生物多样性 ›› 2019, Vol. 27 ›› Issue (8): 911-918. DOI: 10.17520/biods.2019237
所属专题: 土壤生物与土壤健康
• • 上一篇
收稿日期:
2019-07-25
接受日期:
2019-09-19
出版日期:
2019-08-20
发布日期:
2019-09-25
通讯作者:
赵敏
基金资助:
Jun Liu1,Ning Wang2,Daizong Cui2,Lei Lu2,Min Zhao2,*()
Received:
2019-07-25
Accepted:
2019-09-19
Online:
2019-08-20
Published:
2019-09-25
Contact:
Zhao Min
摘要:
土壤细菌是森林生态系统的一个重要组成成分, 是生态系统中物质循环和能量流动的重要参与者, 细菌群落组成和生物多样性是反映土壤生态功能的重要指标。本文利用高通量测序技术分析了大亮子河国家森林公园内红松(Pinus koraiensis)林、落叶松(Larix gmelinii)林、蒙古栎(Quercus mongolica)林、枫桦(Betula costata)林、针阔混交林、灌木林和草甸等7种不同生境土壤细菌群落组成和多样性的差异性, 探讨该地区土壤细菌群落对不同生境的响应, 为地区森林生态系统的经营管理及生态系统稳定性的维护提供科学理论基础。在门的水平上, 各生境的细菌群落组成基本一致, 其中变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)和疣微菌门(Verrucomicrobia)在7种生境土壤中相对丰度均大于10.0%, 是细菌中的优势菌门。在属的水平上, 共测得245个菌属, 各样地共有属118个, 占总属数的48.2%, 占总相对丰度的97.8%; 优势菌属分别为Spartobacteria_ genera_incertae_sedis、Gaiella、Gp16、Gp4, 占总相对丰度的47.0%, Spartobacteria_genera_incertae_sedis在7种生境土壤中丰度均最高。7种生境下的土壤细菌多样性和土壤理化因子存在着显著的差异, 红松林的土壤细菌群落多样性和丰富度均高于其他生境。土壤pH是大亮子河森林公园影响土壤细菌多样性的关键因子。
刘君, 王宁, 崔岱宗, 卢磊, 赵敏 (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27, 911-918. DOI: 10.17520/biods.2019237.
Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao (2019) Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains. Biodiversity Science, 27, 911-918. DOI: 10.17520/biods.2019237.
样地 Sample | 有机碳 Organic C (g/kg) | 有效氮 Available N (g/kg) | 有效磷 Available P (g/kg) | 碳氮比 C/N | pH | OTUs | Shannon指数 Shannon index | 丰富度指数 Chao1 index |
---|---|---|---|---|---|---|---|---|
红松林 HS | 117.64 ± 2.9a | 4.09 ± 0.02a | 1.18 ± 0.038a | 28.77 ± 1.24a | 5.93 ± 0.13a | 1897 ± 23.33a | 9.05 ± 0.0013a | 2082.56 ± 5.97a |
落叶松林 LY | 159.16 ± 6.1b | 6.09 ± 0.234bd | 1.44 ± 0.016bd | 26.13 ± 0.74b | 5.46 ± 0.12b | 1613 ± 12.02b | 8.43 ± 0.0013b | 1955.04 ± 10.35b |
蒙古栎林 MG | 127.53 ± 5.9c | 5.31 ± 0.085c | 1.30 ± 0.031ab | 24.02 ± 0.74c | 5.38 ± 0.39bd | 1376 ± 14.85c | 7.78 ± 0.0008c | 1652.53 ± 8.77c |
枫桦林 FH | 127.53 ± 5.0c | 5.28 ± 0.158c | 1.24 ± 0.021a | 24.14 ± 2.16c | 5.41 ± 0.18cd | 1366 ± 24.04c | 7.96 ± 0.0021d | 1598.54 ± 9.76c |
灌木林 GM | 120.81 ± 2.7ac | 5.98 ± 0.062d | 1.44 ± 0.060bd | 20.19 ± 1.48d | 5.35 ± 0.35cd | 1692 ± 15.56d | 8.74 ± 0.0013e | 1901.82 ± 10.74b |
草地 CD | 146.49 ± 4.5d | 6.31 ± 0.506d | 2.26 ± 0.024c | 23.27 ± 1.14c | 5.33 ± 0.22bd | 1485 ± 13.26e | 8.25 ± 0.0017f | 1781.80 ± 8.66d |
针阔混交林 ZK | 122.25 ± 1.8ac | 5.15 ± 0.124c | 1.51 ± 0.024d | 23.74 ± 0.85c | 6.05 ± 0.25e | 1799 ± 28.21a | 9.16 ± 0.0015a | 1928.39 ± 4.12b |
表1 7种生境土壤理化性质及土壤细菌多样性统计分析(平均值 ± 标准差)
Table 1 Soil physicochemical properties and soil bacterial diversity in seven habitats (Means ± SD)
样地 Sample | 有机碳 Organic C (g/kg) | 有效氮 Available N (g/kg) | 有效磷 Available P (g/kg) | 碳氮比 C/N | pH | OTUs | Shannon指数 Shannon index | 丰富度指数 Chao1 index |
---|---|---|---|---|---|---|---|---|
红松林 HS | 117.64 ± 2.9a | 4.09 ± 0.02a | 1.18 ± 0.038a | 28.77 ± 1.24a | 5.93 ± 0.13a | 1897 ± 23.33a | 9.05 ± 0.0013a | 2082.56 ± 5.97a |
落叶松林 LY | 159.16 ± 6.1b | 6.09 ± 0.234bd | 1.44 ± 0.016bd | 26.13 ± 0.74b | 5.46 ± 0.12b | 1613 ± 12.02b | 8.43 ± 0.0013b | 1955.04 ± 10.35b |
蒙古栎林 MG | 127.53 ± 5.9c | 5.31 ± 0.085c | 1.30 ± 0.031ab | 24.02 ± 0.74c | 5.38 ± 0.39bd | 1376 ± 14.85c | 7.78 ± 0.0008c | 1652.53 ± 8.77c |
枫桦林 FH | 127.53 ± 5.0c | 5.28 ± 0.158c | 1.24 ± 0.021a | 24.14 ± 2.16c | 5.41 ± 0.18cd | 1366 ± 24.04c | 7.96 ± 0.0021d | 1598.54 ± 9.76c |
灌木林 GM | 120.81 ± 2.7ac | 5.98 ± 0.062d | 1.44 ± 0.060bd | 20.19 ± 1.48d | 5.35 ± 0.35cd | 1692 ± 15.56d | 8.74 ± 0.0013e | 1901.82 ± 10.74b |
草地 CD | 146.49 ± 4.5d | 6.31 ± 0.506d | 2.26 ± 0.024c | 23.27 ± 1.14c | 5.33 ± 0.22bd | 1485 ± 13.26e | 8.25 ± 0.0017f | 1781.80 ± 8.66d |
针阔混交林 ZK | 122.25 ± 1.8ac | 5.15 ± 0.124c | 1.51 ± 0.024d | 23.74 ± 0.85c | 6.05 ± 0.25e | 1799 ± 28.21a | 9.16 ± 0.0015a | 1928.39 ± 4.12b |
图3 不同生境下门(a)和属(b)的细菌群落组成。HS: 红松林; LY: 落叶松林; MG: 蒙古栎林; FH: 枫桦林; GM: 灌木林; CD: 草地; ZK: 针阔混交林。
Fig. 3 Bacterial community composition of phyla (a) and genus (b) derived from the different habitats. HS, Pinus koraiensis forest; LY, Larix gmelinii forest; MG, Quercus mongolica forest; FH, Betula costata forest; GM, Shrub forest; CD, Grassland; ZK, Coniferous-broad-leaved mixed forest.
图4 不同生境物种丰度聚类分析。HS: 红松林; LY: 落叶松林; MG: 蒙古栎林; FH: 枫桦林; GM: 灌木林; CD: 草地; ZK: 针阔混交林。
Fig. 4 The cluster tree based of community structure of different habitats. HS, Pinus koraiensis forest; LY, Larix gmelinii forest; MG, Quercus mongolica forest; FH, Betula costata forest; GM, Shrub forest; CD, Grassland; ZK, Coniferous-broad-leaved mixed forest.
有机碳 Organic carbon | 有效氮 Available N | 有效磷 Available P | 碳氮比 C/N | pH | |
---|---|---|---|---|---|
OTUs | -0.390 | -0.466 | -0.185 | 0.331 | 0.768* |
Shannon指数 Shannon index | -0.349 | -0.371 | -0.082 | 0.182 | 0.782* |
丰富度指数 Chao1 index | -0.052 | -0.297 | -0.086 | 0.416 | 0.608 |
Simpson指数 Simpson index | -0.303 | -0.490 | -0.067 | 0.382 | 0.839* |
表2 土壤理化性质与细菌多样性的相关性分析
Table 2 Analysis of correlation between soil physical and chemical properties and bacterial diversity
有机碳 Organic carbon | 有效氮 Available N | 有效磷 Available P | 碳氮比 C/N | pH | |
---|---|---|---|---|---|
OTUs | -0.390 | -0.466 | -0.185 | 0.331 | 0.768* |
Shannon指数 Shannon index | -0.349 | -0.371 | -0.082 | 0.182 | 0.782* |
丰富度指数 Chao1 index | -0.052 | -0.297 | -0.086 | 0.416 | 0.608 |
Simpson指数 Simpson index | -0.303 | -0.490 | -0.067 | 0.382 | 0.839* |
1 | Berg G, Grube M, Schloter M, Smalla K ( 2014) Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, 1-7. |
2 | Chabrerie O, Laval K, Puget P, Desaire S, Alard D ( 2003) Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology, 24, 43-56. |
3 | Colombo F, Macdonald CA, Jeffries TC, Powell JR, Singh BK ( 2016) Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology & Biochemistry, 94, 200-210. |
4 | Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017) Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1298.(in Chinese with English abstract) |
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017) 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.] | |
5 | Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2018) Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 54, 81-89.(in Chinese with English abstract) |
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2018) 基于高通量测序的 4 种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 54, 81-89.] | |
6 | Djukic I, Zehetner F, Mentler A, Gerzabek MH ( 2010) Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 42, 155-161. |
7 | Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC ( 2009) Global patterns in belowground communities. Ecology Letters, 12, 1238-1249. |
8 | Gömöryoá E, Hrivnák R, Janišová M, Ujházy K, Gömöry D ( 2009) Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest. Applied Soil Ecology, 43, 191-199. |
9 | Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS ( 2011) The bacterial biogeography of British soils. Environmental Microbiology, 13, 1642-1654. |
10 | Lauber CL, Hamady M, Knight R, Fierer N ( 2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120. |
11 | Lan GY, Li YW, Wu Z, Xie GS ( 2017) Impact of tropical forest conversion on soil bacterial diversity in tropical region of China. European Journal of Soil Biology, 83, 91-97. |
12 | Lin YT, Huang YJ, Tang SL, Whitman WB, Coleman DC, Chiu CY ( 2010) Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology, 59, 369-378. |
13 | Li ZZ, Zhu LB, Lin YC, Hu YG, Zeng ZH ( 2010) Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbeier grassland. Acta Ecologica Sinica, 30, 2883-2889.(in Chinese with English abstract) |
[ 李梓正, 朱立博, 林叶春, 胡跃高, 曾昭海 ( 2010) 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 30, 2883-2889.] | |
14 | Liu CL, Zuo WY, Zhao ZY, Qiu LH ( 2012) Bacterial diversity of different successional stage forest soils in Dinghushan. Acta Microbiologica Sinica, 52, 1489-1496.(in Chinese with English abstract) |
[ 柳春林, 左伟英, 赵增阳, 邱礼鸿 ( 2012) 鼎湖山不同演替阶段森林土壤细菌多样性. 微生物学报, 52, 1489-1496.] | |
15 | Lu RK ( 2000) The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing.(in Chinese) |
[ 鲁如坤 ( 2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.] | |
16 | Margesin R, Jud M, Tscherko D, Schinner F ( 2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218. |
17 | Prescott CE, Grayston SJ ( 2013) Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. Forest Ecology and Management, 309, 19-27. |
18 | Ren CJ, Liu WC, Zhao FZ, Zhong ZK, Deng J, Han XH, Yang GH, FengYZ, Ren GX ( 2019) Soil bacterial and fungal diversity and compositions respond differently to forest development. CATENA, 181, 104071. |
19 | Sáenz de Miera LE, Arroyo P, Calabuig EDL, Falagán J, Ansola G ( 2014) High-throughput sequencing of 16s RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. International Journal of Greenhouse Gas Control, 29, 176-184. |
20 | Santonja M, Foucault Q, Rancon A, Gauquelin T, Fernandez C, Baldy V, Mirleau P ( 2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology & Biochemistry, 125, 27-36. |
21 | Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY ( 2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211. |
22 | Singh D, Takahashi K, Kim M, Chun J, Adams JM ( 2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microbial Ecology, 63, 429-437. |
23 | Song HJ, Ye J, Shi S, Zhang ZC, Kuang X, Xing DL, Yuan ZQ, Lin F, Cai CJ, Wang XG, Hao ZQ ( 2014) Woody plant species composition and community structure in residual fragments of broadleaved Korean pine mixed forests in Changbai Mountains area. Chinese Journal of Applied Ecology, 25, 1239-1249.(in Chinese with English abstract) |
[ 宋厚娟, 叶吉, 师帅, 张昭臣, 匡旭, 邢丁亮, 原作强, 蔺菲, 蔡成军, 王绪高, 郝占庆 ( 2014) 长白山区阔叶红松林残留片段木本植物物种组成与群落结构. 应用生态学报, 25, 1239-1249.] | |
24 | Stone MM, Kan JJ, Plante AF ( 2015) Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biology & Biochemistry, 80, 273-282. |
25 | Sui X, Zhang RT, Zhong HX, Xu N, Wang JF, Liu YZ, Yuan HF, Ni HW ( 2015) Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain. Soil, 47, 919-925.(in Chinese with English abstract) |
[ 隋心, 张荣涛, 钟海秀, 许楠, 王继丰, 刘应竹, 袁海峰, 倪红伟 ( 2015) 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究. 土壤, 47, 919-925.] | |
26 | Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB ( 2016) Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32, 14-20.(in Chinese with English abstract ) |
[ 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 ( 2016) 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32, 14-20.] | |
27 | Wang QB, Zhang SL, Zhang HJ, Wang CB, Qi XL, Song GH, Zhang SP ( 2015) Analysis of plant species composition at different levels in the Da Liangzi River National Forest Park. Auhui Agricultural Science Bulletin, 21(3/4), 24-26.(in Chinese ) |
[ 王全波, 张淑兰, 张海军, 王长宝, 戚晓利, 宋国华, 张守平 ( 2015) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析 . 安徽农学通报, 21(3/4), 24-26.] | |
28 | Zhang HJ, Wang CB, Liu YH, Zhang SL, Zhang SP ( 2011) Vascular plant resources and their diversity in Daliangzihe National Forest Park. Hubei Agricultural Sciences, 50, 2217-2224.(in Chinese with English abstract ) |
[ 张海军, 王长宝, 刘玉红, 张淑兰, 张守平 ( 2011) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析. 湖北农业科学, 50, 2217-2224.] | |
29 | Zhang YG, Cong J, Lu H, Li GL, Xue YD, Deng Y, Li H, Zhou JZ, Li DQ ( 2015) Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microbial Biotechnology, 8, 739-746. |
30 | Zhu S, Vivanco JM, Manter DK ( 2016) Nitrogen fertilizer rate affects root exudation the rhizosphere microbiome and nitrogen-use efficiency of maize. Applied Soil Ecology, 107, 324-333. |
[1] | 罗正明, 刘晋仙, 张变华, 周妍英, 郝爱华, 杨凯, 柴宝峰. 不同退化阶段亚高山草甸土壤原生生物群落多样性特征及驱动因素[J]. 生物多样性, 2023, 31(8): 23136-. |
[2] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[3] | 赵雯, 王丹丹, 热依拉·木民, 黄开钏, 刘顺, 崔宝凯. 阿尔山地区兴安落叶松林土壤微生物群落结构[J]. 生物多样性, 2023, 31(2): 22258-. |
[4] | 夏凡, 杨婧, 李建, 史洋, 盖立新, 黄文华, 张经纬, 杨南, 高福利, 韩莹莹, 鲍伟东. 北京地区四个豹猫亚种群肠道菌群的组成[J]. 生物多样性, 2022, 30(9): 22103-. |
[5] | 孙翌昕, 李英滨, 李玉辉, 李冰, 杜晓芳, 李琪. 高通量测序技术在线虫多样性研究中的应用[J]. 生物多样性, 2022, 30(12): 22266-. |
[6] | 高程, 郭良栋. 微生物物种多样性、群落构建与功能性状研究进展[J]. 生物多样性, 2022, 30(10): 22429-. |
[7] | 夏呈强, 李毅, 党延茹, 察倩倩, 贺晓艳, 秦启龙. 中印度洋与南海西部表层海水细菌多样性[J]. 生物多样性, 2022, 30(1): 21407-. |
[8] | 陆奇丰, 黄至欢, 骆文华. 极小种群濒危植物广西火桐、丹霞梧桐的叶绿体基因组特征[J]. 生物多样性, 2021, 29(5): 586-595. |
[9] | 王楠, 黄菁华, 霍娜, 杨盼盼, 张欣玥, 赵世伟. 宁南山区不同植被恢复方式下土壤线虫群落特征:形态学鉴定与高通量测序法比较[J]. 生物多样性, 2021, 29(11): 1513-1529. |
[10] | 靳新影, 张肖冲, 金多, 陈韵, 李靖宇. 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征[J]. 生物多样性, 2020, 28(6): 718-726. |
[11] | 韩本凤, 周欣, 张雪. 基因组学技术在病毒鉴定与宿主溯源中的应用[J]. 生物多样性, 2020, 28(5): 587-595. |
[12] | 张全建, 杨彪, 付强, 王磊, 龚旭, 张远彬. 邛崃山系水鹿的冬季食性[J]. 生物多样性, 2020, 28(10): 1192-1201. |
[13] | 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性[J]. 生物多样性, 2019, 27(9): 960-969. |
[14] | 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. 大小兴安岭可培养细菌的资源多样性[J]. 生物多样性, 2019, 27(8): 903-910. |
[15] | 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. 大小兴安岭针叶树倒木上木腐真菌的物种多样性[J]. 生物多样性, 2019, 27(8): 887-895. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn