生物多样性 ›› 2023, Vol. 31 ›› Issue (6): 22659. DOI: 10.17520/biods.2022659
毛莹儿1, 周秀梅2, 王楠2, 李秀秀1, 尤育克1, 白尚斌1,2,*()
收稿日期:
2022-11-25
接受日期:
2023-04-03
出版日期:
2023-06-20
发布日期:
2023-04-25
通讯作者:
* E-mail: sequia96@163.com
基金资助:
Yinger Mao1, Xiumei Zhou2, Nan Wang2, Xiuxiu Li1, Yuke You1, Shangbin Bai1,2,*()
Received:
2022-11-25
Accepted:
2023-04-03
Online:
2023-06-20
Published:
2023-04-25
Contact:
* E-mail: sequia96@163.com
摘要:
土壤微生物是森林生态系统的重要组成部分, 毛竹(Phyllostachys edulis)扩张使植被类型发生改变, 进而对土壤微生物群落产生影响。为揭示毛竹向杉木(Cunninghamia lanceolata)林扩张过程中对土壤细菌群落的影响。本文在浙江省杭州市临安区於潜镇南山村, 以杉木纯林(s)为对照, 选取毛竹杉木混交林(h)、毛竹纯林(m)两种林型, 通过高通量测序技术探究毛竹扩张对杉木林土壤细菌群落的影响。结果表明: 毛竹扩张导致杉木林土壤细菌群落α多样性降低, 与杉木林相比, 混交林地细菌多样性及丰富度分别降低了2.4%、8.6%, 但无显著差异; 毛竹林分别降低了5.9%、16%, 且差异显著(P < 0.05)。毛竹扩张杉木林后, 改变了土壤细菌菌群的相对多度; 杉木林中变形菌门、Unassigned和疣微菌门的相对多度最高, 分别占32.39%、3.7%、3.2%; 毛竹林中酸杆菌门和拟杆菌门的相对多度最高, 分别占45.05%、5.19%; 混交林中浮霉状菌门、放线菌门和绿弯菌门的相对多度最高, 分别占7.51%、6.79%、5.12%。毛竹扩张形成混交林后, 浮霉状菌门、放线菌门的相对多度显著上升(P < 0.05), 分别增加了3.12%、2.71%, 而迷踪菌门和芽单胞菌门的相对多度显著下降(P < 0.05), 分别减少了0.43%、0.36%; 奇古菌门相对多度显著下降(P < 0.05)。β多样性分析结果显示, 毛竹扩张对杉木林土壤细菌群落结构产生显著影响(P < 0.05), 毛竹林与竹杉混交林的土壤细菌结构较为接近, 两者与杉木林细菌群落集聚距离较远。LEfSe分析显示硝化螺菌属(Nitrospira)、芽单胞菌科和分枝杆菌属(Mycobacterium)的相对多度变化显著, 可作为毛竹扩张杉木林土壤细菌群落结构变化的指示种。土壤NH4+可能是引起细菌群落变化的主要土壤环境因子。这些结果说明毛竹向杉木林扩张可引起林地土壤细菌群落发生改变, 这为了解毛竹扩张对土壤碳氮等元素循环、扩张机制及扩张调控提供了基础数据。
毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌 (2023) 毛竹扩张对杉木林土壤细菌群落的影响. 生物多样性, 31, 22659. DOI: 10.17520/biods.2022659.
Yinger Mao, Xiumei Zhou, Nan Wang, Xiuxiu Li, Yuke You, Shangbin Bai (2023) Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community. Biodiversity Science, 31, 22659. DOI: 10.17520/biods.2022659.
林分 Standing forest | pH | 土壤含水率 Soil moisture content (%) | NH4+ (mg/kg) | NO3- (mg/kg) | SOC (g/kg) | WSOC (mg/kg) | AN (mg/kg) | MBC (mg/kg) | MBN (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
毛竹林 Moso bamboo forest | 4.83 ± 0.60a | 28.67 ± 1.53a | 4.80 ± 2.11a | 2.33 ± 0.16c | 17.30 ± 3.60b | 51.51 ± 4.62a | 155.87 ± 29.35b | 386.67 ± 40.72b | 35.44 ± 12.00ab |
混交林 Mixed forest | 4.87 ± 0.08a | 27.67 ± 0.58a | 3.91 ± 1.16a | 5.52 ± 0.58a | 38.59 ± 2.28a | 40.28 ± 5.12b | 218.40 ± 28.55a | 535.28 ± 52.26ab | 49.90 ± 3.41a |
杉木林 Chinese fir forest | 4.65 ± 0.07b | 30.67 ± 3.10a | 2.28 ± 0.40a | 4.56 ± 0.30b | 31.63 ± 4.62a | 37.17 ± 1.87b | 211.87 ± 26.50ab | 606.97 ± 149.68a | 27.46 ± 12.76b |
表1 不同林分土壤理化性质和微生物生物量。数据为平均值 ± 标准差(n = 3)。
Table 1 Physicochemical properties and microbial biomass of soil in different forest stands. The data is the mean ± standard deviation (n = 3).
林分 Standing forest | pH | 土壤含水率 Soil moisture content (%) | NH4+ (mg/kg) | NO3- (mg/kg) | SOC (g/kg) | WSOC (mg/kg) | AN (mg/kg) | MBC (mg/kg) | MBN (mg/kg) |
---|---|---|---|---|---|---|---|---|---|
毛竹林 Moso bamboo forest | 4.83 ± 0.60a | 28.67 ± 1.53a | 4.80 ± 2.11a | 2.33 ± 0.16c | 17.30 ± 3.60b | 51.51 ± 4.62a | 155.87 ± 29.35b | 386.67 ± 40.72b | 35.44 ± 12.00ab |
混交林 Mixed forest | 4.87 ± 0.08a | 27.67 ± 0.58a | 3.91 ± 1.16a | 5.52 ± 0.58a | 38.59 ± 2.28a | 40.28 ± 5.12b | 218.40 ± 28.55a | 535.28 ± 52.26ab | 49.90 ± 3.41a |
杉木林 Chinese fir forest | 4.65 ± 0.07b | 30.67 ± 3.10a | 2.28 ± 0.40a | 4.56 ± 0.30b | 31.63 ± 4.62a | 37.17 ± 1.87b | 211.87 ± 26.50ab | 606.97 ± 149.68a | 27.46 ± 12.76b |
图1 不同林分土壤细菌独有和共有OTUs分布的Venn图。s: 杉木林; h: 混交林; m: 毛竹林。
Fig. 1 Venn map of distribution of unique and common OTUs in different forest stands soil. s, Chinese fir forest; h, Mixed forest; m, Moso bamboo forest.
林分 Standing forest | Chao 1指数 Chao 1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | OTU数目 No. of OTU |
---|---|---|---|---|
杉木林 Chinese fir forest | 4,171.93 ± 204.56a | 6.76 ± 0.20a | 0.0047 ± 0.0012b | 4,127 ± 205a |
混交林 Mixed forest | 3,812.87 ± 159.17ab | 6.51 ± 0.13ab | 0.0059 ± 0.0009ab | 3,813 ± 159ab |
毛竹林 Moso bamboo forest | 3,504.13 ± 282.44b | 6.36 ± 0.11b | 0.0069 ± 0.0003a | 3,504 ± 283b |
表2 不同林分下的土壤细菌α多样性指数
Table 2 α diversity index of soil bacteria under different forest stands
林分 Standing forest | Chao 1指数 Chao 1 index | Shannon指数 Shannon index | Simpson指数 Simpson index | OTU数目 No. of OTU |
---|---|---|---|---|
杉木林 Chinese fir forest | 4,171.93 ± 204.56a | 6.76 ± 0.20a | 0.0047 ± 0.0012b | 4,127 ± 205a |
混交林 Mixed forest | 3,812.87 ± 159.17ab | 6.51 ± 0.13ab | 0.0059 ± 0.0009ab | 3,813 ± 159ab |
毛竹林 Moso bamboo forest | 3,504.13 ± 282.44b | 6.36 ± 0.11b | 0.0069 ± 0.0003a | 3,504 ± 283b |
图2 不同林分土壤细菌群落结构。s: 杉木林; h: 混交林; m: 毛竹林。
Fig. 2 Soil bacterial community structure in three different forest stands. s, Chinese fir forest; h, Mixed forest; m, Moso bamboo forest.
图3 不同林分土壤中细菌门的组成。s: 杉木林; h: 混交林; m: 毛竹林。
Fig. 3 Community composition of soil bacterial phyla in different forest stands. s, Chinese fir forest; h, Mixed forest; m, Moso bamboo forest.
图4 不同林分土壤细菌的LEfSe分析(LDA阈值为3.5)。s: 杉木林; h: 混交林。
Fig. 4 LEfSe analysis of bacterial under different forest stands (LDA threshold is 3.5). s, Chinese fir forest; h, Mixed forest.
多样性指数 Diversity index | pH | 土壤含水率 Soil moisture content | NH4+ | NO3- | SOC | WSOC | AN | MBC | MBN |
---|---|---|---|---|---|---|---|---|---|
Chao 1 | ?0.524 | 0.420 | ?0.836** | 0.384 | 0.367 | ?0.738* | 0.180 | ?0.157 | ?0.185 |
Shannon | ?0.426 | 0.578 | ?0.793* | 0.357 | 0.341 | ?0.606 | 0.132 | ?0.040 | ?0.125 |
Simpson | 0.258 | ?0.528 | 0.774* | ?0.489 | ?0.606 | 0.561 | ?0.489 | ?0.191 | ?0.028 |
表3 土壤细菌α多样性指数与土壤理化性质、微生物量的相关系数
Table 3 Correlation coefficient of α diversity index of soil bacteria with soil physical and chemical properties and microbial biomass
多样性指数 Diversity index | pH | 土壤含水率 Soil moisture content | NH4+ | NO3- | SOC | WSOC | AN | MBC | MBN |
---|---|---|---|---|---|---|---|---|---|
Chao 1 | ?0.524 | 0.420 | ?0.836** | 0.384 | 0.367 | ?0.738* | 0.180 | ?0.157 | ?0.185 |
Shannon | ?0.426 | 0.578 | ?0.793* | 0.357 | 0.341 | ?0.606 | 0.132 | ?0.040 | ?0.125 |
Simpson | 0.258 | ?0.528 | 0.774* | ?0.489 | ?0.606 | 0.561 | ?0.489 | ?0.191 | ?0.028 |
图5 环境因素对土壤细菌群落结构特征影响的冗余分析。s: 杉木林; h: 混交林; m: 毛竹林。
Fig. 5 Redundancy analysis of the effects of environmental factors on soil bacterial community structure. s, Chinese fir forest; h, Mixed forest; m, Moso bamboo forest.
图6 土壤细菌门水平主要类群相对丰度与土壤理化性质的Spearman相关性。WSOC: 水溶性有机碳; MBN: 微生物氮; MBC: 微生物碳; SOC: 土壤有机碳; SOM: 有机质。
Fig. 6 Spearman correlation between the relative abundance of major groups at the soil bacterial phylum level and soil physicochemical properties. WSOC, Water-soluble organic carbon; MBN, Microbial biomass nitrogen; MBC, Microbial biomass carbon; SOC, Soil organic carbon; SOM, Soil organic matter.
[1] |
Bai SB, Zhou GM, Wang YX, Liang QQ, Chen J, Cheng YY, Shen R (2013) Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodiversity Science, 21, 288-295. (in Chinese with English abstract)
DOI URL |
[白尚斌, 周国模, 王懿祥, 梁倩倩, 陈娟, 程艳艳, 沈蕊 (2013) 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化. 生物多样性, 21, 288-295.]
DOI |
|
[2] |
Chang EH, Chiu CY (2015) Changes in soil microbial community structure and activity in a cedar plantation invaded by moso bamboo. Applied Soil Ecology, 91, 1-7.
DOI URL |
[3] | Chen J, Zhang QX, Gu J, Wang N, Zhu XT, Bai SB (2021) Initial effects of Phyllostachys edulis invasion on stand structure and species composition of Chinese fir forest. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 50, 517-523. (in Chinese with English abstract) |
[陈珺, 张庆晓, 顾娇, 王楠, 朱向涛, 白尚斌 (2021) 毛竹入侵对杉木林生长和植被组成的初期影响. 福建农林大学学报(自然科学版), 50, 517-523.] | |
[4] |
Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science, 320, 1034-1039.
DOI PMID |
[5] | Fan SH, Shen JX, Liu G L, Feng Y, Liu XZ, Cai CJ (2019) Soil nutrients and ecological stoichiometry characteristics after Phyllostachys edulis expansion to Cunninghamia lanceolata forest. Acta Botanica Boreali-Occidentalia Sinica, 39, 1455-1462. (in Chinese with English abstract) |
[范少辉, 申景昕, 刘广路, 冯云, 刘希珍, 蔡春菊 (2019) 毛竹向杉木林扩展对土壤养分含量及计量比的影响. 西北植物学报, 39, 1455-1462.] | |
[6] | Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, USA, 103, 626-631. |
[7] | Gao XH, Li M, Lu P, Lv GF, Niu YF (2019) Bacterial community in the rhizosphere soil of Betula platyphylla in the Daqing Mountains, Hohhot. Acta Ecologica Sinica, 39, 3586-3596. (in Chinese with English abstract) |
[高秀宏, 李敏, 卢萍, 吕桂芬, 牛艳芳 (2019) 呼和浩特市大青山白桦根际土壤细菌群落结构研究. 生态学报, 39, 3586-3596.] | |
[8] |
Guan F, Tang X, Fan S, Zhao J, Peng C (2015) Changes in soil carbon and nitrogen stocks followed the conversion from secondary forest to Chinese fir and moso bamboo plantations. Catena, 133, 455-460.
DOI URL |
[9] |
Guo X, Chen HYH, Meng M, Biswas SR, Ye L, Zhang J (2016) Effects of land use change on the composition of soil microbial communities in a managed subtropical forest. Forest Ecology and Management, 373, 93-99.
DOI URL |
[10] |
Inderjit, van der Putten WH (2010) Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology and Evolution, 25, 512-519.
DOI URL |
[11] | Jiang LH, Mao CM, Wu HZ, Duan QX, Fang ZX (2015) Investigation and analysis of moso forest management in Songyang County, Zhejiang Province. World Bamboo and Rattan, 13(5), 28-34. (in Chinese with English abstract) |
[蒋灵华, 毛朝明, 吴恒祝, 段庆新, 方仲相 (2015) 浙江省松阳县毛竹林经营现状调查与分析. 世界竹藤通讯, 13(5), 28-34.] | |
[12] | Jiao XG, Gao CS, Sui YY, Zhang XY, Ding GW (2011) Research on soil microbial ecology under different soil organic matter levels in farmland. Scientia Agricultura Sinica, 44, 3759-3767. |
[13] | Li C, Liu YQ, Wang HK, Chen Q, Deng BL, Liu XJ, Dong XY, Zhang L, Zheng X, Cao W (2019) Effects of moso bamboo (Phyllostachys edulis) expansion and simulated nitrogen deposition on emission of soil N2O and CO2 in Lushan Mountain. Acta Pedologica Sinica, 56, 148-155. (in Chinese with English abstract) |
[李超, 刘苑秋, 王翰琨, 陈琦, 邓邦良, 刘晓君, 董星宇, 张令, 郑翔, 曹雯 (2019) 庐山毛竹扩张及模拟氮沉降对土壤N2O和CO2排放的影响. 土壤学报, 56, 148-155.] | |
[14] | Li M, Ma F, Xiao GJ (2018) Effect of varying fertilization patterns on bacteria and archaea communities in saline-alkali soil under rice cultivation. Journal of Agro-Environment Science, 37, 495-504. (in Chinese with English abstract) |
[李明, 马飞, 肖国举 (2018) 稻作条件下不同施肥模式对盐碱化土壤细菌和古菌群落结构的影响. 农业环境科学学报, 37, 495-504.] | |
[15] | Li WC, Sheng HY, Chen WJ, Liu YY, Zhang R, Wen X (2018) Variation of soil bacterial diversity after the invasion of Phyllostachys edulis into Pinus massoniana forest. Chinese Journal of Applied Ecology, 29, 3969-3976. (in Chinese with English abstract) |
[李伟成, 盛海燕, 陈伟杰, 刘姚姚, 张瑞, 温星 (2018) 毛竹入侵马尾松林的土壤菌群多样性变化. 应用生态学报, 29, 3969-3976.]
DOI |
|
[16] | Li YC, Liang X, Li YF, Wang Q, Chen JH, Xu QF (2016) Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community. Chinese Journal of Applied Ecology, 27, 585-592. (in Chinese with English abstract) |
[李永春, 梁雪, 李永夫, 王祈, 陈俊辉, 徐秋芳 (2016) 毛竹入侵阔叶林对土壤真菌群落的影响. 应用生态学报, 27, 585-592.] | |
[17] | Li YC, Liu BR, Guo S, Wu QF, Qin H, Wu JS, Xu QF (2014) Characteristics of soil ammonia-oxidation microbial communities in different subtropical forests, China. Chinese Journal of Applied Ecology, 25, 125-131. (in Chinese with English abstract) |
[李永春, 刘卜榕, 郭帅, 邬奇峰, 秦华, 吴家森, 徐秋芳 (2014) 亚热带不同林分土壤氨氧化菌群落特征. 应用生态学报, 25, 125-131.] | |
[18] | Li YM, Feng PF (2019) Bamboo resources in China based on the ninth national forest inventory data. World Bamboo and Rattan, 17(6), 45-48. (in Chinese with English abstract) |
[李玉敏, 冯鹏飞 (2019) 基于第九次全国森林资源清查的中国竹资源分析. 世界竹藤通讯, 17(6), 45-48.] | |
[19] |
Lima R, Rother DC, Muler AE, Lepsch IF, Rodrigues RR (2012) Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biological Conservation, 147, 32-39.
DOI URL |
[20] |
Liu J, Yang QP, Song QN, Yu DK, Yang GY, Qi HY, Shi JM (2013) Strategy of fine root expansion of Phyllostachys pubescens population into evengreen broadleaved forest. Chinese Journal of Plant Ecology, 37, 230-238. (in Chinese with English abstract)
DOI URL |
[刘骏, 杨清培, 宋庆妮, 余定坤, 杨光耀, 祁红艳, 施建敏 (2013) 毛竹种群向常绿阔叶林扩张的细根策略. 植物生态学报, 37, 230-238.]
DOI |
|
[21] |
Liu X, Siemann E, Cui C, Liu Y, Guo X, Zhang L (2019) Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests. Plant and Soil, 438, 85-99.
DOI |
[22] | Ma XR, Zheng XL, Zheng CY, Hu YT, Qin H, Chen JH, Xu QF, Liang CF (2022) Effects of moso bamboo (Phyllostachys edulis) expansion on soil microbial community in evergreen broad-leaved forest. Chinese Journal of Applied Ecology, 33, 1091-1098. (in Chinese with English abstract) |
[马鑫茹, 郑旭理, 郑春颖, 胡玉婷, 秦华, 陈俊辉, 徐秋芳, 梁辰飞 (2022) 毛竹扩张对常绿阔叶林土壤微生物群落的影响. 应用生态学报, 33, 1091-1098.]
DOI |
|
[23] |
Qiu FX, Pe KJ, Jia SW, Zhou GM, Shen RF, Fuhrmann JJ (2015) Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biological Invasions, 17, 433-444.
DOI URL |
[24] | Song C, Chi XC, Wang XY, Wang YX, Ye JW, Zhu XT, Bai SB (2020) Effects of moso bamboo invasion on carbon storage in evergreen broad-leaved forest. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 49, 809-815. (in Chinese with English abstract) |
[宋超, 池鑫晨, 王晓雨, 王懿祥, 叶静雯, 朱向涛, 白尚斌 (2020) 毛竹入侵对常绿阔叶林碳储量的影响. 福建农林大学学报(自然科学版), 49, 809-815.] | |
[25] |
Song QN, Lu H, Liu J, Yang J, Yang GY, Yang QP (2017) Accessing the impacts of bamboo expansion on NPP and N cycling in evergreen broadleaved forest in subtropical China. Scientific Reports, 7, 40383.
DOI |
[26] | Wang N, Wang CK, Pan XC, Bai SB (2020) Effects of simulated acid rain on soil bacterial community diversity in buffer zone of broad-leaved forest invaded by moso bamboo. Research of Environmental Sciences, 33, 1478-1487. (in Chinese with English abstract) |
[王楠, 王传宽, 潘小承, 白尚斌 (2020) 模拟酸雨对毛竹入侵阔叶林缓冲区土壤细菌群落多样性的影响. 环境科学研究, 33, 1478-1487.] | |
[27] | Wang QZ, Xu QF, Jiang PK, Qin H (2009) DGGE analysis of PCR of 16S rDNA V3 fragments of soil bacteria community in soil under natural broadleaf forest invaded by Phyllostachy pubescens in Tianmu Mountain Nature Reserve. Acta Pedologica Sinica, 46, 662-669. (in Chinese with English abstract) |
[王奇赞, 徐秋芳, 姜培坤, 秦华 (2009) 天目山毛竹入侵阔叶林后土壤细菌群落16S rDNA V3区片段PCR的DGGE分析. 土壤学报, 46, 662-669.] | |
[28] |
Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011) Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China. Functional Ecology, 25, 921-931.
DOI URL |
[29] |
Xia Z, Bai E, Wang Q, Gao D, Zhou J, Jiang P, Wu J (2016) Biogeographic distribution patterns of bacteria in typical Chinese forest soils. Frontiers in Microbiology, 7, 1106.
DOI PMID |
[30] | Xu DW, Liu JF, He ZS, Zheng SQ (2019) Effect of Phyllostachys edulis to Cunninghamia lanceolata forest on soil active organic carbon and carbon management index. Journal of West China Forestry Science, 48(5), 22-28, 36. (in Chinese with English abstract) |
[徐道炜, 刘金福, 何中声, 郑世群 (2019) 毛竹向杉木林扩张对土壤活性有机碳及碳库管理指数影响. 西部林业科学, 48(5), 22-28, 36.] | |
[31] |
Xu QF, Jiang PK, Wu JS, Zhou GM, Shen RF, Fuhrmann JJ (2015) Bamboo invasion of native broadleaf forest modified soil microbial communities and diversity. Biological Invasions, 17, 433-444.
DOI URL |
[32] | Yu SP, Shi CQ, Hu BZ, Ding JN, Meng B, Yang CX (2020) Analysis of microbial community structure and diversity of saline soil in Gudahu Wetland. Acta Ecologica Sinica, 40, 3764-3775. (in Chinese with English abstract) |
[于少鹏, 史传奇, 胡宝忠, 丁俊男, 孟博, 杨春雪 (2020) 古大湖湿地盐碱土壤微生物群落结构及多样性分析. 生态学报, 40, 3764-3775.] | |
[33] |
Yu XJ, Yu D, Lu ZJ, Ma KP (2005) A possible plant invasion mechanism: Invasive species affect the growth of local species by changing the soil microbial community in the invaded area. Chinese Science Bulletin, 50, 896-903. (in Chinese)
DOI URL |
[于兴军, 于丹, 卢志军, 马克平 (2005) 一个可能的植物入侵机制: 入侵种通过改变入侵地土壤微生物群落影响本地种的生长. 科学通报, 50, 896-903.] | |
[34] | Zeng QC, Dong YH, An SS (2016) Bacterial community responses to soils along a latitudinal and vegetation gradient on the loess plateau, China. PLoS ONE, 11, e0152894. |
[35] | Zhang QX, Chen J, Zhu XT, Wang N, Bai SB (2021) On the short-term response of soil greenhouse gas emissions in Cunninghamia lanceolata forest to the expansion and eradication of Phyllostachys edulis. Journal of Zhejiang A&F University, 38, 703-711. (in Chinese with English abstract) |
[张庆晓, 陈珺, 朱向涛, 王楠, 白尚斌 (2021) 杉木林土壤温室气体排放对毛竹入侵及采伐的短期响应. 浙江农林大学学报, 38, 703-711.] | |
[36] | Zhao TX, Mao XW, Cheng M, Chen JH, Qin H, Li YC, Liang CF, Xu QF (2017) Effects of Phyllostachys edulis cultivation on soil bacterial and fungal community structure and diversity. Chinese Journal of Applied Ecology, 28, 3740-3750. (in Chinese with English abstract) |
[赵天心, 毛新伟, 程敏, 陈俊辉, 秦华, 李永春, 梁辰飞, 徐秋芳 (2017) 毛竹种植对土壤细菌和真菌群落结构及多样性的影响. 生态学杂志, 28, 3740-3750.] | |
[37] | Zhao YH, Fan SH, Luo JD (2017) The influence of Phyllostachys edulis expanding into evergreen broadleaf forest on soil property and its related analysis. Forest Research, 30, 354-359. (in Chinese with English abstract) |
[赵雨虹, 范少辉, 罗嘉东 (2017) 毛竹扩张对常绿阔叶林土壤性质的影响及相关分析. 林业科学研究, 30, 354-359.] | |
[38] | Zhou Y, Liu CX, Xu QF, Liang CF, Chen JH, Qin H, Li YC (2018) Effects of moso bamboo invasion on nitrogen-fixing microbial community structure and abundance in forest. Plant Nutrition and Fertilizer Science, 24, 1047-1057. (in Chinese with English abstract) |
[周燕, 刘彩霞, 徐秋芳, 梁辰飞, 陈俊辉, 秦华, 李永春 (2018) 毛竹入侵森林对固氮微生物群落结构和丰度的影响. 植物营养与肥料学报, 24, 1047-1057.] |
[1] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[2] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[3] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[4] | 王定一, 倪祥银, 岳楷, 张潇月, 康自佳, 朱玲, 吴福忠. 白蚁活动对中亚热带次生林和人工林的危害差异[J]. 生物多样性, 2022, 30(3): 21324-. |
[5] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[6] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[7] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[8] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[9] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[10] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[11] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
[12] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
[13] | 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969. |
[14] | 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构[J]. 生物多样性, 2019, 27(8): 911-918. |
[15] | 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn