生物多样性 ›› 2020, Vol. 28 ›› Issue (5): 587-595. DOI: 10.17520/biods.2020156
收稿日期:
2020-04-16
接受日期:
2020-06-09
出版日期:
2020-05-20
发布日期:
2020-06-18
通讯作者:
张雪
基金资助:
Benfeng Han,Xin Zhou,Xue Zhang()
Received:
2020-04-16
Accepted:
2020-06-09
Online:
2020-05-20
Published:
2020-06-18
Contact:
Xue Zhang
摘要:
基因组学技术, 特别是宏基因组测序在未知病毒的鉴定与溯源中起到了重要作用。相较于传统的病毒分离培养方法, 宏基因组技术可以从混合样本中获得病毒的核酸序列, 极大加速了未知病毒的鉴定与溯源, 在针对高流行性、高致病性的病毒研究中发挥了重要作用。基于宏基因组技术对未知病毒进行鉴定和溯源, 其准确性很大程度上依赖于取样及已知宿主的病毒库的完整性。然而, 当前病毒多样性的基础研究相对薄弱, 病毒的宿主信息则更加匮乏。野生动物和畜禽是人畜共患病致病病毒的重要中间宿主, 构建广泛的动物-病毒关联数据库对于准确、快速地鉴定和预防致病性病毒具有重要意义。本综述以SARS-CoV-2为例, 总结了基因组学技术在病毒的鉴定与溯源上的应用, 并针对当前动物病毒库完整性低的现状, 对构建野生和家养动物携带病毒的关联数据库的可行性提出依据与建议。
韩本凤, 周欣, 张雪 (2020) 基因组学技术在病毒鉴定与宿主溯源中的应用. 生物多样性, 28, 587-595. DOI: 10.17520/biods.2020156.
Benfeng Han, Xin Zhou, Xue Zhang (2020) Verification of virus identity and host association using genomics technology. Biodiversity Science, 28, 587-595. DOI: 10.17520/biods.2020156.
分析方法 Method | 作用 Application | 常用软件 Software | 参考文献 Reference |
---|---|---|---|
系统发育树 Phylogenetic trees | 分析不同生物间相关性, 通过树状分支可视化生物之间的亲缘关系并推测进化历史 Analyzing the correlation between different organisms, visualizing the relationship between organisms through tree branches and speculating on the evolutionary history | RAxML, phyML, IQ-TREE | Zhou et al, 2020 Wu et al, 2020 Frias-De-Diego et al, 2019 Yuen et al, 2019 |
重建系统发育中的祖先状态 Reconstructing ancestral state in phylogenies (RASP) | 重建祖先在系统发生树上的地理分布, 推断历史生物地理学信息 Inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees | RASP | Luo et al, 2015 Frias-De-Diego et al, 2019 Yuen et al, 2019 |
系统发育网络分析 Phylogenetic network analysis | 综合一系列系统发育树的可视化结果, 较直观地展示重组等性状冲突事件 Enabling the visualization of a multitude of optimal trees, displaying reorganization and other trait conflict events | Network, SplitsTree | Yu et al, 2020 |
单倍型网络分析 Haplotype network analysis | 用于在群体水平上显示个体基因型之间的关系 An intuitive method used in visualizing relationships between individual genotypes in a population level | PopART | Tang et al, 2020 Leigh & Bryant, 2015 |
贝叶斯进化分析 Bayesian evolutionary analyses | 根据时间进化树建模推断种群发生分歧的时间 Inferring the time when the population diverged based on time evolutionary tree modeling by BEAST | BEAST | Luo et al, 2015 Suchard et al, 2018 |
重组分析 Recombination analysis | 检验可能存在的重组信号, 揭示重组在基因进化中的作用 Identifying possible recombination signals and revealing the role of recombination in gene evolution | RDP4 Simplot phyML | Wu et al, 2020 Lam et al, 2020 |
表1 用于病毒系统发育分析的常用方法
Table 1 Methods used in the phylogenetic analysis of viruses
分析方法 Method | 作用 Application | 常用软件 Software | 参考文献 Reference |
---|---|---|---|
系统发育树 Phylogenetic trees | 分析不同生物间相关性, 通过树状分支可视化生物之间的亲缘关系并推测进化历史 Analyzing the correlation between different organisms, visualizing the relationship between organisms through tree branches and speculating on the evolutionary history | RAxML, phyML, IQ-TREE | Zhou et al, 2020 Wu et al, 2020 Frias-De-Diego et al, 2019 Yuen et al, 2019 |
重建系统发育中的祖先状态 Reconstructing ancestral state in phylogenies (RASP) | 重建祖先在系统发生树上的地理分布, 推断历史生物地理学信息 Inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees | RASP | Luo et al, 2015 Frias-De-Diego et al, 2019 Yuen et al, 2019 |
系统发育网络分析 Phylogenetic network analysis | 综合一系列系统发育树的可视化结果, 较直观地展示重组等性状冲突事件 Enabling the visualization of a multitude of optimal trees, displaying reorganization and other trait conflict events | Network, SplitsTree | Yu et al, 2020 |
单倍型网络分析 Haplotype network analysis | 用于在群体水平上显示个体基因型之间的关系 An intuitive method used in visualizing relationships between individual genotypes in a population level | PopART | Tang et al, 2020 Leigh & Bryant, 2015 |
贝叶斯进化分析 Bayesian evolutionary analyses | 根据时间进化树建模推断种群发生分歧的时间 Inferring the time when the population diverged based on time evolutionary tree modeling by BEAST | BEAST | Luo et al, 2015 Suchard et al, 2018 |
重组分析 Recombination analysis | 检验可能存在的重组信号, 揭示重组在基因进化中的作用 Identifying possible recombination signals and revealing the role of recombination in gene evolution | RDP4 Simplot phyML | Wu et al, 2020 Lam et al, 2020 |
科 Families | 种 Species | 基因组 Genomes | 病毒株 Strains | 蛋白 Proteins | 缺乏宿主信息比例 Percent without host identification |
---|---|---|---|---|---|
Arenaviridae | 177 | 4,532 | 3,012 | 6,949 | 23.23% |
Caliciviridae | 225 | 52,189 | 49,073 | 96,673 | 28.16% |
Coronaviridae | 1,043 | 34,864 | 28,823 | 119,573 | 22.80% |
Filoviridae | 16 | 3,577 | 3,390 | 22,038 | 22.53% |
Flaviviridae | 367 | 345,546 | 261,780 | 877,286 | 39.36% |
Hantaviridae | 304 | 10,189 | 6,867 | 10,603 | 14.02% |
Hepeviridae | 33 | 17,838 | 15,022 | 19,203 | 17.95% |
Herpesviridae | 782 | 58,371 | 45,281 | 300,180 | 60.18% |
Nairoviridae | 38 | 3,669 | 1,931 | 3,553 | 9.92% |
Paramyxoviridae | 574 | 50,355 | 44,898 | 67,728 | 24.22% |
Peribunyaviridae | 183 | 5,031 | 2,434 | 6,367 | 22.80% |
Phasmaviridae | 16 | 1,106 | 340 | 1,114 | 0.27% |
Phenuiviridae | 215 | 5,189 | 2,934 | 7,133 | 13.37% |
Picornaviridae | 1,038 | 127,336 | 116,298 | 346,846 | 26.91% |
Pneumoviridae | 17 | 37,289 | 33,516 | 60,235 | 30.36% |
Poxviridae | 283 | 10,444 | 7,487 | 125,948 | 40.87% |
Reoviridae | 363 | 107,566 | 39,985 | 108,677 | 15.93% |
Rhabdoviridae | 530 | 33,347 | 26,510 | 46,761 | 22.12% |
Togaviridae | 60 | 12,800 | 10,854 | 46,764 | 36.25% |
总计 Total | 6,264 | 921,238 | 700,435 | 2273,631 | — |
表2 ViPR数据库已收录的病毒信息(数据来源于https://www.viprbrc.org/brc/home.spg?decorator=vipr)
Table 2 Virus sequences deposited in the ViPR database (Data are from https://www.viprbrc.org/brc/home.spg?decorator=vipr)
科 Families | 种 Species | 基因组 Genomes | 病毒株 Strains | 蛋白 Proteins | 缺乏宿主信息比例 Percent without host identification |
---|---|---|---|---|---|
Arenaviridae | 177 | 4,532 | 3,012 | 6,949 | 23.23% |
Caliciviridae | 225 | 52,189 | 49,073 | 96,673 | 28.16% |
Coronaviridae | 1,043 | 34,864 | 28,823 | 119,573 | 22.80% |
Filoviridae | 16 | 3,577 | 3,390 | 22,038 | 22.53% |
Flaviviridae | 367 | 345,546 | 261,780 | 877,286 | 39.36% |
Hantaviridae | 304 | 10,189 | 6,867 | 10,603 | 14.02% |
Hepeviridae | 33 | 17,838 | 15,022 | 19,203 | 17.95% |
Herpesviridae | 782 | 58,371 | 45,281 | 300,180 | 60.18% |
Nairoviridae | 38 | 3,669 | 1,931 | 3,553 | 9.92% |
Paramyxoviridae | 574 | 50,355 | 44,898 | 67,728 | 24.22% |
Peribunyaviridae | 183 | 5,031 | 2,434 | 6,367 | 22.80% |
Phasmaviridae | 16 | 1,106 | 340 | 1,114 | 0.27% |
Phenuiviridae | 215 | 5,189 | 2,934 | 7,133 | 13.37% |
Picornaviridae | 1,038 | 127,336 | 116,298 | 346,846 | 26.91% |
Pneumoviridae | 17 | 37,289 | 33,516 | 60,235 | 30.36% |
Poxviridae | 283 | 10,444 | 7,487 | 125,948 | 40.87% |
Reoviridae | 363 | 107,566 | 39,985 | 108,677 | 15.93% |
Rhabdoviridae | 530 | 33,347 | 26,510 | 46,761 | 22.12% |
Togaviridae | 60 | 12,800 | 10,854 | 46,764 | 36.25% |
总计 Total | 6,264 | 921,238 | 700,435 | 2273,631 | — |
[1] |
Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Molecular Plant Pathology, 10, 537-545.
DOI URL PMID |
[2] |
Almazan F, Sola I, Zuniga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L (2014) Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 189, 262-270.
URL PMID |
[3] |
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450-452.
DOI URL PMID |
[4] |
Babayan SA, Orton RJ, Streicker DG (2018) Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science, 362, 577-580.
DOI URL PMID |
[5] |
Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537.
DOI URL PMID |
[6] |
Briese T, Paweska JT, Mcmullan LK, Hutchison SK, Street C, Palacios G, Khristova ML, Weyer J, Swanepoel R, Egholm M, Nichol ST, Lipkin WI (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathogens, 5, e1000455.
DOI URL PMID |
[7] |
Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181-192.
DOI URL PMID |
[8] | Dong R, Zheng H, Tian K, Yau SC, Mao WG, Yu WP, Yin CC, Yu CL, He RL, Yang J, Yau SS (2017) Virus database and online inquiry system based on natural vectors. Evolutionary Bioinformatics, 13, 1-7. |
[9] | Forster P, Forster L, Renfrew C, Forster M (2020) Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences,. USA, 117, 9241-9243. |
[10] |
Frias-De-Diego A, Jara M, Escobar LE (2019) Papillomavirus in wildlife. Frontiers in Ecology and Evolution, 7, 406.
DOI URL |
[11] |
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535-538.
DOI URL |
[12] |
Gorbalenya AE, Gulyaeva AA, Lauber C, Sidorov IA, Leontovich AM, Penzar D, Samborskiy DV, Baker SC, Baric RS, de Groot RJ, Drosten C, Haagmans BL, Neuman BW, Perlman S, Poon LLM, Sola I, Ziebuhr J (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544.
URL PMID |
[13] |
Gusfield D, Eddhu S, Langley C (2004) Optimal efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology, 2, 173-213.
DOI URL PMID |
[14] |
Hadidi A, Flores R, Candresse T, Barba M (2016) Next-generation sequencing and genome editing in plant virology. Frontiers in Microbiology, 7, 1325.
DOI URL PMID |
[15] |
Hemida MG, Chu DK, Poon LL, Perera RA, Alhammadi MA, Ng HY, Siu LY, Guan Y, Alnaeem A, Peiris M (2014) MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerging Infectious Diseases, 20, 1231-1234.
URL PMID |
[16] |
Holmes EC, Zhang YZ (2015) The evolution and emergence of hantaviruses. Current Opinion in Virology, 10, 27-33.
DOI URL PMID |
[17] |
Hon CC, Lam TY, Shi ZL, Drummond AJ, Yip CW, Zeng F, Lam PY, Leung FC (2008) Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology, 82, 1819-1826.
URL PMID |
[18] |
Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 13, e1006698.
DOI URL PMID |
[19] |
Hu YF, Yang F, Dong J, Yang J, Zhang T, Sun LL, Jin Q (2011) Direct pathogen detection from swab samples using a new high-throughput sequencing technology. Clinical Microbiology and Infection, 17, 241-244.
DOI URL PMID |
[20] | Huson DH, Kloepper TH (2005) Computing recombination networks from binary sequences. Bioinformatics, 21(Suppl. 2) , 159-165. |
[21] |
Kafer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, Jones TC, Liu S, Zhou X, Middendorf M, Junglen S, Misof B, Drosten C (2019) Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 15, e1008224.
DOI URL PMID |
[22] |
Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: Reconstructing the microbial phylogenetic network. Genome Research, 15, 954-959.
DOI URL PMID |
[23] |
Lam TT, Shum MH, Zhu HC, Tong YG, Ni XB, Liao YS, Wei W, Cheung WY, Li WJ, Li LF, Leung GM, Holmes EC, Hu YL, Guan Y (2020) Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv, doi: https://doi.org/10.1101/2020.02.13.945485.
DOI URL PMID |
[24] | Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic JM, Ramus C, Bruley C, Labadie K, Shmakova L, Rivkina E, Coute Y, Abergel C, Claverie JM (2015) In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proceedings of the National Academy of Sciences, USA, 112, e5327-e5335. |
[25] | Leigh J, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110-1116. |
[26] |
Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562-569.
DOI URL PMID |
[27] |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 395, 565-574.
DOI URL PMID |
[28] | Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proceedings of the National Academy of Sciences, USA, 112, 8136-8141. |
[29] |
Mavarez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M (2006) Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871.
DOI URL PMID |
[30] |
McBreen K, Lockhart PJ (2006) Reconstructing reticulate evolutionary histories of plants. Trends in Plant Science, 11, 398-404.
DOI URL PMID |
[31] |
Mock F, Viehweger A, Barth E, Marz M (2020) VIDHOP, viral host prediction with deep learning. bioRxiv, doi: https://doi.org/10.1101/575571.
DOI URL PMID |
[32] |
Nie FY, Lin XD, Hao ZY, Chen XN, Wang ZX, Wang MR, Wu J, Wang HW, Zhao G, Ma RZ, Holmes EC, Zhang YZ (2018) Extensive diversity and evolution of hepadnaviruses in bats in China. Virology, 514, 88-97.
DOI URL PMID |
[33] |
Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new Arenavirus in a cluster of fatal transplant-associated diseases. New England Journal of Medicine, 358, 991-998.
DOI URL PMID |
[34] |
Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doerrbecker J, Enkirch T, Dorival IGG, Hetzelt N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui M, Kosgey A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallash E, Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Trina R, Bello A, Sall AA, Faye O, Faye O, Magassouba N, Williams CV, Amburgey V, Winona L, Davis E, Gerlach J, Washington F, Monteil V, Jourdain M, Bererd M, Camara A, Somlare H, Camara A, Gerard M, Bado G, Baillet B, Delaune D, Nebie KY, Diarra A, Savane Y, Pallawo RB, Gutierrez GJ, Milhano N, Roger I, Williams CJ, Yattara F, Lewandowski K, Taylor J, Rachwal P, Turner D, Pollakis G, Hiscox JA, Matthews DA, O’Shea MK, Johnston AM, Wilson D, Hutley E, Smit E, Di Caro A, Woelfel R, Stoecker K, Fleischmann E, Gabriel M, Weller SA, Koivogui L, Diallo B, Keita S, Rambaut A, Formenty P, Gunther S, Carroll MW (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature, 530, 228-232.
DOI URL PMID |
[35] |
Roossinck MJ (2015) Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. Journal of Virology, 89, 6532-6535.
DOI URL PMID |
[36] |
Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L, Holmes EC, Zhang YZ (2018) The evolutionary history of vertebrate RNA viruses. Nature, 556, 197-202.
DOI URL PMID |
[37] |
Shi M, Lin XD, Vasilakis N, Tian JH, Li CX, Chen LJ, Eastwood G, Diao XN, Chen MH, Chen X, Qin XC, Widen SG, Wood TG, Tesh RB, Xu J, Holmes EC, Zhang YZ (2016) Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. Journal of Virology, 90, 659-669.
DOI URL PMID |
[38] |
Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AM, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, Van Der Vlugt RA, Varsani A, Zerbini FM (2017) Consensus statement: Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 15, 161-168.
DOI URL PMID |
[39] | Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016. |
[40] |
Tang P, Chiu C (2010) Metagenomics for the discovery of novel human viruses. Future Microbiology, 5, 177-189.
DOI URL PMID |
[41] |
Tang XL, Wu CC, Li X, Song YH, Yao XM, Wu XK, Duan YZ, Zhang H, Wang YR, Qian ZH, Cui J, Lu J (2020) On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7, 1012-1023.
DOI URL |
[42] |
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature, 579, 265-269.
DOI URL PMID |
[43] |
Yu WB, Tang GD, Zhang L, Corlett RT (2020) Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zoological Research, 41, 247-257.
DOI URL PMID |
[44] |
Yu Y, Harris AJ, Blair C, He X (2015) RASP (reconstruct ancestral state in phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46-49.
DOI URL PMID |
[45] |
Yuen LKW, Littlejohn M, Duchêne S, Edwards R, Bukulatjpi S, Binks P, Jackson K, Davies J, Davis JS, Tong SYC, Locarnini S, Townsend J (2019) Tracing ancient human migrations into Sahul using hepatitis B virus genomes. Molecular Biology and Evolution, 36, 942-954.
DOI URL PMID |
[46] |
Zhong ZP, Solonenko NE, Li YF, Gazitua MC, Roux S, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG (2020) Glacier ice archives fifteen-thousand-year-old viruses. bioRxiv, doi: https://doi.org/10.1101/2020.01.03.894675.
DOI URL PMID |
[47] |
Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX, Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y, Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 556, 255-258.
DOI URL PMID |
[48] |
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273.
DOI URL PMID |
[1] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[2] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[3] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[4] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[5] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[6] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[7] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[8] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[9] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[10] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[11] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
[12] | 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969. |
[13] | 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 2019, 27(8): 911-918. |
[14] | 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533. |
[15] | 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn