生物多样性 ›› 2021, Vol. 29 ›› Issue (4): 495-506. DOI: 10.17520/biods.2020196
收稿日期:
2020-05-08
接受日期:
2020-08-14
出版日期:
2021-04-20
发布日期:
2021-04-20
通讯作者:
王红
基金资助:
Yuhan Shi1,2, Zongxin Ren1, Yanhui Zhao1, Hong Wang1,*()
Received:
2020-05-08
Accepted:
2020-08-14
Online:
2021-04-20
Published:
2021-04-20
Contact:
Hong Wang
About author:
* E-mail: wanghong@mail.kib.ac.cn摘要:
全球气候变化对生态系统的影响是人类社会面临的紧迫而又严峻的挑战。气候变化带来的极端气候事件的增多, 直接影响到生态系统生产力和服务功能。本文总结了气候变化对植物-传粉昆虫互作的研究进展, 强调植物-传粉昆虫互作网络结构和其时空演变的解析, 以及互作关系和功能性状重组研究的重要性。近年来在气温持续上升背景下对植物-传粉昆虫互作关系影响的研究也受到了更多关注, 这些研究主要集中在两方面: 一是植物和传粉昆虫分布区的变化, 包括部分种群可能灭绝; 二是物候的变化, 即植物花期和传粉昆虫活动期的改变。植物与传粉昆虫任何一方在空间或时间上的改变, 都会导致传粉关系的错配或丢失。此外, 也可能导致植物-传粉昆虫双方的功能性状及其耦合的改变, 从而影响其互作关系的稳定。建议在今后的研究中关注: (1)覆盖生物多样性的多个尺度的研究; (2)对植物-传粉者互作网络的长期监测; (3)重要指示物种繁殖适合度评价; (4)植物-传粉昆虫互作双方功能性状在时间和空间尺度上的变化, 及其互作关系的重组; (5)关键植物和传粉昆虫类群的评估和保护。
施雨含, 任宗昕, 赵延会, 王红 (2021) 气候变化对植物-传粉昆虫的分布区和物候及其互作关系的影响. 生物多样性, 29, 495-506. DOI: 10.17520/biods.2020196.
Yuhan Shi, Zongxin Ren, Yanhui Zhao, Hong Wang (2021) Effect of climate change on the distribution and phenology of plants, insect pollinators, and their interactions. Biodiversity Science, 29, 495-506. DOI: 10.17520/biods.2020196.
图1 气候变化对植物-传粉昆虫关系的影响(参考Hegland et al, 2009绘制, 图中黄字部分为新增内容)
Fig. 1 Effect on plant-pollinating insect interaction under climate change (Modified from Hegland et al, 2009. The yellow parts in the figure are new content.)
图2 早春干旱对植物花朵造成了直接伤害(2015年由于高温导致玉龙雪山黄花杓兰花萎蔫, 任宗昕摄)
Fig. 2 Early spring drought caused direct damage to plant flowers (Yulong Snow Mountain, Cypripedium flavumwilting due to high temperature in 2015, Photo by Zongxin Ren)
[1] | Aguirre-Gutiérrez J, Kissling WD, Biesmeijer JC, WallisDeVries MF, Reemer M, Carvalheiro LG (2017) Historical changes in the importance of climate and land use as determinants of Dutch pollinator distributions. Journal of Biogeography, 44,696-707. |
[2] |
Albrecht J, Classen A, Vollstädt MGR, Mayr A, Mollel NP, Costa DS, Dulle HI, Fischer M, Hemp A, Howell KM, Kleyer M, Nauss T, Peters MK, Tschapka M, Steffan-Dewenter I, Böhning-Gaese K, Schleuning M (2018) Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nature Communications, 9,3177.
DOI URL PMID |
[3] | Anderson JT, Gezon ZJ (2015) Plasticity in functional traits in the context of climate change: A case study of the subalpine forb Boechera stricta (Brassicaceae). Global Change Biology, 21,1689-1703. |
[4] | Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85,2408-2421. |
[5] | Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8,1-16. |
[6] | Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences, USA, 108,20645-20649. |
[7] |
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15,365-377.
DOI URL PMID |
[8] |
Benjamin FE, Winfree R (2014) Lack of pollinators limits fruit production in commercial blueberry (Vaccinium corymbosum). Environmental Entomology, 43,1574-1583.
DOI URL PMID |
[9] |
Bennett JM, Steets JA, Burns JH, Durka W, Vamosi JC, Arceo-Gómez G, Burd M, Burkle LA, Ellis AG, Freitas L, Li J, Rodge JG, Wolowski M, Xia J, Ashman TL, Knight TM (2018) GloPL, a global data base on pollen limitation of plant reproduction. Scientific Data, 5,180249.
DOI URL PMID |
[10] | Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135,126-146. |
[11] | Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391,238-239. |
[12] | Bose R, Munoz F, Ramesh BR, Pelissier R (2016) Past potential habitats shed light on the biogeography of endemic tree species of the Western Ghats biodiversity hotspot, south India. Journal of Biogeography, 43,899-910. |
[13] |
Burkle LA, Alarcón R (2011) The future of plant-pollinator diversity: Understanding interaction networks across time, space and global change. American Journal of Botany, 98,528-538.
DOI URL PMID |
[14] |
Burkle LA, Marlin JC, Knight TM (2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339,1611-1615.
URL PMID |
[15] | CaraDonna PJ, Cunningham JL, Iler AM (2018) Experimental warming in the field delays phenology and reduces body mass, fat content and survival: Implications for the persistence of a pollinator under climate change. Functional Ecology, 32,2345-2356. |
[16] | Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD, Rodriguez W, Feller IC (2014) Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences, USA, 111,723-727. |
[17] |
Chen QH, Yin YJ, Zhao R, Yang Y, da Silva JAT, Yu XN (2020) Incorporating local adaptation into species distribution modeling of Paeonia mairei, an endemic plant to China. Frontiers in Plant Science, 10,1717.
DOI URL PMID |
[18] | Dai WK, Amboka GM, Kadiori EL, Wang QF, Yang CF (2017) Phenotypic plasticity of floral traits and pollination adaption in an alpine plant Pedicularis siphonantha D. Don when transplanted from higher to lower elevation in Eastern Himalaya. Journal of Mountain Science, 14,1995-2002. |
[19] | Doi H, Gordo O, Katano I (2008) Heterogeneous intra-annual climatic changes drive different phenological responses at two trophic levels. Climate Research, 36,181-190. |
[20] |
Eckert CG, Kalisz S, Geber MA, Sargent R, Elle E, Cheptou PO, Goodwillie C, Johnston MO, Kelly JK, Moeller DA, Porcher E, Ree RH, Vallejo-Marín M, Winn AA (2010) Plant mating systems in a changing world. Trends in Ecology and Evolution, 25,35-43.
DOI URL PMID |
[21] | Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29,129-151. |
[22] |
Franks SJ, Weber JJ, Aitken SN (2014) Evolutionary and plastic responses to climate change in terrestrial plant populations. Evolutionary Applications, 7,123-139.
DOI URL PMID |
[23] |
Fründ J, Dormann CF, Tscharntke T (2011) Linné’s floral clock is slow without pollinators-flower closure and plant-pollinator interaction webs. Ecology Letters, 14,896-904.
DOI URL PMID |
[24] | Gagic V, Bartomeus I, Jonsson T, Taylor A, Winqvist C, Fischer C, Slade EM, Steffan-Dewenter I, Emmerson M, Potts SG, Tscharntke T, Weisser W, Bommarco R (2015) Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proceedings of the Royal Society B: Biological Sciences, 282,20142620. |
[25] | Gallai N, Salles JM, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecological Economics, 68,810-821. |
[26] | García-Camacho R, Totland Ø (2009) Pollen limitation in the alpine: A meta-analysis. Arctic, Antarctic, and Alpine Research, 41,103-111. |
[27] |
Garibaldi LA, Carvalheiro LG, Vaissiere BE, Gemmill-Herren, B, Hipolito J, Freitas BM, Ngo HT, Azzu N, Saez A, Astrom J, An JD, Blochtein B, Buchori D, Garcia FJC, da Silva FO, Devkota K, Ribeiro MD, Freitas L, Gaglianone MC, Goss M, Irshad M, Kasina M, Pacheco AJS, Kiill LHP, Kwapong P, Parra GN, Pires C, Pires V, Rawal RS, Rizali A, Saraiva AM, Veldtman R, Viana BF, Witter S, Zhang H (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science, 351,388-391.
DOI URL PMID |
[28] |
Gérard M, Vanderplanck M, Wood T, Michez D (2020) Global warming and plant-pollinator mismatches. Emerging Topics in Life Sciences, 4,77-86.
DOI URL PMID |
[29] |
Giejsztowt J, Classen AT, Deslippe JR (2020) Climate change and invasion may synergistically affect native plant reproduction. Ecology, 101,e02913.
URL PMID |
[30] |
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework for community interactions under climate change. Trends in Ecology & Evolution, 25,325-331.
URL PMID |
[31] | Gorostiague P, Sajama J, Ortega-Baes P (2018) Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biological Conservation, 226,247-255. |
[32] |
Grazer VM, Martin OY (2012) Investigating climate change and reproduction: Experimental tools from evolutionary biology. Biology, 1,411-438.
URL PMID |
[33] |
Hällfors MH, Liao J, Dzurisin J, Grundel R, Hyvärinen M, Towle K, Wu GC, Hellmann JJ (2016) Addressing potential local adaptation in species distribution models: Implications for conservation under climate change. Ecological Applications, 26,1154-1169.
DOI URL PMID |
[34] | Harder LD, Aizen MA (2010) Floral adaptation and diversification under pollen limitation. Philosophical Transactions of the Royal Society B: Biological Sciences, 365,529-543. |
[35] |
He X, Burgess KS, Gao LM, Li DZ (2019a) Distributional responses to climate change for alpine species of Cyananthus and Primula endemic to the Himalaya-Hengduan Mountains. Plant Diversity, 41,26-32.
DOI URL PMID |
[36] |
He X, Burgess KS, Yang XF, Ahrends A, Gao LM, Li DZ (2019b) Upward elevation and northwest range shifts for alpine Meconopsis species in the Himalaya-Hengduan Mountains region. Ecology and Evolution, 9,4055-4064.
DOI URL PMID |
[37] |
Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12,184-195.
URL PMID |
[38] |
Hernández-Castellano C, Rodrigo A, Gómez JM, Stefanescu C, Calleja JA, Reverté S, Bosch J (2020) A new native plant in the neighborhood: Effects on plant-pollinator networks, pollination, and plant reproductive success. Ecology, 101,e03046.
URL PMID |
[39] |
Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature, 470,479-485.
URL PMID |
[40] | Huang JX, An JD (2018) Species diversity, pollination application and strategy for conservation of the bumblebees of China. Biodiversity Science, 26,486-497. (in Chinese with English abstract) |
[ 黄家兴, 安建东 (2018) 中国熊蜂多样性、人工利用与保护策略. 生物多样性, 26,486-497. ] | |
[41] | Inouye DW (2020) Effects of climate change on alpine plants and their pollinators. Annals of the New York Academy of Sciences, 1469,26-37. |
[42] | IPBES (2016) Summary for policymakers of the assessment report of the Intergovernmental Science—Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. In: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services Deliverables of the 2014-2018 Work Programme (eds Potts SG, Imperatriz-Fonseca VL, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J, Vanbergen AJ, Aizen MA, Cunningham SA, Eardley C, Freitas BM, Gallai N, Kevan PG, Kovács-Hostyánszk A, Kwapong PK, Li J, Li X, Martins DJ, Nates-Parra G, Pettis JS, Rader R, Viana BF), IPBES, pp.1-28. Bonn, Germany. |
[43] | Johnson DM, Büntgen U, Frank DC, Kausrud K, Haynes KJ, Liebhold AM, Esper J, Stenseth NC (2010) Climatic warming disrupts recurrent alpine insect outbreaks. Proceedings of the National Academy of Sciences, USA, 107,20576-20581. |
[44] | Johnston MO, Bartkowska MP (2017) Individual pollen limitation, phylogeny and selection. New Phytologist, 214,909-912. |
[45] | Jump AS, Penuelas J (2005) Running to stand still: Adaptation and the response of plants to rapid climate change. Ecology Letters, 8,1010-1020. |
[46] | Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences, USA, 105,11823-11826. |
[47] |
Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, Wagner DL, Gall LF, Sikes DS, Pantoja A (2015) Climate change impacts on bumblebees converge across continents. Science, 349,177-180.
DOI URL PMID |
[48] | Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274,303-313. |
[49] | Knop E, Gerpe C, Ryser R, Hofmann F, Menz MHM, Trösch S, Ursenbacher S, Zoller L, Fontaine C (2018) Rush hours in flower visitors over a day-night cycle. Insect Conservation and Diversity, 11,267-275. |
[50] | Konvicka M, Maradova M, Benes J, Fric Z, Kepka P (2003) Uphill shifts in distribution of butterflies in the Czech Republic: Effects of changing climate detected on a regional scale. Global Ecology and Biogeography, 12,403-410. |
[51] | Kudo G (1991) Effects of snow-free period on the phenology of alpine plants inhabiting snow patches. Arctic and Alpine Research, 23,436-443. |
[52] | Kudo G, Ida TY (2013) Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 94,2311-2320. |
[53] | Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecological Research, 19,255-259. |
[54] | Lara-Romero C, Seguí J, Pérez-Delgado A, Nogales M, Traveset A (2019) Beta diversity and specialization in plant-pollinator networks along an elevational gradient. Journal of Biogeography, 46,1598-1610. |
[55] |
Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science, 320,1768-1771.
URL PMID |
[56] | Li DK, Wang Z (2020) Spatiotemporal variation of vegetation phenology and its response to climate in Qinling Mountains based on MCD12Q2. Ecology and Environmental Sciences, 29,11-22. (in Chinese with English abstract) |
[ 李登科, 王钊 (2020) 基于MCD12Q2的秦岭植被物候时空变化及对气候的响应. 生态环境学报, 29,11-22. ] | |
[57] | Liu PF, Wu J, Li HY, Lin SW (2011) Economic values of bee pollination to China’s agriculture. Scientia Agricultura Sinica, 44,5117-5123. (in Chinese with English abstract) |
[ 刘朋飞, 吴杰, 李海燕, 林素文 (2011) 中国农业蜜蜂授粉的经济价值评估. 中国农业科学, 44,5117-5123. ] | |
[58] | Liu XT, Yuan Q, Ni J (2019) Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43,273-283. (in Chinese with English abstract) |
[ 刘晓彤, 袁泉, 倪健 (2019) 中国植物分布模拟研究现状. 植物生态学报, 43,273-283. ] | |
[59] |
McNamara JM, Barta Z, Klaassen M, Bauer S (2011) Cues and the optimal timing of activities under environmental changes. Ecology Letters, 14,1183-1190.
DOI URL PMID |
[60] |
Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10,710-717.
URL PMID |
[61] | Menéndez R, González-Megías A, Collingham Y, Fox R, Roy DB, Ohlemüller R, Thomas CD (2007) Direct and indirect effects of climate and habitat factors on butterfly diversity. Ecology, 88,605-611. |
[62] |
Miller-Struttmann NE, Geib JC, Franklin JD, Kevan PG, Holdo RM, Ebert-May D, Lynn AM, Kettenbach JA, Hedrick E, Galen C (2015) Functional mismatch in a bumble bee pollination mutualism under climate change. Science, 349,1541-1544.
DOI URL PMID |
[63] | Ollerton J (2017) Pollinator diversity: Distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics, 48,353-376. |
[64] | Ollerton J, Winfree R, Tarrant S (2011) How many flowering plants are pollinated by animals? Oikos, 120,321-326. |
[65] | Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37,637-669. |
[66] |
Pellissier L, Rohr RP, Ndiribe C, Pradervand JN, Salamin N, Guisan A, Wisz M (2013) Combining food web and species distribution models for improved community projections. Ecology and Evolution, 3,4572-4583.
URL PMID |
[67] |
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25,345-353.
URL PMID |
[68] | Pyke GH, Thomson JD, Inouye DW, Miller TJ (2016) Effects of climate change on phenologies and distributions of bumble bees and the plants they visit. Ecosphere, 7,e01267. |
[69] |
Rafferty NE, Diez JM, Bertelsen CD (2020) Changing climate drives divergent and nonlinear shifts in flowering phenology across elevations. Current Biology, 30,432-441.
DOI URL PMID |
[70] |
Rafferty NE, Ives AR (2011) Effects of experimental shifts in flowering phenology on plant-pollinator interactions. Ecology Letters, 14,69-74.
URL PMID |
[71] |
Ren ZX, Wang H, Peter B, Li DZ (2014) Insect pollination and self-incompatibility in edible and/or medicinal crops in southwestern China, a global hotspot of biodiversity. American Journal of Botany, 101,1700-1710.
DOI URL PMID |
[72] | Ren ZX, Zhao YH, Liang H, Tao ZB, Tang H, Zhang HP, Wang H (2018) Pollination ecology in China from 1977 to 2017. Plant Diversity, 40,172-180. |
[73] |
Richman SK, Levine JM, Stefan L, Johnson CA (2020) Asynchronous range shifts drive alpine plant-pollinator interactions and reduce plant fitness. Global Change Biology, 26,3052-3064.
DOI URL PMID |
[74] |
Scaven VL, Rafferty NE (2013) Physiological effects of climate warming on flowering plants and insect pollinators and potential consequences for their interactions. Current Zoology, 59,418-426.
URL PMID |
[75] | Schleuning M, Fründ J, Schweiger O, Welk E, Albrecht J, Albrecht M, Beil M, Benadi G, Blüthgen N, Bruelheide H, Böhning-Gaese K, Dehling DM, Dormann CF, Exeler N, Farwig N, Harpke A, Hickler T, Kratochwil A, Kuhlmann M, Kühn I, Michez D, Mudri-Stojnić S, Plein M, Rasmont P, Schwabe A, Settele J, Vujić A, Weiner CN Wiemers M, Hof C (2016) Ecological networks are more sensitive to plant than to animal extinction under climate change. Nature Communications, 7,13965. |
[76] | Sherry RA, Zhou XH, Gu SL, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo YQ (2007) Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences, USA, 104,198-202. |
[77] | Sosa-Pivatto M, Cosacov A, Baranzelli MC, Iglesias MR, Espíndola A, Sérsic AN (2017) Do 120,000 years of plant-pollinator interactions predict floral phenotype divergence in Calceolaria polyrhiza? A reconstruction using species distribution models. Arthropod-Plant Interactions, 11,351-361. |
[78] | Thackeray SJ, Henrys PA, Hemming D, Bell JR, Botham MS, Burthe S, Helaouet P, Johns DG, Jones ID, Leech DI, Mackay EB, Massimino D, Atkinson S, Bacon PJ, Brereton TM, Carvalho L, Clutton-Brock TH, Duck C, Edwards M, Elliott JM, Hall SJG, Harrington R, Pearce-Higgins JW, Høye TT, Kruuk LEB, Pemberton JM, Sparks TH, Thompson PM, White I, Winfield IJ, Wanless S (2016) Phenological sensitivity to climate across taxa and trophic levels. Nature, 535,241-245. |
[79] |
Theobald EJ, Breckheimer I, HilleRisLambers J (2017) Climate drives phenological reassembly of a mountain wildflower meadow community. Ecology, 98,2799-2812.
DOI URL PMID |
[80] | Totland Ø (1997) Effects of flowering time and temperature on growth and reproduction in Leontodon autumnalis var. taraxaci, a late flowering alpine plant. Arctic and Alpine Research, 29,285-290. |
[81] |
Totland Ø, Alatalo JM (2002) Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia, 133,168-175.
URL PMID |
[82] |
Tsiftsis S, Djordjević V (2020) Modelling sexually deceptive orchid species distributions under future climates: The importance of plant-pollinator interactions. Scientific Reports, 10,10623.
URL PMID |
[83] |
van der Kooi CJ, Kevan PG, Koski MH (2019) The thermal ecology of flowers. Annals of Botany, 124,343-353.
URL PMID |
[84] |
Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: A review. Annals of Botany, 103,1445-1457.
DOI URL PMID |
[85] | Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society B: Biological Sciences, 275,649-659. |
[86] |
Walker WH, Meléndez-Fernández OH, Nelson RJ, Reiteret RJ (2019) Global climate change and invariable photoperiods: A mismatch that jeopardizes animal fitness. Ecology and Evolution, 9,10044-10054.
URL PMID |
[87] | Wang DN, Tang XL, Lian Y, Cui JL, Du CY, Ji YH (2020) Response of phenology of three typical deciduous trees to climate warming—Take Changbai Mountains as an example. Journal of Northeast Forestry University, 48(9),51-55. (in Chinese with English abstract) |
[ 王冬妮, 唐晓玲, 廉毅, 崔佳龙, 杜春英, 纪仰慧 (2020) 气候增暖对3种典型落叶乔木物候的影响——以长白山区为例. 东北林业大学学报, 48(9),51-55. ] | |
[88] | Wang M, Sang WG (2020) The change of phenology of tree and shrub in warm temperate zone and their relationships with climate change. Ecological Science, 39,164-175. (in Chinese with English abstract) |
[ 王明, 桑卫国 (2020) 暖温带乔木和灌木物候变化及对气候变化的响应. 生态科学, 39,164-175. ] | |
[89] | Warren MS, Hill JK, Thomas JA, Asher J, Fox R, Huntley B, Royk DB, Telferk MG, Jeffcoate S, Harding P, Jeffcoate G, Willis SG, Greatorex-Daviesk JN, Moss D, Thomas CD (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature, 414,65-69. |
[90] | Williams PH, Huang JX, An JD (2017) Bear wasps of the Middle Kingdom: A decade of discovering China’s bumblebees. Antenna, 41,21-24. |
[91] |
Wilson RJ, Gutierrez D, Gutierrez J, Martinez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecology Letters, 8,1138-1146.
DOI URL PMID |
[92] | Wolf S, Moritz RFA (2008) Foraging distance in Bombus terrestris L. (Hymenoptera: Apidae). Apidologie, 39,419-427. |
[93] | Xiao YA, Zhang SS, Yan XH, Dong M (2015) New advances in effects of global warming on plant-pollinator networks. Acta Ecologica Sinica, 35,3871-3880. (in Chinese with English abstract) |
[ 肖宜安, 张斯斯, 闫小红, 董鸣 (2015) 全球气候变暖影响植物-传粉者网络的研究进展. 生态学报, 35,3871-3880. ] | |
[94] | Xu XT, Yang Y, Wang LS (2008) Geographic distribution and potential distribution estimation of Pseudotaxus chienll. Chinese Journal of Plant Ecology, 32,1134-1145. (in Chinese with English abstract) |
[ 徐晓婷, 杨永, 王利松 (2008) 白豆杉的地理分布及潜在分布区估计. 植物生态学报, 32,1134-1145. ] | |
[95] | Yang LP, Zhang CH, Dai HY, Lü DB, Han J (2020) Effects of climate change on phenophase of woody plants at the northern foot of Yinshan Mountain. Journal of Meteorology and Environment, 36,102-107. (in Chinese with English abstract) |
[ 杨丽萍, 张存厚, 代海燕, 吕迪波, 韩君 (2020) 气候变化对阴山北麓木本植物物候期的影响. 气象与环境学报, 36,102-107. ] | |
[96] | Zhang L, Liu SR, Sun PS, Wang TL (2011) Comparative evaluation of multiple models of the effects of climate change on the potential distribution of Pinus massoniana. Chinese Journal of Plant Ecology, 35,1091-1105. (in Chinese with English abstract) |
[ 张雷, 刘世荣, 孙鹏森, 王同立 (2011) 气候变化对马尾松潜在分布影响预估的多模型比较. 植物生态学报, 35,1091-1105. ] | |
[97] |
Zhao ZG, Wang YK (2015) Selection by pollinators on floral traits in generalized Trollius ranuncuoides (Ranunculaceae) along altitudinal gradients. PLoS ONE, 10,e0118299.
DOI URL PMID |
[1] | 马子驭, 何再新, 王一晴, 宋大昭, 夏凡, 崔士明, 苏红信, 邓建林, 李平, 李晟. 中国云豹种群分布现状与关键栖息地信息更新[J]. 生物多样性, 2022, 30(9): 22349-. |
[2] | 刘珂, 韩思成, 遇赫, 罗述金. 荒漠猫的演化遗传、分类和保护研究进展[J]. 生物多样性, 2022, 30(9): 22396-. |
[3] | 朱逸晓, 王大伟, 李治霖, 冯佳伟, 王天明. 亚洲虎种群恢复的机遇与挑战[J]. 生物多样性, 2022, 30(9): 22421-. |
[4] | 刘童祎, 姜立云, 乔格侠. 中国半翅目等29目昆虫新分类单元2021年年度报告[J]. 生物多样性, 2022, 30(8): 22300-. |
[5] | 魏博, 刘林山, 谷昌军, 于海彬, 张镱锂, 张炳华, 崔伯豪, 宫殿清, 土艳丽. 紫茎泽兰在中国的气候生态位稳定且其分布范围仍有进一步扩展的趋势[J]. 生物多样性, 2022, 30(8): 21443-. |
[6] | 张露丹, 卢影, 褚畅, 何巧巧, 姚志远. 2021年世界蜘蛛新分类单元[J]. 生物多样性, 2022, 30(8): 22163-. |
[7] | 曹焕喜, 罗阿蓉, 牛泽清, 张彦周, 肖晖, 朱朝东. 2021年膜翅目新增分类单元[J]. 生物多样性, 2022, 30(8): 22162-. |
[8] | 梁伟诺, 胡亮. 中国新石器时代以来淡水及河口鱼类考古遗存的地理分布及其生物地理学意义[J]. 生物多样性, 2022, 30(8): 21471-. |
[9] | 朱瑞良, 马晓英, 曹畅, 曹子寅. 中国苔藓植物多样性研究进展[J]. 生物多样性, 2022, 30(7): 22378-. |
[10] | 席辉辉, 王祎晴, 潘跃芝, 许恬, 湛青青, 刘健, 冯秀彦, 龚洵. 中国苏铁属植物资源和保护[J]. 生物多样性, 2022, 30(7): 21495-. |
[11] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[12] | 李季蔓, 靳楠, 胥毛刚, 霍举颂, 陈小云, 胡锋, 刘满强. 不同干旱水平下蚯蚓对番茄抗旱能力的影响[J]. 生物多样性, 2022, 30(7): 21488-. |
[13] | 颜文博, 莫燕妮, 曾治高, 薛少亮, 王琦, 梁春生, 黄祝礼, 罗文, 刘大业, 莫世琴, 李晓光, 梁路, 杜鹍鹏. 海南尖峰岭中华穿山甲的分布与保护现状[J]. 生物多样性, 2022, 30(6): 22106-. |
[14] | 刘高慧, 崔建国, 王玥, 王洪良, 香宝, 肖能文. 四川省康定市两栖动物多样性及其时空分布格局[J]. 生物多样性, 2022, 30(6): 21494-. |
[15] | 杨清, 张鹏, 安瑞志, 乔楠茜, 达珍, 巴桑. 拉萨河中下游纤毛虫群落时空分布模式及其驱动机制[J]. 生物多样性, 2022, 30(6): 22012-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn