生物多样性 ›› 2019, Vol. 27 ›› Issue (4): 449-456. DOI: 10.17520/biods.2018341
收稿日期:
2018-12-26
接受日期:
2019-03-19
出版日期:
2019-04-20
发布日期:
2019-06-05
通讯作者:
白超
基金资助:
Minghua Lou1, Chao Bai2,*(), Gangying Hui3, Mengping Tang4
Received:
2018-12-26
Accepted:
2019-03-19
Online:
2019-04-20
Published:
2019-06-05
Contact:
Chao Bai
摘要:
林木大小多样性直接反映森林生态系统的健康与稳定, 客观恰当地表达大小多样性对于评价天然林或人工林的经济、生态、社会价值及其经营效果至关重要。本研究选用7个林木大小多样性指数, 其中4个与距离无关(Simpson大小多样性指数DN、Shannon大小多样性指数HN、断面积Gini系数GC和直径变异系数CVd), 3个与距离有关(Simpson大小分化度指数DT、Shannon大小分化度指数HT和大小分化度均值指数$\bar{T}$), 通过6组模拟林分和4块实测林分比较分析了它们的表达能力。结果表明: 不考虑极端情况(极端情况为对比林分林木大小混交不同但林木直径构成完全相同), GC、CVd、$\bar{T}$、DT和HT能客观恰当地表达不同径级分布林分的林木大小多样性差异, 其中CVd区分能力最强, GC次之。若考虑极端情况, 只有$\bar{T}$、DT和HT能区分出不同大小混交程度林分的林木大小多样性差异。本研究认为CVd和GC因计算简单, 易于实际应用, 在营林活动中可作为分析林木大小多样性的首选指数; $\bar{T}$因能识别不同大小混交程度林分的空间差异, 即对林分更新变化敏感, 适用于动态分析林分的结构特征。
娄明华, 白超, 惠刚盈, 汤孟平 (2019) 7个林木大小多样性指数表达能力比较. 生物多样性, 27, 449-456. DOI: 10.17520/biods.2018341.
Minghua Lou, Chao Bai, Gangying Hui, Mengping Tang (2019) Comparison of distinguish ability on seven tree size diversity indices. Biodiversity Science, 27, 449-456. DOI: 10.17520/biods.2018341.
指数 Index | 公式 Formula | 指数值的理论范围 Theoretical index value range | 参考文献 Reference |
---|---|---|---|
Simpson大小多样性指数 Simpson size diversity index | ${{D}_{N}}=1-\underset{j=1}{\overset{S}{\mathop \sum }}\,p_{j}^{2}$ | [0, 1] | Valbuena, 2012 |
Shannon大小多样性指数 Shannon size diversity index | ${{H}_{N}}=-\underset{j=1}{\overset{S}{\mathop \sum }}\,{{p}_{j}}\ln ({{p}_{j}})$ | [0, ln(S)] | Buongiorno, 2001 |
断面积Gini系数 Gini coefficient index of basal area | $GC=\frac{\sum\limits_{i=1}^{n}{(2i-n-1)B{{A}_{i}}}}{\sum\limits_{i=1}^{n}{B{{A}_{i}}(n-1)}}$ | [0, 1] | Duduman, 2011 |
直径变异系数 Diameter coefficient of variation index | $C{{V}_{d}}={\sqrt{\frac{\sum\limits_{i=1}^{n}{{{({{d}_{i}}-\bar{d})}^{2}}}}{n-1}}}/{{\bar{d}}}\;$ | [0, 1] | Huang, 2000 |
表1 与距离无关的林木大小多样性指数
Table 1 Distance-free indices of tree size diversity
指数 Index | 公式 Formula | 指数值的理论范围 Theoretical index value range | 参考文献 Reference |
---|---|---|---|
Simpson大小多样性指数 Simpson size diversity index | ${{D}_{N}}=1-\underset{j=1}{\overset{S}{\mathop \sum }}\,p_{j}^{2}$ | [0, 1] | Valbuena, 2012 |
Shannon大小多样性指数 Shannon size diversity index | ${{H}_{N}}=-\underset{j=1}{\overset{S}{\mathop \sum }}\,{{p}_{j}}\ln ({{p}_{j}})$ | [0, ln(S)] | Buongiorno, 2001 |
断面积Gini系数 Gini coefficient index of basal area | $GC=\frac{\sum\limits_{i=1}^{n}{(2i-n-1)B{{A}_{i}}}}{\sum\limits_{i=1}^{n}{B{{A}_{i}}(n-1)}}$ | [0, 1] | Duduman, 2011 |
直径变异系数 Diameter coefficient of variation index | $C{{V}_{d}}={\sqrt{\frac{\sum\limits_{i=1}^{n}{{{({{d}_{i}}-\bar{d})}^{2}}}}{n-1}}}/{{\bar{d}}}\;$ | [0, 1] | Huang, 2000 |
指数 Index | 公式 Formula | 指数值理论范围 Theoretical index value range | 参考文献 Reference |
---|---|---|---|
Simpson大小分化度指数 Simpson size differentiation index | ${{D}_{T}}=1-\underset{i=1}{\overset{5}{\mathop \sum }}\,P_{i}^{2}$ | [0, 1] | Bai & Hui, 2016 |
Shannon大小分化度指数 Shannon size differentiation index | ${{H}_{T}}=-\underset{i=1}{\overset{5}{\mathop \sum }}\,{{P}_{i}}\ln ({{P}_{i}})$ | [0, ln(5)] | Bai & Hui, 2016 |
大小分化度均值指数 Mean size differentiation index | $\overline{T}=\frac{1}{N}\sum\limits_{i=1}^{N}{{{T}_{i}}}$ | [0, 1] | Gadow & Füldner, 1992 |
${{T}_{i}}=1-\frac{\min ({{d}_{i}},{{d}_{1}})}{\max ({{d}_{i}},{{d}_{1}})}$ | [0,1) | Gadow & Füldner, 1992 |
表2 与距离有关的林木大小多样性指数
Table 2 Distance-related indices of tree size diversity
指数 Index | 公式 Formula | 指数值理论范围 Theoretical index value range | 参考文献 Reference |
---|---|---|---|
Simpson大小分化度指数 Simpson size differentiation index | ${{D}_{T}}=1-\underset{i=1}{\overset{5}{\mathop \sum }}\,P_{i}^{2}$ | [0, 1] | Bai & Hui, 2016 |
Shannon大小分化度指数 Shannon size differentiation index | ${{H}_{T}}=-\underset{i=1}{\overset{5}{\mathop \sum }}\,{{P}_{i}}\ln ({{P}_{i}})$ | [0, ln(5)] | Bai & Hui, 2016 |
大小分化度均值指数 Mean size differentiation index | $\overline{T}=\frac{1}{N}\sum\limits_{i=1}^{N}{{{T}_{i}}}$ | [0, 1] | Gadow & Füldner, 1992 |
${{T}_{i}}=1-\frac{\min ({{d}_{i}},{{d}_{1}})}{\max ({{d}_{i}},{{d}_{1}})}$ | [0,1) | Gadow & Füldner, 1992 |
指数 Indices | 正态径级分布 Normal-shaped diameter distribution | 倒J径级分布 Inverse J-shaped diameter distribution | 变异系数 CV (%) | ||||
---|---|---|---|---|---|---|---|
均匀 Uniform | 随机 Random | 聚集 Aggregation | 均匀 Uniform | 随机 Random | 聚集 Aggregation | ||
DN | 0.930-0.941 | 0.926-0.942 | 0.930-0.942 | 0.814-0.924 | 0.816-0.913 | 0.815-0.921 | 3.5 |
HN | 2.820-2.964 | 2.796-2.968 | 2.801-2.969 | 1.963-2.790 | 1.985-2.724 | 2.011-2.783 | 10.1 |
GC | 0.269-0.317 | 0.270-0.323 | 0.271-0.313 | 0.520-0.627 | 0.530-0.631 | 0.529-0.639 | 37.0 |
CVd | 0.259-0.305 | 0.255-0.308 | 0.253-0.298 | 0.532-0.684 | 0.547-0.691 | 0.543-0.704 | 42.2 |
DT | 0.617-0.696 | 0.624-0.696 | 0.616-0.694 | 0.727-0.773 | 0.731-0.775 | 0.733-0.779 | 7.8 |
HT | 1.070-1.267 | 1.092-1.279 | 1.049-1.274 | 1.361-1.524 | 1.366-1.533 | 1.373-1.548 | 12.1 |
$\bar{T}$ | 0.238-0.303 | 0.234-0.297 | 0.227-0.298 | 0.334-0.464 | 0.345-0.452 | 0.351-0.464 | 23.5 |
表3 模拟林分的7个林木大小多样性指数的范围及变异系数
Table 3 Range and coefficient of variation (CV) of seven tree size diversity indices for the simulated stands
指数 Indices | 正态径级分布 Normal-shaped diameter distribution | 倒J径级分布 Inverse J-shaped diameter distribution | 变异系数 CV (%) | ||||
---|---|---|---|---|---|---|---|
均匀 Uniform | 随机 Random | 聚集 Aggregation | 均匀 Uniform | 随机 Random | 聚集 Aggregation | ||
DN | 0.930-0.941 | 0.926-0.942 | 0.930-0.942 | 0.814-0.924 | 0.816-0.913 | 0.815-0.921 | 3.5 |
HN | 2.820-2.964 | 2.796-2.968 | 2.801-2.969 | 1.963-2.790 | 1.985-2.724 | 2.011-2.783 | 10.1 |
GC | 0.269-0.317 | 0.270-0.323 | 0.271-0.313 | 0.520-0.627 | 0.530-0.631 | 0.529-0.639 | 37.0 |
CVd | 0.259-0.305 | 0.255-0.308 | 0.253-0.298 | 0.532-0.684 | 0.547-0.691 | 0.543-0.704 | 42.2 |
DT | 0.617-0.696 | 0.624-0.696 | 0.616-0.694 | 0.727-0.773 | 0.731-0.775 | 0.733-0.779 | 7.8 |
HT | 1.070-1.267 | 1.092-1.279 | 1.049-1.274 | 1.361-1.524 | 1.366-1.533 | 1.373-1.548 | 12.1 |
$\bar{T}$ | 0.238-0.303 | 0.234-0.297 | 0.227-0.298 | 0.334-0.464 | 0.345-0.452 | 0.351-0.464 | 23.5 |
指数 Indices | 正态径级分布 Normal-shaped diameter distribution | 倒J径级分布 Inverse J-shaped diameter distribution | ||||
---|---|---|---|---|---|---|
均匀 Uniform | 随机 Random | 聚集 Aggregation | 均匀 Uniform | 随机 Random | 聚集 Aggregation | |
DN | 0.936 (0.002)a | 0.936 (0.003)a | 0.935 (0.002)a | 0.877 (0.022)b | 0.877 (0.022)b | 0.881 (0.023)b |
HN | 2.890 (0.033)a | 2.892 (0.039)a | 2.884 (0.032)a | 2.394 (0.169)bc | 2.388 (0.166)c | 2.426 (0.176)b |
GC | 0.292 (0.010)a | 0.291 (0.011)a | 0.290 (0.010)a | 0.588 (0.023)b | 0.585 (0.022)b | 0.589 (0.023)b |
CVd | 0.278 (0.010)a | 0.278 (0.011)a | 0.276 (0.010)a | 0.625 (0.034)b | 0.621 (0.032)b | 0.627 (0.033)b |
DT | 0.657 (0.016)a | 0.659 (0.017)a | 0.656 (0.016)a | 0.757 (0.010)b | 0.757 (0.009)b | 0.759 (0.010)b |
HT | 1.173 (0.041)a | 1.180 (0.043)a | 1.171 (0.042)a | 1.463 (0.037)b | 1.462 (0.035)b | 1.470 (0.038)b |
$\bar{T}$ | 0.262 (0.013)a | 0.262 (0.014)a | 0.261 (0.013)a | 0.404 (0.025)b | 0.403 (0.025)b | 0.406 (0.026)b |
表4 模拟林分的7个林木大小多样性指数均值(标准差)
Table 4 Mean (standard deviation) of seven tree size diversity indices for the simulated stands
指数 Indices | 正态径级分布 Normal-shaped diameter distribution | 倒J径级分布 Inverse J-shaped diameter distribution | ||||
---|---|---|---|---|---|---|
均匀 Uniform | 随机 Random | 聚集 Aggregation | 均匀 Uniform | 随机 Random | 聚集 Aggregation | |
DN | 0.936 (0.002)a | 0.936 (0.003)a | 0.935 (0.002)a | 0.877 (0.022)b | 0.877 (0.022)b | 0.881 (0.023)b |
HN | 2.890 (0.033)a | 2.892 (0.039)a | 2.884 (0.032)a | 2.394 (0.169)bc | 2.388 (0.166)c | 2.426 (0.176)b |
GC | 0.292 (0.010)a | 0.291 (0.011)a | 0.290 (0.010)a | 0.588 (0.023)b | 0.585 (0.022)b | 0.589 (0.023)b |
CVd | 0.278 (0.010)a | 0.278 (0.011)a | 0.276 (0.010)a | 0.625 (0.034)b | 0.621 (0.032)b | 0.627 (0.033)b |
DT | 0.657 (0.016)a | 0.659 (0.017)a | 0.656 (0.016)a | 0.757 (0.010)b | 0.757 (0.009)b | 0.759 (0.010)b |
HT | 1.173 (0.041)a | 1.180 (0.043)a | 1.171 (0.042)a | 1.463 (0.037)b | 1.462 (0.035)b | 1.470 (0.038)b |
$\bar{T}$ | 0.262 (0.013)a | 0.262 (0.014)a | 0.261 (0.013)a | 0.404 (0.025)b | 0.403 (0.025)b | 0.406 (0.026)b |
林分类型 Stand type | DN | HN | GC | CVd | DT | HT | $\bar{T}$ |
---|---|---|---|---|---|---|---|
倒J均匀混交 Inverse J-shaped uniform mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.770 | 1.512 | 0.437 |
倒J均匀隔离 Inverse J-shaped uniform segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.054 | 0.154 | 0.067 |
倒J随机混交 Inverse J-shaped random mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.769 | 1.510 | 0.421 |
倒J随机隔离 Inverse J-shaped random segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.049 | 0.140 | 0.050 |
倒J聚集混交 Inverse J-shaped aggregated mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.772 | 1.521 | 0.421 |
倒J聚集隔离 Inverse J-shaped aggregated segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.035 | 0.107 | 0.041 |
正态均匀混交 Normal-shaped uniform mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.673 | 1.208 | 0.275 |
正态均匀隔离 Normal-shaped uniform segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.078 | 0.196 | 0.040 |
正态随机混交 Normal-shaped random mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.665 | 1.184 | 0.269 |
正态随机隔离 Normal-shaped random segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.044 | 0.123 | 0.032 |
正态聚集混交 Normal-shaped aggregated mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.660 | 1.177 | 0.268 |
正态聚集隔离 Normal-shaped aggregated segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.030 | 0.085 | 0.024 |
表5 12块不同林木大小混交与大小隔离的模拟林分林木大小多样性指数值
Table 5 Tree size diversity indices of different size mingling and size segregation for twelve different simulated stands
林分类型 Stand type | DN | HN | GC | CVd | DT | HT | $\bar{T}$ |
---|---|---|---|---|---|---|---|
倒J均匀混交 Inverse J-shaped uniform mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.770 | 1.512 | 0.437 |
倒J均匀隔离 Inverse J-shaped uniform segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.054 | 0.154 | 0.067 |
倒J随机混交 Inverse J-shaped random mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.769 | 1.510 | 0.421 |
倒J随机隔离 Inverse J-shaped random segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.049 | 0.140 | 0.050 |
倒J聚集混交 Inverse J-shaped aggregated mingling type | 0.897 | 2.610 | 0.633 | 0.692 | 0.772 | 1.521 | 0.421 |
倒J聚集隔离 Inverse J-shaped aggregated segregation type | 0.897 | 2.610 | 0.633 | 0.692 | 0.035 | 0.107 | 0.041 |
正态均匀混交 Normal-shaped uniform mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.673 | 1.208 | 0.275 |
正态均匀隔离 Normal-shaped uniform segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.078 | 0.196 | 0.040 |
正态随机混交 Normal-shaped random mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.665 | 1.184 | 0.269 |
正态随机隔离 Normal-shaped random segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.044 | 0.123 | 0.032 |
正态聚集混交 Normal-shaped aggregated mingling type | 0.937 | 2.906 | 0.299 | 0.282 | 0.660 | 1.177 | 0.268 |
正态聚集隔离 Normal-shaped aggregated segregation type | 0.937 | 2.906 | 0.299 | 0.282 | 0.030 | 0.085 | 0.024 |
指数 Index | HZ | NB | BJ | GS | CV (%) |
---|---|---|---|---|---|
GC | 0.16 | 0.543 | 0.204 | 0.553 | 0.581 |
CVd | 0.146 | 0.554 | 0.186 | 0.566 | 0.628 |
DT | 0.330 | 0.726 | 0.489 | 0.750 | 0.350 |
HT | 0.557 | 1.368 | 0.792 | 1.421 | 0.413 |
$\bar{T}$ | 0.126 | 0.324 | 0.169 | 0.396 | 0.502 |
表6 4块实测样地的林木大小多样性指数值
Table 6 Tree size diversity indices for four measured plots
指数 Index | HZ | NB | BJ | GS | CV (%) |
---|---|---|---|---|---|
GC | 0.16 | 0.543 | 0.204 | 0.553 | 0.581 |
CVd | 0.146 | 0.554 | 0.186 | 0.566 | 0.628 |
DT | 0.330 | 0.726 | 0.489 | 0.750 | 0.350 |
HT | 0.557 | 1.368 | 0.792 | 1.421 | 0.413 |
$\bar{T}$ | 0.126 | 0.324 | 0.169 | 0.396 | 0.502 |
[1] |
Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635.
DOI URL |
[2] | Bai C, Hui GY (2016) Study on diversity indices of tree diameter size. Forest Research, 29, 340-347. (in Chinese with English abstract) |
[ 白超, 惠刚盈 (2016) 林木直径大小多样性量化测度指数的比较研究. 林业科学研究, 29, 340-347.] | |
[3] |
Buongiorno J (2001) Quantifying the implications of transformation from even to uneven-aged forest stands. Forest Ecology and Management, 151, 121-132.
DOI URL |
[4] | Chang RT (2014) Dynamic research on stand structure diversity of nature forest in short time. Journal of Henan Forestry Science and Technology, 34(2), 8-12. (in Chinese with English abstract) |
[ 常荣涛 (2014) 栎类和阔叶混交林林分结构多样性的动态研究. 河南林业科技, 34(2), 8-12.] | |
[5] |
Dǎnescu A, Albrecht AT, Bauhus J (2016) Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia, 182, 319-333.
DOI URL |
[6] |
Duduman GA (2011) Forest management planning tool to create highly diverse uneven-aged stands. Forestry, 84, 301-314.
DOI URL |
[7] |
Fries C, Johansson O, Pettersson B, Simonsson P (1997) Silvicultural models to maintain and restore natural stand structures in Swedish boreal forests. Forest Ecology and Management, 94, 89-103.
DOI URL |
[8] | Gadow K, Füldner K (1993) Zur Methoik der Bestandesbeschreibung. Vortrag anlaesslich der Jahrestagung der A G Forsteinrichtung in Kliekenb. Dessau. (in German) |
[9] | Huang LW (2000) Principles of Statistics. China Statistics Press, Beijing. (in Chinese) |
[ 黄良文 (2000) 统计学原理. 中国统计出版社, 北京.] | |
[10] | Huang QL (2005) Preliminary introduction to “close to nature forest management” in Germany. World Forestry Research, 18(3), 73-77. (in Chinese with English abstract) |
[ 黄清麟 (2005) 浅谈德国的“近自然森林经营”. 世界林业研究, 18(3), 73-77.] | |
[11] | Hui GY, Li L, Zhao ZH, Dang PX (2007) The comparison of methods in analysis of the tree spatial distribution pattern. Acta Ecological Sinica, 27, 4717-4728. (in Chinese with English abstract) |
[ 惠刚盈, 李丽, 赵中华, 党普兴 (2007 ) 林木空间分布格局分析方法. 生态学报, 27, 4717-4728.] | |
[12] |
Hui GY, Pommerening A (2014) Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. Forest Ecology and Management, 316, 125-138.
DOI URL |
[13] | Hui GY, Gadow VK (2003) Quantitative Analysis of Forest Spatial Structure. China Science and Technology Press, Beijing. (in Chinese) |
[ 惠刚盈 , Gadow VK (2003) 森林空间结构量化分析方法. 中国科学技术出版社, 北京.] | |
[14] | Kou WZ, Yang JZ, Yuan SQ (2000) Preliminary discussion on forestry management ideas of “Eco-Priority”. Forestry Economics, ( 1), 1-6. (in Chinese) |
[ 寇文正, 杨建洲, 袁少青 (2000) 试论“生态优先”的林业经营思想. 林业经济, ( 1), 1-6.] | |
[15] | Lei XD, Tang SZ (2002) Indicators on structural diversity within stand: A review. Scientia Silvae Sinicae, 38(3), 140-146. (in Chinese with English abstract) |
[ 雷相东, 唐守正 (2002) 林分结构多样性指标研究综述. 林业科学, 38(3), 140-146.]
DOI |
|
[16] |
Lei XD, Wang W, Peng CH (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Canadian Journal of Forest Research, 39, 1835-1847.
DOI URL |
[17] |
Lexerød NL, Eid T (2006) An evaluation of different diameter diversity indices based on criteria related to forest management planning. Forest Ecology and Management, 222, 17-28.
DOI URL |
[18] | Li C, Lü YY, Xu H, Wei AC, Xiong HX, Zhang B, Sun XL, Xu TT, Shi XL, Ou GL (2017) Stand diameter size diversity in Pinus kesiya var. langbianensis natural forests. Journal of Yunnan Agricultural University (Natural Science), 32, 1108-1120. (in Chinese with English abstract) |
[ 李超, 闾妍宇, 胥辉, 魏安超, 熊河先, 张博, 孙雪莲, 徐婷婷, 石晓琳, 欧光龙 (2017) 思茅松天然林林分直径大小多样性研究. 云南农业大学学报(自然科学), 32, 1108-1120.] | |
[19] | Li C, Lü YY, Xu H, Xu TT, Zhang B, Wei AC, Sun XL, Xiong HX, Shi XL, Ou GL (2016) Stand diameter size diversity and their environmental explanation in Pinus kesiya var. langbianensis natural forests. Journal of Northeast Forestry University, 44(11), 24-30. (in Chinese with English abstract) |
[ 李超, 闾妍宇, 胥辉, 徐婷婷, 张博, 魏安超, 孙雪莲, 熊河先, 石晓琳, 欧光龙 (2016) 思茅松天然林林分直径大小多样性及环境解释. 东北林业大学学报, 44(11), 24-30.] | |
[20] |
Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou M (2007) Effects of diversity of tree species and size on forest basal area growth recruitment and mortality. Forest Ecology and Management, 243, 116-127.
DOI URL |
[21] |
McRoberts RE, Winter S, Chirici G, Hauk E, Pelz DR, Moser WK, Hatfield MA (2008) Large-scale spatial patterns of forest structural diversity. Canadian Journal of Forest Research, 38, 429-438.
DOI URL |
[22] | Meng XY (2006) Forest Mensuration,3rd edn. China Forestry Publishing House, Beijing. (in Chinese) |
[ 孟宪宇 (2006) 测树学 (第3版). 中国林业出版社, 北京.] | |
[23] |
Neumann M, Starlinger F (2001) The significance of different indices for stand structure and diversity in forests. Forest Ecology and Management, 145, 91-106.
DOI URL |
[24] |
O’hara KL, Hasenauer H, Kindermann G (2007) Sustainability in multi-aged stands: An analysis of long-term plenter systems. Forestry, 80, 163-181.
DOI URL |
[25] |
Pommerening A (2002) Approaches to quantifying forest structures. Forestry, 75, 305-324.
DOI URL |
[26] |
Rolstad J, Gjerde I, Olaf SK, Rolstad E (2001) Epiphytic lichens in Norwegian coastal spruce forest, historic logging and present forest structure. Ecological Applications, 11, 421-436.
DOI URL |
[27] |
Rouvinen S, Kuuluvainen T (2005) Tree diameter distributions in natural and managed old Pinus sylvestris-dominated forests. Forest Ecology and Management, 208, 45-61.
DOI URL |
[28] |
Schulte BJ, Buongiorno J (1998) Effects of uneven-aged silviculture on the stand structure, species composition, and economic returns of loblolly pine stands. Forest Ecology and Management, 111, 83-101.
DOI URL |
[29] |
Shannon CE (1949) Communication theory of secrecy systems. The Bell System Technical Journal, 28, 656-715.
DOI URL |
[30] | Shu SM, Zhao YY, Duan X, Hu HR, Xiong HQ (2015) Impact factors of forest diversity in Yunnan pine secondary forest based on structural equation model. Journal of Northeast Forestry University, 43(10), 63-67. (in Chinese with English abstract) |
[ 舒树淼, 赵洋毅, 段旭, 胡慧蓉, 熊好琴 (2015) 基于结构方程模型的云南松次生林林木多样性影响因子. 东北林业大学学报, 43(10), 63-67.] | |
[31] |
Simpson EH (1949) Measurement of diversity. Nature, 163, 688.
DOI |
[32] |
Solomon DS, Gove JH (1999) Effects of uneven-age management intensity on structural diversity in two major forest types in New England. Forest Ecology and Management, 114, 265-274.
DOI URL |
[33] | Spies TA (1998) Forest structure: A key to the ecosystem. Northwest Science, 72, 34-36. |
[34] |
Staudhammer CL, Lemay VM (2001) Introduction and evaluation of possible indices of stand structural diversity. Canadian Journal of Forest Research, 31, 1105-1115.
DOI URL |
[35] |
Valbuena R, Packalén P, Marti S, Maltamo M (2012) Diversity and equitability ordering profiles applied to study forest structure. Forest Ecology and Management, 276, 185-195.
DOI URL |
[36] |
Varga P, Chen HYH, Klinka K (2005) Tree-size diversity between single- and mixed-species stands in three forest types in western Canada. Canadian Journal of Forest Research, 35, 593-601.
DOI URL |
[37] | Wang WF, Lei XD, Ma ZH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515. |
[38] | Wang YX, Zhang SG, Lu YC, Meng JH, Zeng J, Bai SB (2014) Instant response of individual size inequality indices to thinning regimes in plantation. Chinese Journal of Applied Ecology, 25, 1645-1651. (in Chinese with English abstract) |
[ 王懿祥, 张守攻, 陆元昌, 孟京辉, 曾冀, 白尚斌 (2014) 林木个体大小不一致性指标对人工林间伐方式的即时性响应. 应用生态学报, 25, 1645-1651.] | |
[39] |
Weiner J, Solbrig OT (1984) The meaning and measurement of size hierarchies in plant populations. Oecologia, 61, 334-336.
DOI URL |
[40] |
Wikström P, Eriksson LO (2000) Solving the stand management problem under biodiversity-related considerations. Forest Ecology and Management, 126, 361-376.
DOI URL |
[41] | Xiang W, Lei XD, Hong LX, Sun JJ, Wang PZ (2011) Matrix growth model and harvest scenario simulation for multiple uses of larch-spruce-fir forests. Scientia Silvae Sinicae, 47(6), 77-87. (in Chinese with English abstract) |
[ 向玮, 雷相东, 洪玲霞, 孙建军, 王培珍 (2011) 落叶松云冷杉林矩阵生长模型及多目标经营模拟. 林业科学, 47(6), 77-87.]
DOI |
|
[42] | Zhao ZH, Hui GY, Liu WZ, Wang HX, Zhang GQ, Hu YB (2019) Stand structure characteristics of two Quercus aliena secondary forests on the Xiaolongshan forest area. Journal of Northwest A & F University (Natural Science Edition), 47(8), 1-7. (in Chinese with English abstract) |
[ 赵中华, 惠刚盈, 刘文桢, 王宏翔, 张弓乔, 胡艳波 (2019) 小陇山林区2种锐齿栎次生林林分的结构特征. 西北农林科技大学学报(自然科学版), 47(8), 1-7.] | |
[43] | Zheng JM, Luo JC (2003) Structural diversity of broadleaved- Korean pine forest in Changbai Mountain. Biodiversity Science, 11, 295-302. (in Chinese with English abstract) |
[ 郑景明, 罗菊春 (2003) 长白山阔叶红松林结构多样性的初步研究. 生物多样性, 11, 295-302.] |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn