[J]. 生物多样性, 2023, 31(5): 22345-. |
[5] | 刘文聪, 田希, 杨涛, 饶杰生, 王晓凤, 钱恒君, 涂梦灵, 单子铭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林优势树种的种群结构与更新特征[J]. 生物多样性, 2023, 31(11): 23251-. |
[6] | 李国华, 郭向阳, 李霖明, 任明迅, 万玲, 丁琼, 李娟玲. 海南热带雨林国家公园不同植被类型的大型真菌多样性[J]. 生物多样性, 2022, 30(7): 22110-. |
[7] | 颜文博, 莫燕妮, 曾治高, 薛少亮, 王琦, 梁春生, 黄祝礼, 罗文, 刘大业, 莫世琴, 李晓光, 梁路, 杜鹍鹏. 海南尖峰岭中华穿山甲的分布与保护现状[J]. 生物多样性, 2022, 30(6): 22106-. |
[8] | 姜晓燕, 高圣杰, 蒋燕, 田赟, 贾昕, 查天山. 毛乌素沙地植被不同恢复阶段植物群落物种多样性、功能多样性和系统发育多样性[J]. 生物多样性, 2022, 30(5): 21387-. |
[9] | 鲁梦珍, 曾馥平, 宋同清, 彭晚霞, 张浩, 苏樑, 刘坤平, 谭卫宁, 杜虎. 喀斯特常绿落叶阔叶林死亡个体空间分布格局及生境关联[J]. 生物多样性, 2022, 30(4): 21340-. |
[10] | 李帆, 王党军, 林小元, 纪康, 叶露萍, 黄超, 郑勇, Zhun Mao, 左娟. 八大公山亚热带森林木质残体中大型无脊椎动物群落特征[J]. 生物多样性, 2022, 30(12): 21476-. |
[11] | 陈博, 江蓝, 谢子扬, 李阳娣, 李佳萱, 李梦佳, 魏晨思, 邢聪, 刘金福, 何中声. 格氏栲天然林林窗植物物种多样性与系统发育多样性[J]. 生物多样性, 2021, 29(4): 439-448. |
[12] | 杨思琪,张琪,宋希强,王健,李意德,许涵,郭守玉,丁琼. 尖峰岭热带山地雨林根部真菌-植物互作网络结构特征[J]. 生物多样性, 2019, 27(3): 314-326. |
[13] | 杨贵军, 王敏, 杨益春, 李欣芸, 王新谱. 贺兰山甲虫物种丰富度分布格局及其环境解释[J]. 生物多样性, 2019, 27(12): 1309-1319. |
[14] | 孙德鑫, 刘向, 周淑荣. 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建[J]. 生物多样性, 2018, 26(7): 655-666. |
[15] | 张宇, 冯刚. 内蒙古昆虫物种多样性分布格局及其机制[J]. 生物多样性, 2018, 26(7): 701-706. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn