生物多样性 ›› 2009, Vol. 17 ›› Issue (6): 579-593. DOI: 10.3724/SP.J.1003.2009.09142
所属专题: 群落中的物种多样性:格局与机制
牛克昌1,*(), 刘怿宁1, 沈泽昊1, 何芳良2, 方精云1
收稿日期:
2009-06-03
接受日期:
2009-12-06
出版日期:
2009-11-20
发布日期:
2009-11-20
通讯作者:
牛克昌
作者简介:
*E-mail: kechangniu@pku.edu.cn基金资助:
Kechang Niu1,*(), Yining Liu1, Zehao Shen1, Fangliang He2, Jingyun Fang1
Received:
2009-06-03
Accepted:
2009-12-06
Online:
2009-11-20
Published:
2009-11-20
Contact:
Kechang Niu
摘要:
物种共存和生物多样性维持一直是生态学研究的中心论题。基于物种生态位分化的群落构建理论已经发展了近一个世纪, 但我们对群落构建和生物多样性维持的机理仍然不清楚。近年来, 群落中性理论以其简约性和预测能力成为群落生态学研究的焦点, 但由于其“物种在生态功能上等价”的假设与大量研究结果相悖, 同时对自然群落结构的准确预测也只限于少数的生态系统, 因而饱受质疑。如今, 越来越多的生态学家认为群落构建的生态位理论与中性理论之争的最终归宿应该是二者的整合。 在本文中, 我们在简要回顾生态位理论和群落中性理论发展的基础上, 分析二者之间的主要分歧和互补性, 试图梳理二者整合的途径。我们认为, 尽管中性理论的发展极大地丰富了群落构建理论, 但二者的整合尚处于初级阶段; 群落构建零模型假说、中性—生态位连续体假说、随机生态位假说等都不失为有价值的尝试, 今后需要在其他类型的生态系统中进行实验验证, 以更好地理解确定性过程和随机过程在决定群落构建和生物多样性维持中的作用。
牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 (2009) 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593. DOI: 10.3724/SP.J.1003.2009.09142.
Kechang Niu, Yining Liu, Zehao Shen, Fangliang He, Jingyun Fang (2009) Community assembly: the relative importance of neutral theory and niche theory. Biodiversity Science, 17, 579-593. DOI: 10.3724/SP.J.1003.2009.09142.
图2 生态位构建和扩散构建下的物种理论分布示意(其中○□◇△代表4个不同的物种, 6种局域群落用大方框表示, 仿自Chave, 2008)。
Fig. 2 A graphic representation of species distribution in different local community (○□◇△ indicate four species and six communities and larger rectangles indicate six communities, respectively. Simulated from Chave, 2008)
验证项 | 待检验假设 | 检验区域 | 主要结论 | 相关文献 |
---|---|---|---|---|
物 种 等 价 性 | 检验群落物种的出生率、死亡率和拓殖能力是否相同 | 热带雨林乔木 | 大部分物种的出生率、死亡率和拓殖能力不符合中性假设 | |
自然群落中, 物种的功能属性与群落结构是否有关 | 高寒草地、温带草原、热带雨林 | 群落组分种对环境响应各异, 物种功能性状与群落结构变化有关, 不符合中性假设 | ||
物种是否可相互替代以及物种间相互作用是否等价性 | 热带雨林乔木 | 物种不可替代, 种间作用不等价, 如同属内物种相互作用强于异属物种。 | ||
物种入侵和拓殖成功率是否与入侵物种的属性以及群落结构有关 | 各类入侵物种和被入侵植物群落 | 大多研究表明物种的成功拓殖与物种本身属性和入侵群落属性有密切关系; 也有研究表明入侵与物种和群落属性无关。 | ||
零 和 多 项 模 型 | 自然群落物种分布模式是否与中性理论预测一致。 | 热带雨林、温带针叶林、亚高寒草地、鱼类、腕足类生物化石、鸟类。 | 大多数的群落中, 物种多度分布符合中性理论预测。 | |
比较中性模型和其他模型种对物种多度分布的拟合。 | 重新检验之前经验检验数据 | 中性模型的拟合符合程度并不比其他模型拟合的好。 | ||
扩 散 限 制 | 扩散对现实群落构建有作用 | 热带雨林、亚热带常绿阔叶林乔木、温带落叶阔叶林 | 不同的群落类型、不同研究尺度, 生态位构建和扩散限制相对作用贡献不同, 如 | |
岛屿中的物种数是否与物种属性有关。 | 岛屿生物的重新拓殖, 植物和蝴蝶种群等。 | 岛屿植物拓殖能力与其叶片坚韧程度相关; 蝴蝶多度与其寄主植物生物量相关 |
表1 群落中性理论的检验总结
Table 1 Summary of the empirical tests of community neutral theory
验证项 | 待检验假设 | 检验区域 | 主要结论 | 相关文献 |
---|---|---|---|---|
物 种 等 价 性 | 检验群落物种的出生率、死亡率和拓殖能力是否相同 | 热带雨林乔木 | 大部分物种的出生率、死亡率和拓殖能力不符合中性假设 | |
自然群落中, 物种的功能属性与群落结构是否有关 | 高寒草地、温带草原、热带雨林 | 群落组分种对环境响应各异, 物种功能性状与群落结构变化有关, 不符合中性假设 | ||
物种是否可相互替代以及物种间相互作用是否等价性 | 热带雨林乔木 | 物种不可替代, 种间作用不等价, 如同属内物种相互作用强于异属物种。 | ||
物种入侵和拓殖成功率是否与入侵物种的属性以及群落结构有关 | 各类入侵物种和被入侵植物群落 | 大多研究表明物种的成功拓殖与物种本身属性和入侵群落属性有密切关系; 也有研究表明入侵与物种和群落属性无关。 | ||
零 和 多 项 模 型 | 自然群落物种分布模式是否与中性理论预测一致。 | 热带雨林、温带针叶林、亚高寒草地、鱼类、腕足类生物化石、鸟类。 | 大多数的群落中, 物种多度分布符合中性理论预测。 | |
比较中性模型和其他模型种对物种多度分布的拟合。 | 重新检验之前经验检验数据 | 中性模型的拟合符合程度并不比其他模型拟合的好。 | ||
扩 散 限 制 | 扩散对现实群落构建有作用 | 热带雨林、亚热带常绿阔叶林乔木、温带落叶阔叶林 | 不同的群落类型、不同研究尺度, 生态位构建和扩散限制相对作用贡献不同, 如 | |
岛屿中的物种数是否与物种属性有关。 | 岛屿生物的重新拓殖, 植物和蝴蝶种群等。 | 岛屿植物拓殖能力与其叶片坚韧程度相关; 蝴蝶多度与其寄主植物生物量相关 |
图3 扩散限制验证的8个生态系统的16个研究对象中扩散主导、生态位主导以及两者共同作用的相对贡献
Fig. 3 Summary of the relative importance of dispersal and niche assembly in 16 ecosystems from eight studies
[1] | Ackerly D, Schwilk D, Webb C (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology, 87, 50-61. |
[2] | Adler PB (2004) Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 85, 1265-1272. |
[3] |
Adler PB, HilleRisLambers J, Levine JM (2007) A niche for neutrality. Ecology Letters, 10, 95-104.
URL PMID |
[4] |
Alonso D, Etienne RS, McKane AJ (2006) The merits of neutral theory. Trends in Ecology and Evolution, 21, 451-457.
DOI URL PMID |
[5] | Alonso D, McKane AJ (2004) Sampling Hubbell’s neutral theory of biodiversity. Ecology Letters, 7, 901-910. |
[6] |
Bell G (2000) The distribution of abundance in neutral communities. The American Naturalist, 155, 606-617.
DOI URL PMID |
[7] | Bell G (2003) The interpretation of biological surveys. Proceedings of the Royal Society of London: Series B, 270, 2531-2542. |
[8] | Burns KC, Neufeld CJ (2009) Plant extinction dynamics in an insular metacommunity. Oikos, 118, 191-198. |
[9] | Cadotte M, McMahon S, Fukami T (2006) Conceptual Ecology and Invasion Biology: Reciprocal Approaches to Nature. Springer Verlag, Dordrecht. |
[10] | Caswell H (1976) Community structure: a neutral model analysis. Ecological Monographs, 46, 327-354. |
[11] |
Chase JM (2003) Community assembly: when should history matter? Oecologia, 136, 489-498.
DOI URL PMID |
[12] | Chase JM (2005) Towards a really unified theory for metacommunities. Functional Ecology, 19, 182-186. |
[13] | Chase JM, Leibold MA (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press, Chicago: |
[14] | Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[15] | Chave J (2008) Spatial variation in tree species composition across tropical forests: pattern and process. In: Tropical Forest Community Ecology (eds Carson WP, Schnitzer SA). Wiley-Blackwell, Oxford. |
[16] |
Chave J, Leigh EG (2002) A spatially explicit neutral model of beta-diversity in tropical forests. Theoretical Population Biology, 62, 153-168.
DOI URL PMID |
[17] | Chesson P (2000) Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343-366. |
[18] |
Chu CJ, Wang YS, Du GZ, Maestre F, Luo YJ, Wang G (2007) On the balance between niche and neutral processes as drivers of community structure along a successional gradient: insights from alpine and sub-alpine meadow communities. Annals of Botany, 100, 807-812.
DOI URL PMID |
[19] | Cielo R, Gneri MA, Martins FR (2007) Position on slope, disturbance, and tree species coexistence in a seasonal semideciduous forest in SE Brazil. Plant Ecology, 190, 189-203. |
[20] |
Clark JS (2009) Beyond neutral science. Trends in Ecology and Evolution, 24, 8-15.
DOI URL PMID |
[21] |
Clark JS, Dietze M, Chakraborty S, Agarwal PK, Ibanez I, LaDeau S, Wolosin M (2007) Resolving the biodiversity paradox. Ecology Letters, 10, 647-659.
DOI URL PMID |
[22] | Clark JS, Ladeau S, Ibanez I (2004) Fecundity of trees and the colonization-competition hypothesis. Ecological Monographs, 74, 415-442. |
[23] | Clements FE (ed.) (1916) Plant Succession: An Analysis of the Development of Vegetation. Carnegic Institution of Washington, Washington. |
[24] | Colinvaux P (1986) Ecology. Wiley, New York. |
[25] |
Condit R, Pitman N, Leigh EGJ, Chave J, Terborgh J, Foster RB, Nunez P, Aguilar S, Valencia R, Villa G, Muller-Landau HC, Losos E, Hubbell SP (2002) Beta-diversity in tropical forest trees. Science, 295, 666-669.
DOI URL PMID |
[26] | Daleo P, Alberti J, Iribarne O (2009) Biological invasions and the neutral theory. Diversity and Distributions, 15, 547-553. |
[27] | Díaz S, Cabido M, Casanoves F (1998) Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science, 9, 113-122. |
[28] | Diamond JM (1975) Assembly of species communities. In: Ecology and Evolution of Communities (eds Cody ML, Diamond JM), pp. 342-444. Belknap Press of Harvard University, Cambridge, MA. |
[29] | Du XG (杜晓光) , Zhou SR (周淑荣) (2008) Testing the neutral theory of plant communities in subalpine meadow. Journal of Plant Ecology (植物生态学报), 32, 347-354. (in Chinese with English abstract) |
[30] | Etienne RS (2005) A new sampling formula for neutral biodiversity. Ecology Letters, 8, 253-260. |
[31] |
Etienne RS, Olff H (2004a) How dispersal limitation shapes species-body size distributions in local communities. The American Naturalist, 163, 69-83.
DOI URL PMID |
[32] | Etienne RS, Olff H (2004b) A novel genealogical approach to neutral biodiversity theory. Ecology Letters, 7, 170-175. |
[33] |
Ewens WJ (1972) Sampling theory of selectively neutral alleles. Theoretical Population Biology, 3, 87-112.
DOI URL PMID |
[34] | Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences,USA, 100, 8916-8920. |
[35] | Gaston KJ, Chown SL (2005) Neutrality and the niche. Functional Ecology, 19, 1-6. |
[36] | Gause GF (ed.) (1934) The Struggle for Existence. Williams and Wilkins, Baltimore. |
[37] | Gewin V (2006) Beyond neutrality: ecology finds its niche. PLoS Biology, 4, 1306-1310. |
[38] | Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences, USA, 101, 7651. |
[39] | Gleason HA (1926) The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7-26. |
[40] | Chesson PL, Warner RR (1981) Environmental variability promotes coexistence in lottery competitive systems. The American Naturalist, 117, 923-943. |
[41] | Gotelli NJ, McGill BJ (2006) Null versus neutral models: what’s the difference? Ecography, 29, 793-800. |
[42] | Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters, 9, 399-409. |
[43] | Grime J (2006) Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. Journal of Vegetation Science, 17, 255-260. |
[44] | Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biological Reviews, 52, 107-145. |
[45] |
Harpole WS, Tilman D (2006) Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15-23.
DOI URL PMID |
[46] | Harte J (2004) The value of null theories in ecology. Ecology, 85, 1792-1794. |
[47] | Harvey P, Colwell R, Silvertown J, May R (1983) Null models in ecology. Annual Review of Ecology and Systematics, 14, 189-211. |
[48] | He F (2005) Deriving a neutral model of species abundance from fundamental mechanisms of population dynamics. Functional Ecology, 19, 187-193. |
[49] | Hérault B (2007) Reconciling niche and neutrality through the emergent group approach. Perspectives in Plant Ecology, Evolution and Systematics, 9, 71-78. |
[50] | Hu XS, He F, Hubbell SP (2006) Neutral theory in population genetics and macroecology. Oikos, 113, 548-556. |
[51] |
Holt RD (2006) Emergent neutrality. Trends in Ecology and Evolution, 21, 531-533.
DOI URL PMID |
[52] | Houlahan JE, Currie DJ, Cottenie K, Cumming GS, Ernest SKM, Findlay CS, Fuhlendorf SD, Gaedke U, Legendre P, Magnuson JJ, McArdle BH, Muldavin EH, Noble D, Russell R, Stevens RD, Willis TJ, Woiwod IP, Wondzell SM (2007) Compensatory dynamics are rare in natural ecological communities. Proceedings of the National Academy of Sciences, USA, 104, 3273-3277. |
[53] | Hubbell SP (2001) The Unified Ueutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton and Oxford. |
[54] | Hubbell SP (2005) Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172. |
[55] |
Hubbell SP (2006) The neutral theory and evolution of ecological equivalence. Ecology, 87, 1387-1398.
URL PMID |
[56] | Hubbell SP (2008) Approaching ecological complexity from the perspective of symmetric neutral theory. In: Tropical Forest Community Ecology (eds Carson WP, Schnitzer SA), pp. 144-159. Blackwell Publishing Ltd., Oxford. |
[57] | Hutchinson GE (1957) Concluding remarks: population studies, animal ecology and demography. Cold Spring Harbor Symposium of Quantitative Biology, 22, 415-427. |
[58] | Hutchinson GE (1959) Homage to santa rosalia or why are there so many kinds of animals? The American Naturalist, 93, 145-159. |
[59] |
Jones M, Tuomisto H, Borcard D, Legendre P, Clark DB, Olivas PC (2008) Explaining variation in tropical plant community composition: influence of environmental and spatial data quality. Oecologia, 155, 593-604.
DOI URL PMID |
[60] | Jones M, Tuomisto H, Clark DB, Olivas PC (2006) Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. Journal of Ecology, 94, 181-195. |
[61] | Karst J, Gilbert B, Lechowicz MJ (2005) Fern community assembly: the roles of chance and the environment at local and intermediate scales. Ecology, 86, 2473-2486. |
[62] | Keddy PA (1992) Assembly and response rules: two goals for predictive community ecology. Journal of Vegetation Science, 3, 157-164. |
[63] |
Kelly CK, Bowler MG, Pybus O, Harvey PH (2008) Phylogeny, niches, and relative abundance in natural communities. Ecology, 89, 962-970.
DOI URL PMID |
[64] |
Kimura M (1968) Evolutionary rate at the molecular level. Nature, 217, 624-626.
DOI URL PMID |
[65] |
King JL, Jukes TL (1969) Non-Darwinian evolution. Science, 164, 788-798.
URL PMID |
[66] |
Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL PMID |
[67] |
Laliberte E, Paquette A, Legendre P, Bouchard A (2009) Assessing the scale-specific importance of niches and other spatial processes on beta diversity: a case study from a temperate forest. Oecologia, 159, 377-388.
DOI URL PMID |
[68] | Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
[69] |
Leibold MA, McPeek MA (2006) Coexistence of the niche and neutral perspectives in community ecology. Ecology, 87, 1399-1410.
DOI URL PMID |
[70] | Leigh EG (1968) Ecological role of Volterra’s equations. In: Some Mathematical Problems in Biology (ed. Gerstenhaber M). American Mathematical Society, Providence. |
[71] |
Leigh EG (2007) Neutral theory: a historical perspective. Journal of Evolutionary Biology, 20, 2075-2091.
DOI URL PMID |
[72] |
Lin K, Zhang DY, He F (2009) Demographic trade-offs in a neutral model explain death-rate-bundance-rank relationship. Ecology, 90, 31-38.
DOI URL PMID |
[73] | Litvak M, Hansell R (1990) A community perspective on the multidimensional niche. Journal of Animal Ecology, 59, 931-940. |
[74] |
Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun YF, He FL (2009) Partitioning beta diversity in a subtropical broad- leaved forest of China. Ecology, 90, 663-674.
DOI URL PMID |
[75] |
Levine JM, Rees M (2002) Coexistence and relative abundance in annual plant communities: the roles of competition and colonization. The American Naturalist, 160, 452-467.
DOI URL PMID |
[76] | MacArthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377. |
[77] | MacDougall AS, Gilbert B, Jonathan M, Levine JM (2009) Plant invasions and the niche. Journal of Ecology, 97, 609-615. |
[78] |
McGill BJ (2003) A test of the unified neutral theory of biodiversity. Nature, 422, 881-885.
DOI URL PMID |
[79] |
McGill BJ, Maurer BA, Weiser MD (2006) Empirical evaluation of neutral theory. Ecology, 87, 1411-1423.
DOI URL PMID |
[80] |
McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, Benecha HK, Dornelas M, Enquist BJ, Green JL, He F, Hurlbert AH, Magurran AE, Marquet PA, Maurer BA, Ostling A, Soykan CU, Ugland KI, White EP (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological frame-work. Ecology Letters, 10, 995-1015.
DOI URL PMID |
[81] |
McKane A, Alonso D, Solé R (2004) Analytic solution of Hubbell’s model of local community dynamics. Theoretical Population Biology, 65, 67-73.
DOI URL PMID |
[82] | Mouquet N, Leadley P, Meriguet J, Loreau M (2004) Immigration and local competition in herbaceous plant communities: a three-year seed-sowing experiment. Oikos, 104, 77-90. |
[83] |
Muneepeerakul R, Bertuzzo E, Lynch HJ, Fagan WF, Rinaldo A, Rodriguez-Iturbe I (2008) Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature, 453, 220-222.
DOI URL PMID |
[84] | Murrell DJ, Law R (2003) Heteromyopia and the spatial coexistence of similar competitors. Ecology Letters, 6, 48-59. |
[85] | Naeem S, Loreau M, Inchausti P (2002) Biodiversity and Ecosystem Functioning: Synthesis and Perspectives. Oxford University Press, Oxford. |
[86] | Niu KC, Luo YJ, Choler P, Du GZ (2008) The role of biomass allocation strategy on diversity loss due to fertilization. Basic and Applied Ecology, 9, 485-493. |
[87] | Ohta T (1992) The nearly neutral theory of molecular evolution. Annual Review of Ecology and Systematics, 23, 263-286. |
[88] |
Olszewski T, Erwin D (2004) Dynamic response of Permian brachiopod communities to long-term environmental change. Nature, 428, 738-741.
DOI URL PMID |
[89] | Pianka ER (ed.) (1983) Evolutionary Ecology. Harper and Row, New York. |
[90] | Purves DW, Pacala SW (2005) Ecological drift in niche-structured communities: neutral pattern does not imply neutral process. In: Biotic Interactions in the Tropics (eds Burslem D, Pinard M, Hartley S), pp. 107-138. Cambridge University Press, Cambridge. |
[91] |
Rosindell J, Cornell SJ (2007) Species-area relationships from a spatially explicit neutral model in an infinite landscape. Ecology Letters, 10, 586-595.
DOI URL PMID |
[92] |
Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution, 17, 170-176.
DOI URL |
[93] | Silvertown J (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 605-611. |
[94] |
Simberloff D (1976) Species turnover and equilibrium island biogeography. Science, 194, 572.
DOI URL PMID |
[95] | Strong D (1983) Natural variability and the manifold mechanisms of ecological communities. The American Naturalist, 122, 636-660. |
[96] | Tansley A (1935) The use and abuse of vegetational concepts and terms. Ecology, 16, 284-307. |
[97] | Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton. |
[98] | Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion and community assembly. Proceedings of the National Academy of Sciences, USA, 101, 10854-10861. |
[99] |
Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241.
DOI URL PMID |
[100] | Vallade M, Houchmandzadeh B (2003) Analytical solution of a neutral model of biodiversity. Physical Review E, 68, 61902. |
[101] | Vandermeer JH (1972) Niche theory. Annual Review of Ecology and Systematics, 3, 107-132. |
[102] |
Volkov I, Banavar J, He F, Hubbell SP, Maritan A (2005) Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438, 658-661.
DOI URL PMID |
[103] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037.
DOI URL PMID |
[104] |
Volkov I, Banavar JR, Hubbell SP, Maritan A (2007) Patterns of relative species abundance in rainforests and coral reefs. Nature, 450, 45-49.
DOI URL PMID |
[105] | Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[106] | Weiher E, Keddy PA (2001) Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge. |
[107] | Wilson J, Gitay H (1995) Limitations to species coexistence: evidence for competition from field observations, using a patch model. Journal of Vegetation Science, 6, 369-376. |
[108] |
Wootton J (2005) Field parameterization and experimental test of the neutral theory of biodiversity. Nature, 433, 309-312.
DOI URL PMID |
[109] | Yamamoto N, Yokoyama J, Kawata M (2007) Relative resource abundance explains butterfly biodiversity in island communities. Proceedings of the National Academy of Sciences, USA, 104, 10524. |
[110] | Yu D, Terborgh J, Potts M (1998) Can high tree species richness be explained by Hubbell's null model? Ecology Letters, 1, 193-199. |
[111] | Zhang DY, Lin K (1997) The effects of competitive asymmetry on the rate of competitive displacement: How robust is Hubbell’s community drift model? Journal of Theoretical Biology, 188, 361-367. |
[112] |
Zhou SR, Zhang DY (2008) A nearly neutral model of biodiversity. Ecology, 89, 248-258.
DOI URL PMID |
[113] | Zillio T, Condit R (2007) The impact of neutrality, niche differentiation and species input on diversity and abundance distributions, Oikos, 116, 931-940. |
[114] | Zobel M, Moora M, Haukioja E (1997) Plant coexistence in the interactive environment: arbuscular mycorrhiza should not be out of mind. Oikos, 78, 202-208. |
[1] | 雍青措姆, 习新强, 牛克昌. 高寒草甸植物物种丧失对草原毛虫的影响[J]. 生物多样性, 2022, 30(11): 22069-. |
[2] | 王博驰, 裴雯, 杨巨才, 色拥军, 李雪竹, 娜尔力玛, 杨海蓉. 甘肃盐池湾黑颈鹤筑巢栖息地偏好及人为干扰的影响[J]. 生物多样性, 2022, 30(1): 21241-. |
[3] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[4] | 曹明, 李俊生, 王伟, 夏聚一, 冯春婷, 付刚, 黄文婕, 刘方正. 基于InVEST与倾向评分匹配模型评估秦岭国家级自然保护区水源涵养服务保护成效[J]. 生物多样性, 2021, 29(5): 617-628. |
[5] | 李敏岚, 王超, 王瑞武. 路径依赖下的物种形成机制[J]. 生物多样性, 2021, 29(3): 409-418. |
[6] | 刘旻霞,李全弟,蒋晓轩,夏素娟,南笑宁,张娅娅,李博文. 甘南亚高寒草甸稀有种对物种多样性和物种多度分布格局的贡献[J]. 生物多样性, 2020, 28(2): 107-116. |
[7] | 郑秀灯, 李聪, 冯天娇, 陶毅. 随机进化稳定性研究进展[J]. 生物多样性, 2020, 28(11): 1304-1310. |
[8] | 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉. 土壤动物群落空间格局和构建机制研究进展[J]. 生物多样性, 2018, 26(10): 1034-1050. |
[9] | 刘建全. “整合物种概念”和“分化路上的物种”[J]. 生物多样性, 2016, 24(9): 1004-1008. |
[10] | 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华. 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局[J]. 生物多样性, 2016, 24(6): 629-638. |
[11] | 谢一鸣, 许月, 康蒙, 阎恩荣. 基于植物多度的群落物种组成与环境关联性分析[J]. 生物多样性, 2013, 21(1): 80-89. |
[12] | 王鑫厅, 侯亚丽, 梁存柱, 王炜, 刘芳. 基于不同零模型的点格局分析[J]. 生物多样性, 2012, 20(2): 151-158. |
[13] | 程佳佳, 米湘成, 马克平, 张金屯. 亚热带常绿阔叶林群落物种多度分布格局对取样尺度的响应[J]. 生物多样性, 2011, 19(2): 168-177. |
[14] | 张洪茂, 张知彬. 围栏条件下影响岩松鼠寻找分散贮藏核桃种子的关键因素[J]. 生物多样性, 2007, 15(4): 329-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn