生物多样性 ›› 2020, Vol. 28 ›› Issue (5): 579-586. DOI: 10.17520/biods.2020155
收稿日期:
2020-04-16
接受日期:
2020-05-26
出版日期:
2020-05-20
发布日期:
2020-06-19
通讯作者:
乔慧捷
基金资助:
Received:
2020-04-16
Accepted:
2020-05-26
Online:
2020-05-20
Published:
2020-06-19
Contact:
Huijie Qiao
摘要:
随着新冠肺炎(COVID-19)疫情在全球逐渐开始蔓延, 对其传播范围以及强度的风险评估工作越来越受到人们的重视。作为生态学和生物地理学中常用的研究手段, 生态位模型也被应用到该项工作中来。虽然预测流行病的传播热点和趋势是生态位模型的应用方向之一, 但由于新冠病毒(SARS-CoV-2)自身特点, 生态位模型并非预测其潜在传播范围的有力工具。本文回顾了近些年来生态位模型在各种流行病学研究中的应用, 比较了疫病传播中常用生态位建模方法的优势与不足, 分析了适用生态位建模的疫病案例以及不适用于生态位建模的疫病特点, 明确指出, 生态位模型只能用于分析流行病在传播过程中受自然环境干扰的部分, 如中间宿主的潜在分布等。而对于包括COVID-19在内的主要通过人传人的流行病, 生态位模型尚无有效的手段进行预测。尽管生态位模型可用于分析流行病的传播范围, 但在使用时需要根据疾病特点有针对性地选择合适的建模方法与建模对象。为了量化疫病传播风险, 还需要考虑其他干扰因素, 以便准确测试和评估生态位模型。若不加选择地滥用生态位模型的工具, 反而会误导决策者的判断。总之, 在应用生态位模型进行研究工作, 特别是预测流行病的传播范围时, 首先要考虑建模对象是否满足生态学假设。
王然, 乔慧捷 (2020) 生态位模型在流行病学中的应用. 生物多样性, 28, 579-586. DOI: 10.17520/biods.2020155.
Ran Wang, Huijie Qiao (2020) Matters needing attention about invoking ecological niche model in epidemiology. Biodiversity Science, 28, 579-586. DOI: 10.17520/biods.2020155.
[1] |
Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, Di Marco M, Breit N, Olival KJ, Daszak P (2017) Global hotspots and correlates of emerging zoonotic diseases. Nature Communications, 8, 1124.
URL PMID |
[2] |
Altizer S, Dobson A, Hosseini P, Hudson P, Pascual M, Rohani P (2006) Seasonality and the dynamics of infectious diseases. Ecology Letters, 9, 467-484.
DOI URL |
[3] | Araújo MB, Naimi B (2020) Spread of SARS-CoV-2 Coronavirus likely to be constrained by climate. doi: 10.1101/2020.03.12.20034728. |
[4] |
Ashley ST, Meentemeyer V (2004) Climatic analysis of Lyme disease in the United States. Climate Research, 27, 177-187.
DOI URL |
[5] |
Barrett ADT, Higgs S (2007) Yellow Fever: A disease that has yet to be conquered. Annual Review of Entomology, 52, 209-229.
DOI URL PMID |
[6] | Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: Global risk of invasion by the mosquito Aedes albopictus. Vector-Borne and Zoonotic Diseases, 7, 76-85. |
[7] |
Carlson CJ, Chipperfield JD, Benito BM, Telford RJ, O’Hara RB (2020) Species distribution models are inappropriate for COVID-19. Nature Ecology & Evolution, 4, 770-771.
DOI URL PMID |
[8] |
Caron A, Cappelle J, Cumming GS, de Garine-Wichatitsky M, Gaidet N (2015) Bridge hosts, a missing link for disease ecology in multi-host systems. Veterinary Research, 46, 1-11.
DOI URL PMID |
[9] | Chase JM, Leibold MA (2003) Ecological Niches: Linking Classic and Contemporary Approaches. University of Chicago Press, Chicago. |
[10] | Chipperfield JD, Blas M, Benito RB, Telford RJ, Carlson CJ (2020) On the inadequacy of species distribution models for modelling the spread of SARS-CoV-2: Response to Araújo and Naimi. doi: 10.32942/osf.io/mr6pn. |
[11] |
Costa J, Beard CB, Peterson LA (2002) Ecological niche modeling and differentiation of populations of Triatoma brasiliensis Neiva, 1911, the most important Chagas’ disease vector in northeastern Brazil (Hemiptera, Reduviidae, Triatominae). American Journal of Tropical Medicine & Hygiene, 67, 516-520.
DOI URL PMID |
[12] |
Defoirdt T (2016) Implications of ecological niche differentiation in marine bacteria for microbial management in aquaculture to prevent bacterial disease. PLOS Pathogens, 12, e1005843.
DOI URL PMID |
[13] | Dicko AH, Lancelot R, Seck MT, Guerrini L, Sall B, Lo M, Vreysen MJB, Lefrançois T, Fonta WM, Peck SL, Bouyer J (2014) Using species distribution models to optimize vector control in the framework of the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Sciences, USA, 111, 10149-10154. |
[14] |
Escobar LE, Peterson AT, Papeş M, Favi M, Yung V, Restif O, Qiao HJ, Medina-Vogel G (2015) Ecological approaches in veterinary epidemiology: Mapping the risk of bat-borne rabies using vegetation indices and night-time light satellite imagery. Veterinary Research, 46, 92.
DOI URL PMID |
[15] |
Escobar LE, Qiao HJ, Peterson AT (2016) Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasit & Vectors, 9, 112.
DOI URL PMID |
[16] |
Estrada-Pena A, Ostfeld RS, Peterson AT, Poulin R, Fuente J (2014) Effects of environmental change on zoonotic disease risk: An ecological primer. Trends in Parasitology, 30, 205-214.
DOI URL |
[17] |
Farnham A, Alleyne L, Cimini D, Balter S (2014) Legionnaires’ disease incidence and risk factors, New York, USA, 2002-2011. Emerging Infectious Diseases, 20, 1795-1802.
DOI URL PMID |
[18] | Geoghegan JL, Holmes EC (2017) Predicting virus emergence amid evolutionary noise. Open Biology, 7, 170-189. |
[19] | Grinnell J (1917) The niche-relationships of the California Thrasher. Auk Cambridge Mass, 34, 427-433. |
[20] |
Holt J, Davis S, Leirs H (2006) A model of Leptospirosis infection in an African rodent to determine risk to humans: Seasonal fluctuations and the impact of rodent control. Acta Tropica, 99, 218-225.
DOI URL PMID |
[21] |
Johnson EE, Escobar LE, Zambrana-Torrelio C (2019) An ecological framework for modeling the geography of disease transmission. Trends in Ecology & Evolution, 34, 655-668.
DOI URL PMID |
[22] |
Kraemer MUG, Golding N, Bisanzio D, Bhatt S, Pigott DM, Ray SE, Brady OJ, Brownstein JS, Faria NR, Cummings DAT, Pybus OG, Smith DL, Tatem AJ, Hay SI, Reiner RCJ (2019) Utilizing general human movement models to predict the spread of emerging infectious diseases in resource poor settings. Scientific Reports, 9, 5151.
DOI URL PMID |
[23] |
Levine RS, Benedict MQ, Peterson AT (2004a) Distribution of Anopheles quadrimaculatus Say s.l. and implications for its role in malaria transmission in the US. Journal of Medical Entomology, 41, 607-613.
DOI URL PMID |
[24] |
Levine RS, Peterson AT, Benedict MQ (2004b) Geographic and ecologic distributions of the Anopheles gambiae complex predicted using a genetic algorithm. American Journal of Tropical Medicine & Hygiene, 70, 105-109.
URL PMID |
[25] |
Levin ML, Zemtsova GE, Montgomery M, Killmaster LF (2014) Effects of homologous and heterologous immunization on the reservoir competence of domestic dogs for Rickettsia conorii (israelensis). Ticks and Tick-Borne Diseases, 5, 33-40.
DOI URL PMID |
[26] |
Li GQ, Liu CC, Liu YG, Yang J, Zhang XS, Guo K (2013) Advances in theoretical issues of species distribution models. Acta Ecologica Sinica, 33, 4827-4835. (in Chinese with English abstract)
DOI URL |
[ 李国庆, 刘长成, 刘玉国, 杨军, 张新时, 郭柯 (2013) 物种分布模型理论研究进展. 生态学报, 33, 4827-4835.]
DOI URL |
|
[27] |
Lloyd-Smith JO, George D, Pepin KM, Pitzer VE, Pulliam JRC, Dobson AP, Hudson PJ, Grenfell BT (2009) Epidemic dynamics at the human-animal interface. Science, 326, 1362-1367.
DOI URL PMID |
[28] |
Messina JP, Brady OJ, Pigott DM, Brownstein JS, Hoen AG, Hay SI (2014) A global compendium of human dengue virus occurrence. Scientific Data, 1, 140004.
DOI URL PMID |
[29] |
Monroe MC, Morzunov SP, Johnson AM, Bowen MD, Artsob H, Yates T, Peters C, Rollin PE, Ksiazek TG, Nichol ST (1999) Genetic diversity and distribution of Peromyscus- borne hantaviruses in North America. Emerging Infectious Diseases, 5, 75-86.
DOI URL PMID |
[30] | Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10-18. |
[31] |
Pandey A, Atkins KE, Medlock J, Wenzel N, Townsend JP, Childs JE, Nyenswah TG, Ndeffo-Mbah ML, Galvani AP (2014) Strategies for containing Ebola in West Africa. Science, 346, 991-995.
DOI URL PMID |
[32] |
Peterson AT, Sánchez-Cordero V, Ben BC, Ramsey JM (2002) Ecologic niche modeling and potential reservoirs for Chagas disease, Mexico. Emerging Infectious Diseases, 8, 662-667.
DOI URL PMID |
[33] |
Peterson AT, Shaw J (2003) Lutzomyia vectors for cutaneous leishmaniasis in Southern Brazil: Ecological niche models, predicted geographic distributions, and climate change effects. International Journal for Parasitology, 33, 919-931.
DOI URL PMID |
[34] | Peterson AT, Vieglais DA, Andreasen J (2003) Migratory birds modeled as critical transport vectors for West Nile virus in North America. Vector┐Borne & Zoonotic Diseases, 3, 39-50. |
[35] | Peterson AT, Martínez-Campos C, Nakazawa Y, Martínez-Meyer E (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine & Hygiene, 9, 1-14. |
[36] |
Peterson AT (2006) Ecologic niche modeling and spatial patterns of disease transmission. Emerging Infectious Diseases, 12, 1822-1826.
DOI URL PMID |
[37] |
Peterson AT, Lash RR, Carroll DS, Johnson KM (2006) Geographic potential for outbreaks of Marburg hemorrhagic fever. American Journal of Tropical Medicine & Hygiene, 75, 9-15.
DOI URL PMID |
[38] | Peterson AT (2014) Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology. Johns Hopkins University Press, Baltimore. |
[39] |
Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, Brady OJ, Kraemer MU, Smith DL, Moyes CL, Bhatt S, Gething PW, Horby PW, Bogoch II, Brownstein JS, Mekaru SR, Tatem AJ, Khan K, Hay SI (2014) Mapping the zoonotic niche of Ebola virus disease in Africa. Elife, 3, e04395.
DOI URL PMID |
[40] |
Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Nature Reviews Microbiology, 15, 502-510.
DOI URL PMID |
[41] | Qiao HJ, Hu JH, Huang JH (2013) Theoretical basis, development direction and challenges of niche model. Scientia Sinica Vitae, 43, 915-927. (in Chinese with English abstract) |
[ 乔慧捷, 胡军华, 黄继红 (2013) 生态位模型的理论基础, 发展方向与挑战. 中国科学: 生命科学, 43, 915-927.] | |
[42] |
Roman T, Sophie G, Claire B, Stéphane C, Marie-Estelle SG, Dominique G, Emilie B, Cyrille G, Claudia MZ (2017) Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLOS Neglected Tropical Diseases, 11, e0005414.
DOI URL PMID |
[43] |
Tosepu R, Gunawan J, Effendy DS, Ahmad LOAI, Lestari H, Bahar H, Asfian P (2020) Correlation between weather and COVID-19 pandemic in Jakarta, Indonesia. Science of the Total Environment, 725, 138436.
DOI URL PMID |
[44] |
Williamson HR, Benbow ME, Campbell LP, Johnson CR, Sopoh G, Barogui Y, Merritt RW, Small PLC (2012) Detection of Mycobacterium ulcerans in the environment predicts prevalence of Buruli ulcer in Benin. PLoS Neglected Tropical Diseases, 6, e1506.
DOI URL PMID |
[45] |
Winkler AS, Friedrich K, König R, Meindl M, Helbok R, Unterberger I, Gotwald T, Dharsee J, Velicheti S, Kidunda A, Jilek-Aall L, Matuja W, Schmutzhard E (2008) The head nodding syndrome: Clinical classification and possible causes. Epilepsia, 49, 2008-2015.
DOI URL PMID |
[46] |
Yanagihara R (1990) Hantavirus infection in the United States: Epizootiology and epidemiology. Review of Infectious Diseases, 12, 449-457.
DOI URL PMID |
[47] | Zhu GP, Liu GQ, Bu WJ, Gao YB (2013) Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 21, 90-98. (in Chinese with English abstract) |
[ 朱耿平, 刘国卿, 卜文俊, 高玉葆 (2013) 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 21, 90-98.] |
[1] | 刘志发, 王新财, 龚粤宁, 陈道剑, 张强. 基于红外相机监测的广东南岭国家级自然保护区鸟兽多样性及其垂直分布特征[J]. 生物多样性, 2023, 31(8): 22689-. |
[2] | 程继铭, 何慧敏, 牛红玉, 张洪茂. 鼠类种内个性差异对种子传播影响的研究进展[J]. 生物多样性, 2023, 31(4): 22446-. |
[3] | 吴仁武, 南歆格, 晏海, 杨凡, 史琰, 包志毅. 梅耶(Frank Nicholas Meyer)在亚欧国家引种植物的路线和种类调查[J]. 生物多样性, 2022, 30(11): 22063-. |
[4] | 王琴, 陈远, 禹洋, 向左甫. 动物对孢子植物的传播模式及进化意义[J]. 生物多样性, 2021, 29(7): 995-1001. |
[5] | 范靖宇, 李汉芃, 杨琢, 朱耿平. 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布[J]. 生物多样性, 2019, 27(2): 140-148. |
[6] | 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950. |
[7] | 丁晨晨, 胡一鸣, 李春旺, 蒋志刚. 印度野牛在中国的分布及其栖息地适宜性分析[J]. 生物多样性, 2018, 26(9): 951-961. |
[8] | 周中一, 刘冉, 时书纳, 苏艳军, 李文楷, 郭庆华. 基于激光雷达数据的物种分布模拟: 以美国加州内华达山脉南部区域食鱼貂分布模拟为例[J]. 生物多样性, 2018, 26(8): 878-891. |
[9] | 黄宏文. “艺术的外貌、科学的内涵、使命的担当”——植物园500年来的科研与社会功能变迁(二):科学的内涵[J]. 生物多样性, 2018, 26(3): 304-314. |
[10] | 陈远, 王征, 向左甫. 灵长类动物对植物种子的传播作用[J]. 生物多样性, 2017, 25(3): 325-331. |
[11] | 叶俊伟, 袁永革, 蔡荔, 王晓娟. 中国东北温带针阔混交林植物物种的谱系地理研究进展[J]. 生物多样性, 2017, 25(12): 1339-1349. |
[12] | 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华. 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局[J]. 生物多样性, 2016, 24(6): 629-638. |
[13] | 刘晔, 李鹏, 许玥, 石松林, 应凌霄, 张婉君, 彭培好, 沈泽昊. 中国西南干旱河谷植物群落的数量分类和排序分析[J]. 生物多样性, 2016, 24(4): 378-388. |
[14] | 刘晔, 许玥, 石松林, 彭培好, 沈泽昊. 金沙江干旱河谷植物群落的数量分类及其结构分异的环境解释[J]. 生物多样性, 2016, 24(4): 407-420. |
[15] | 崔相艳, 王文娟, 杨小强, 李述, 秦声远, 戎俊. 基于生态位模型预测野生油茶的潜在分布[J]. 生物多样性, 2016, 24(10): 1117-1128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn