生物多样性 ›› 2020, Vol. 28 ›› Issue (3): 277-288. DOI: 10.17520/biods.2019118
王世彤1,2,3,徐耀粘1,2,3,杨腾1,2,3,4,5,魏新增1,2,3,*(),江明喜1,2,3
收稿日期:
2019-04-04
接受日期:
2019-08-02
出版日期:
2020-03-20
发布日期:
2019-12-13
通讯作者:
魏新增
基金资助:
Shitong Wang1,2,3,Yaozhan Xu1,2,3,Teng Yang1,2,3,4,5,Xinzeng Wei1,2,3,*(),Mingxi Jiang1,2,3
Received:
2019-04-04
Accepted:
2019-08-02
Online:
2020-03-20
Published:
2019-12-13
Contact:
Xinzeng Wei
摘要:
植物功能性状可以反映植物应对环境变化的适应策略。本文以黄梅秤锤树(Sinojackia huangmeiensis)当前唯一野生种群为对象, 比较了3种微生境(湖边、种群中心、耕地边)中该物种的叶片功能性状均值、种内变异和叶片生态化学计量特征的差异, 分析了黄梅秤锤树对湖岸带微生境变化的响应及其适应策略。结果表明: (1) 3种微生境中土壤C、N、P含量没有显著性差异(P > 0.05), 但土壤C∶N和C∶P具有显著性差异(P < 0.05), 土壤类型和养分条件有所不同。(2)黄梅秤锤树叶片功能性状的比较用单因素方差分析和贝叶斯方差分析得出的结果一致, 均为叶长、叶面积和比叶面积在中心区域显著高于湖边(P < 0.05), 而耕地边与湖边和中心区域均没有显著差异(P > 0.05); 叶N含量在湖边显著高于中心区域和耕地边(P < 0.05), 而中心区域和耕地边间没有显著差异(P > 0.05); 叶宽、叶长/叶宽、叶干物质含量、叶C和叶P含量在3种微生境间都没有显著性差异(P > 0.05)。(3)黄梅秤锤树叶片的N∶P在湖边显著高于中心区域和耕地边(P < 0.05), C∶N在湖边显著小于中心区域和耕地边(P < 0.05), N∶P和C∶N在中心区域和耕地边没有显著性差异(P > 0.05), C∶P在3种微生境间都没有显著性差异(P > 0.05)。(4)黄梅秤锤树叶片功能性状的总体变异程度在0.02-0.28之间, 其中叶片C和N含量在湖边和中心区域的种内变异程度显著较低, 表明3种生境中湖边和中心区域黄梅秤锤树种群的稳定性相对较差。(5)湖边黄梅秤锤树主要通过增加叶N含量促进生长; 中心区域黄梅秤锤树主要通过增加叶面积和比叶面积以及提高叶N的利用效率来提高光捕获能力促进生长; 耕地边黄梅秤锤树的叶N含量和叶面积、比叶面积都处于中等水平, 通过性状之间的共同作用使植株生长达到最佳水平。以上结果表明, 由于微地形、水位波动和土壤环境条件的差异, 黄梅秤锤树对3种生境中的适应策略有所不同, 并且不是通过单一性状调整来适应环境的变化, 而是通过多种性状之间的权衡达到更好的适应效果。
王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜 (2020) 微生境对黄梅秤锤树野生种群叶片功能性状的影响. 生物多样性, 28, 277-288. DOI: 10.17520/biods.2019118.
Shitong Wang, Yaozhan Xu, Teng Yang, Xinzeng Wei, Mingxi Jiang (2020) Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis. Biodiversity Science, 28, 277-288. DOI: 10.17520/biods.2019118.
化学性质 Chemical property | 土壤 Soil | 叶片 Leaf | ||||
---|---|---|---|---|---|---|
湖边 Lakeside | 中心区域 Center | 耕地边 Cropland side | 湖边 Lakeside | 中心区域 Center | 耕地边 Cropland side | |
pH | 4.11 ± 0.09a | 3.91 ± 0.15a | 4.06 ± 0.02a | - | - | - |
碳 C (g/kg) | 70.68 ± 10.12a | 44.70 ± 15.67a | 54.91 ± 12.79a | 442.78 ± 6.56A | 442.20 ± 7.42A | 443.71 ± 16.46A |
氮 N (g/kg) | 6.15 ± 0.89a | 4.70 ± 1.66a | 2.86 ± 1.38a | 27.05 ± 2.00A | 19.24 ± 1.62B | 19.89 ± 4.78B |
磷 P (g/kg) | 2.34 ± 0.53a | 2.41 ± 0.43a | 1.56 ± 0.43a | 1.69 ± 0.39A | 2.07 ± 0.60A | 1.85 ± 0.54A |
碳/氮 C∶N | 11.49 ± 0.37b | 9.51 ± 0.16b | 20.57 ± 4.47a | 16.45 ± 1.14B | 23.11 ± 1.72A | 23.27 ± 4.38A |
碳/磷 C∶P | 30.84 ± 4.84a | 18.25 ± 3.71b | 36.00 ± 6.55a | 273.91 ± 53.71A | 227.53 ± 53.43A | 254.46 ± 55.63A |
氮/磷 N∶P | 2.68 ± 0.34a | 1.92 ± 0.40a | 1.84 ± 0.64a | 16.60 ± 2.86A | 9.89 ± 2.47B | 11.50 ± 4.16B |
表1 3种微生境中土壤和黄梅秤锤树叶片的化学性质(平均值 ± 标准差)
Table 1 Chemical properties of soil and Sinojackia huangmeiensis leaves in three microhabitats (Mean ± SD)
化学性质 Chemical property | 土壤 Soil | 叶片 Leaf | ||||
---|---|---|---|---|---|---|
湖边 Lakeside | 中心区域 Center | 耕地边 Cropland side | 湖边 Lakeside | 中心区域 Center | 耕地边 Cropland side | |
pH | 4.11 ± 0.09a | 3.91 ± 0.15a | 4.06 ± 0.02a | - | - | - |
碳 C (g/kg) | 70.68 ± 10.12a | 44.70 ± 15.67a | 54.91 ± 12.79a | 442.78 ± 6.56A | 442.20 ± 7.42A | 443.71 ± 16.46A |
氮 N (g/kg) | 6.15 ± 0.89a | 4.70 ± 1.66a | 2.86 ± 1.38a | 27.05 ± 2.00A | 19.24 ± 1.62B | 19.89 ± 4.78B |
磷 P (g/kg) | 2.34 ± 0.53a | 2.41 ± 0.43a | 1.56 ± 0.43a | 1.69 ± 0.39A | 2.07 ± 0.60A | 1.85 ± 0.54A |
碳/氮 C∶N | 11.49 ± 0.37b | 9.51 ± 0.16b | 20.57 ± 4.47a | 16.45 ± 1.14B | 23.11 ± 1.72A | 23.27 ± 4.38A |
碳/磷 C∶P | 30.84 ± 4.84a | 18.25 ± 3.71b | 36.00 ± 6.55a | 273.91 ± 53.71A | 227.53 ± 53.43A | 254.46 ± 55.63A |
氮/磷 N∶P | 2.68 ± 0.34a | 1.92 ± 0.40a | 1.84 ± 0.64a | 16.60 ± 2.86A | 9.89 ± 2.47B | 11.50 ± 4.16B |
叶片功能性状 Leaf functional traits | 最小值 Minimum | 最大值 Maximum | 倍数差异 Fold range | 变异系数 Coefficient of variation |
---|---|---|---|---|
叶面积 Leaf area (cm2) | 10.77 | 29.25 | 2.72 | 0.17 |
叶长 Leaf length (cm) | 5.27 | 9.50 | 1.80 | 0.11 |
叶宽 Leaf width (cm) | 3.01 | 5.11 | 1.70 | 0.10 |
叶长/叶宽 Ratio of leaf length to leaf width | 1.55 | 2.07 | 1.34 | 0.06 |
比叶面积 Specific leaf area (cm2/g) | 19.63 | 38.47 | 1.96 | 0.14 |
叶干物质含量 Leaf dry matter content (mg/g) | 223.35 | 403.24 | 1.81 | 0.12 |
叶片碳含量 Leaf carbon content (g/kg) | 393.69 | 459.47 | 1.17 | 0.02 |
叶片氮含量 Leaf nitrogen content (g/kg) | 12.26 | 31.29 | 2.55 | 0.21 |
叶片磷含量 Leaf phosphorus content (g/kg) | 1.27 | 3.78 | 2.98 | 0.28 |
表2 黄梅秤锤树叶片功能性状的总体特征
Table 2 General characteristics of Sinojackia huangmeiensis leaf functional traits
叶片功能性状 Leaf functional traits | 最小值 Minimum | 最大值 Maximum | 倍数差异 Fold range | 变异系数 Coefficient of variation |
---|---|---|---|---|
叶面积 Leaf area (cm2) | 10.77 | 29.25 | 2.72 | 0.17 |
叶长 Leaf length (cm) | 5.27 | 9.50 | 1.80 | 0.11 |
叶宽 Leaf width (cm) | 3.01 | 5.11 | 1.70 | 0.10 |
叶长/叶宽 Ratio of leaf length to leaf width | 1.55 | 2.07 | 1.34 | 0.06 |
比叶面积 Specific leaf area (cm2/g) | 19.63 | 38.47 | 1.96 | 0.14 |
叶干物质含量 Leaf dry matter content (mg/g) | 223.35 | 403.24 | 1.81 | 0.12 |
叶片碳含量 Leaf carbon content (g/kg) | 393.69 | 459.47 | 1.17 | 0.02 |
叶片氮含量 Leaf nitrogen content (g/kg) | 12.26 | 31.29 | 2.55 | 0.21 |
叶片磷含量 Leaf phosphorus content (g/kg) | 1.27 | 3.78 | 2.98 | 0.28 |
图2 3种微生境中黄梅秤锤树的叶片功能性状均值( ± 标准差)及变异系数。不同小写字母代表同一叶片功能性状均值在微生境间差异显著(P < 0.05)。
Fig. 2 Mean value (± SD) and coefficients of variation (CV) for leaf functional trait of Sinojackia huangmeiensis in three microhabitats. Different lowercase letters indicate significant differences of leaf functional trait values among different microhabitats (P < 0.05). LA, Leaf area; LL, Leaf length; LW, Leaf width; LL/LW, Leaf length/ Leaf width; SLA, Specific leaf area; LDMC, Leaf dry matter content; LCC, Leaf carbon content; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; L, Lakeside; C, Center; CS, Cropland side.
图3 基于贝叶斯方差分析计算的3种微生境中黄梅秤锤树叶片功能性状均值和种内变异程度比较。针对同一性状参数, 如果不同微生境的95%置信区间没有重叠, 表明该参数在不同微生境间差异显著; 反之如果重叠则表明差异不显著。
Fig. 3 Bayesian point estimates and 95% confidence intervals for the mean and standard deviation for leaf functional traits of Sinojackia huangmeiensis in three microhabitats. For the same trait, if the 95% confidence intervals of different microhabitats do not overlap, the trait is significantly different among microhabitats; if they overlap, however, the differences are not significant. LA, Leaf area; LL, Leaf length; LW, Leaf width; LL/LW, Leaf length/ Leaf width; SLA, Specific leaf area; LDMC, Leaf dry matter content; LCC, Leaf carbon content; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; L, Lakeside; C, Center; CS, Cropland side.
1 | Aerts R, Chapin FS ( 2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
2 |
Agashe D ( 2009) The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats. The American Naturalist, 174, 255-267.
DOI URL |
3 |
Ågren GI ( 2008) Stoichiometr.and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39, 153-170.
DOI URL |
4 | Albert C, Grassein F, Schurr FM, Vieilledent G, Violle C ( 2011) Whe. and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution & Systematics, 13, 217-225. |
5 |
Albert CH ( 2015) Intraspecific trait variability matters. Journal of Vegetation Science, 26, 7-8.
DOI URL |
6 |
Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S ( 2010) A multi-trait approach reveals the structure and the relative importance of intra-versus interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
DOI URL |
7 |
Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA ( 2011) Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192.
DOI URL |
8 | Chen CF, Qin L, Duan YX, He YT, Wang P, Feng QY, Wang YF, He YJ ( 2018) Effects of different management models on leaf functional traits and soil physical and chemical properties of natural secondary forest of Quercus mongolica. Acta Ecologica Sinica, 38, 8371-8382. (in Chinese with English abstract) |
[ 陈超凡, 覃林, 段艺璇, 何亚婷, 王鹏, 冯琦雅, 王雅菲, 何友均 ( 2018) 不同经营模式对蒙古栎次生林叶功能性状和土壤理化性质的影响. 生态学报, 38, 8371-8382.] | |
9 | Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL ( 2016) Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology, 35, 2101-2109. (in Chinese with English abstract) |
[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 ( 2016) 粤东89种常见植物叶功能性状变异特征. 生态学杂志, 35, 2101-2109.] | |
10 |
Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
11 |
D’Antraccoli M, Roma-Marzio F, Astuti G, Bedini G, Ciccarelli D, Peruzzi L, Carta A ( 2018) Variation of vegetative and reproductive traits in Cistus laurifolius: Evidences of a response to contrasting habitat conditions. Flora, 248, 22-27.
DOI URL |
12 |
De Smedt P, Ottaviani G, Wardell-Johnson G, Sykora KV, Mucina L ( 2018) Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobot, 53, 133-145.
DOI URL |
13 |
Ding J, Wu Q, Yan H, Zhang SR ( 2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest. Biodiversity Science, 19, 158-167. (in Chinese with English abstract)
DOI URL |
[ 丁佳, 吴茜, 闫慧, 张守仁 ( 2011) 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.]
DOI URL |
|
14 |
Ding Y, Zang RG, Letcher SG, Liu SR, He FL ( 2012) Disturbance regime changes the trait distribution, phylogenetic structure, and community assembly of tropical rain forests. Oikos, 121, 1263-1270.
DOI URL |
15 |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE ( 2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI URL |
16 | Field C, Mooney HA ( 1986) The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Form and Function (ed. Givnish TJ), pp. 25-55. Cambridge University Press, Cambridge, UK. |
17 |
Frenne PD, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Öster M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K ( 2011) An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography, 34, 132-140.
DOI URL |
18 |
Fridley JD, Grime JP ( 2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology, 91, 2272-2283.
DOI URL |
19 | Ge NN, Shi Y, Yang XL, Zhang QY, Li XZ, Jia XX, Shao MA, Wei XR ( 2017) Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 28, 1626-1632. (in Chinese with English abstract) |
[ 葛楠楠, 石芸, 杨宪龙, 张庆印, 李学章, 贾小旭, 邵明安, 魏孝荣 ( 2017) 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征. 应用生态学报, 28, 1626-1632.] | |
20 |
Gómez-Rey MX, Madeira M, Gonzalez-Prieto SJ, Coutinho J ( 2010) Soil C and N dynamics within a precipitation gradient in Mediterranean eucalypt plantations. Plant Soil, 336, 157-171.
DOI URL |
21 |
Gu DX, Chen SL, Huang YQ ( 2011) Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum. Chinese Journal of Plant Ecology, 35, 1219-1225. (in Chinese with English abstract)
DOI URL |
[ 顾大形, 陈双林, 黄玉清 ( 2011) 土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响. 植物生态学报, 35, 1219-1225.]
DOI URL |
|
22 |
Güsewell S ( 2004) N : P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
DOI URL |
23 |
Herbert DA, Williams M, Rastetter EB ( 2003) A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150.
DOI URL |
24 |
Koerselman W, Meuleman AFM ( 1996) The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
DOI URL |
25 |
Kołodziejek J ( 2014) Effects in leaf traits on microhabitat of Digitalis grandiflora L. (Veronicaceae) growing at forest edge and interior. Archives of Biological Sciences, 66, 615-627.
DOI URL |
26 |
Kraft NJB, Valencia R, Ackerly DD ( 2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL |
27 |
Lavorel S, Garnier E ( 2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
DOI URL |
28 | Li MJ, Yu LF, Du MF, Huang ZS, Shi JH ( 2018) C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages. Acta Ecologica Sinica, 38, 7772-7781. (in Chinese with English abstract) |
[ 李明军, 喻理飞, 杜明凤, 黄宗胜, 石建华 ( 2018) 不同林龄杉木人工林植物-凋落叶-土.C、N、P化学计量特征及互作关系. 生态学报, 38, 7772-7781.] | |
29 | Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH ( 2012) A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98. (in Chinese with English abstract) |
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 ( 2012) 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.] | |
30 | Liu L, Liu HB, Wang T, Zhu B, Jiang SW ( 2018) Phosphorus loss from sloping cropland in water fluctuation zone of the Three Gorges Reservoir. Resources and Environment in the Yangtze Basin, 27, 2609-2618. (in Chinese with English abstract) |
[ 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟 ( 2018) 三峡库区消落带农用坡地磷素径流流失特征. 长江流域资源与环境, 27, 2609-2618.] | |
31 | Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA ( 2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804-808. |
32 | Ma RT, Fang Y, An SS, Zhao JF, Xiao L ( 2016) Ecological stoichiometric characteristics of leaves and litter of plants dominant in Heidaigou opencast coal mining area. Acta Pedologica Sinica, 53, 1003-1014. (in Chinese with English abstract) |
[ 马任甜, 方瑛, 安韶山, 赵俊峰, 肖礼 ( 2016) 黑岱沟露天煤矿优势植物叶片及枯落物生态化学计量特征. 土壤学报, 53, 1003-1014.] | |
33 | Messier J, McGill BJ, Lechowicz MJ ( 2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848. |
34 | Mitchell RM, Bakker JD ( 2014) Quantifying and comparing intraspecific functional trait variability: A case study with Hypochaeris radicata. Functional Ecology, 28, 258-269. |
35 | Moreira B, Tavsanoglu C, Pausas JG ( 2012) Local versus regional intraspecific variability in regeneration traits. Oecologia, 168, 671-677. |
36 | Nakaji T, Fukami M, Dokiya Y, Izuta T ( 2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461. |
37 | Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC ( 2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
38 | Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB ( 2007) Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance. Oecologia, 153, 821-832. |
39 | Poorter H, Remkes C ( 1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83, 553-559. |
40 | Reich PB, Oleksyn J ( 2004) Globa. patterns of plant leaf N and P in relation to temperature and latitude . Proceedings of the National Academy of Sciences, USA, 101, 11001-11006. |
41 | Ruan YM, Zhang JJ, Yao XH, Ye QG ( 2012) Genetic diversity and fine-scale spatial genetic structure of different lifehistory stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae). Biodiversity Science, 20, 460-469. (in Chinese with English abstract) |
[ 阮咏梅, 张金菊, 姚小洪, 叶其刚 ( 2012) 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构. 生物多样性, 20, 460-469.] | |
42 | Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VD, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, McC Overton J, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA ( 2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419. |
43 | Swenson NG, Enquist BJ ( 2009) Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170. |
44 |
Tang QQ, Huang YT, Ding Y, Zang RG ( 2016) Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270. (in Chinese with English abstract)
DOI URL |
[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016) 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
DOI URL |
|
45 |
Tian H, Chen G, Zhang C, Melillo JM, Hall CAS ( 2010) Pattern and variation of C : N : P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
DOI URL |
46 | Vance CP, Uhde-Stone C, Allan DL ( 2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447. |
47 | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007) Let the concept of trait be functional. Oikos, 116, 882-892. |
48 | Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J ( 2012) The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
49 | Wang SQ, Yu GR ( 2008) Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. (in Chinese with English abstract) |
[ 王绍强, 于贵瑞 ( 2008) 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.] | |
50 |
Wang ST, Wu H, Liu MT, Zhang JX, Liu JM, Meng HJ, Xu YZ, Qiao XJ, Wei XZ, Lu ZJ, Jiang MX ( 2018) Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China. Biodiversity Science, 26, 749-759. (in Chinese with English abstract)
DOI URL |
[ 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜 ( 2018) 极小种群野生植物黄梅秤锤树群落结构与动态. 生物多样性, 26, 749-759.]
DOI URL |
|
51 | Wei XZ, Liu MT, Wang ST, Jiang MX ( 2018) Seed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitation. Flora, 246, 19-25. |
52 |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
53 | Wright IJ, Reich PB, Westoby M ( 2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434. |
54 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
55 | Xu QY, Liu H, Ye Q ( 2017) Intraspecific variability of ecophysiological traits of four Magnoliaceae species growing in two climatic regions in China. Plant Ecology, 218, 407-415. |
56 | Yan S, Zhang L, Jing YS, He HL, Yu GR ( 2014) Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 38, 640-652. (in Chinese with English abstract) |
[ 闫霜, 张黎, 景元书, 何洪林, 于贵瑞 ( 2014) 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 38, 640-652.] | |
57 | Yang HM, Wang DM ( 2011) Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 20, 244-252. (in Chinese with English abstract) |
[ 杨惠敏, 王冬梅 ( 2011) 草—环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 20, 244-252.] | |
58 |
Yao XH, Ye QG, Fritsch PW, Cruz BC, Huang HW ( 2008) Phylogeny of Sinojackia (Styracaceae) based on DNA sequence and microsatellite data: Implications for taxonomy and conservation. Annals of Botany, 101, 651-659.
DOI URL |
59 | Yates MJ, Verboom GA, Rebelo AG, Cramer MD ( 2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24, 485-492. |
60 | Yu YF, Peng WX, Song TQ, Zeng FP, Wang KL, Wen L, Fan FJ ( 2014) Stoichiometric characteristics of plant and soil C, N, and P in different forest types in depressions between karst hills, Southwest China. Chinese Journal of Applied Ecology, 25, 947-954. (in Chinese with English abstract) |
[ 俞月凤, 彭晚霞, 宋同清, 曾馥平, 王克林, 文丽, 范夫静 ( 2014) 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征. 应用生态学报, 25, 947-954.] | |
61 | Yue T, Li YF, Xiao YH, Li YC, He J, Jiang PK, Zhou GM, Liu J ( 2016) Effects of conversion of evergreen broad-leaved forest to Chinese chestnut plantation on soil organic carbon pools. Chinese Journal of Applied Ecology, 27, 2181-2188. (in Chinese with English abstract) |
[ 岳天, 李永夫, 肖永恒, 李永春, 何洁, 姜培坤, 周国模, 刘娟 ( 2016) 天然常绿阔叶林改造为板栗林对土壤有机碳库的影响. 应用生态学报, 27, 2181-2188.] | |
62 |
Zhang JJ, Ye QG, Gao PX, Yao XH ( 2012) Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae): Implications for conservation. Botanical Journal of the Linnean Society, 170, 232-242.
DOI URL |
63 | Zhao FZ, Sun J, Ren CJ, Kang D, Deng J, Han XH, Yang GH, Feng YZ, Ren GX ( 2015) Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’ in China. Scientific Reports, 5, 1-10. |
64 | Zhao SY, Li JT, Sun XK, Zeng DH, Hu YL ( 2018) Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions. Acta Ecologica Sinica, 38, 7189-7197. (in Chinese with English abstract) |
[ 赵姗宇, 黎锦涛, 孙学凯, 曾德慧, 胡亚林 ( 2018) 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征. 生态学报, 38, 7189-7197.] | |
65 | Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J ( 2018) Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. (in Chinese with English abstract) |
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 ( 2018) 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.] |
[1] | 曲锐, 左振君, 王有鑫, 张良键, 吴志刚, 乔秀娟, 王忠. 基于元素组的生物地球化学生态位及其在不同生态系统中的应用[J]. 生物多样性, 2024, 32(4): 23378-. |
[2] | 孙哲明, 刘亚恒, 彭秋桐, 徐芷妍, 杨予静, 欧文慧, 李中强. 湖北省极小种群野生植物在原生群落中的竞争地位及保护建议[J]. 生物多样性, 2022, 30(6): 21517-. |
[3] | 罗恬, 俞方圆, 练琚愉, 王俊杰, 申健, 吴志峰, 叶万辉. 冠层垂直高度对植物叶片功能性状的影响: 以鼎湖山南亚热带常绿阔叶林为例[J]. 生物多样性, 2022, 30(5): 21414-. |
[4] | 许玥, 臧润国. 中国极小种群野生植物保护理论与实践研究进展[J]. 生物多样性, 2022, 30(10): 22505-. |
[5] | 邵晨, 李耀琪, 罗奥, 王志恒, 席祯翔, 刘建全, 徐晓婷. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5): 575-585. |
[6] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[7] | 姚志, 郭军, 金晨钟, 刘勇波. 中国纳入一级保护的极小种群野生植物濒危机制[J]. 生物多样性, 2021, 29(3): 394-408. |
[8] | 邓莎, 吴艳妮, 吴坤林, 房林, 李琳, 曾宋君. 14种中国典型极小种群野生植物繁育特性和人工繁殖研究进展[J]. 生物多样性, 2020, 28(3): 385-400. |
[9] | 陈冬东, 李镇清. 极小种群野生植物生存力分析: 方法、问题与展望[J]. 生物多样性, 2020, 28(3): 358-366. |
[10] | 赵志霞, 赵常明, 邓舒雨, 申国珍, 谢宗强, 熊高明, 李俊清. 重度砍伐后极小种群野生植物崖柏群落结构动态[J]. 生物多样性, 2020, 28(3): 333-339. |
[11] | 路兴慧, 臧润国, 丁易, 黄继红, 许玥. 极小种群野生植物坡垒的生境特征及其对幼苗多度的影响[J]. 生物多样性, 2020, 28(3): 289-295. |
[12] | 苏金源, 燕语, 李冲, 李丹, 杜芳. 通过遗传多样性探讨极小种群野生植物的致濒机理及保护策略: 以裸子植物为例[J]. 生物多样性, 2020, 28(3): 376-384. |
[13] | 宋垚彬, 徐力, 段俊鹏, 张卫军, 申屠晓露, 李天翔, 臧润国, 董鸣. 西藏极小种群野生植物密叶红豆杉种群的性比及雌雄空间格局[J]. 生物多样性, 2020, 28(3): 269-276. |
[14] | 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜. 极小种群野生植物黄梅秤锤树群落结构与动态[J]. 生物多样性, 2018, 26(7): 749-759. |
[15] | 张则瑾, 郭焱培, 贺金生, 唐志尧. 中国极小种群野生植物的保护现状评估[J]. 生物多样性, 2018, 26(6): 572-577. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn