生物多样性 ›› 2018, Vol. 26 ›› Issue (11): 1158-1167. DOI: 10.17520/biods.2018213
姜佰文1, 李静1, 陈睿1, 鲁萍1,*(), 李琦1, 肖同玉1, 白雅梅1, 张险峰2, 李亦奇1
收稿日期:
2018-08-03
接受日期:
2018-10-27
出版日期:
2018-11-20
发布日期:
2019-01-08
通讯作者:
鲁萍
作者简介:
# 共同第一作者
基金资助:
Baiwen Jiang1, Jing Li1, Rui Chen1, Ping Lu1,*(), Qi Li1, Tongyu Xiao1, Yamei Bai1, Xianfeng Zhang2, Yiqi Li1
Received:
2018-08-03
Accepted:
2018-10-27
Online:
2018-11-20
Published:
2019-01-08
Contact:
Lu Ping
About author:
# Co-first authors
摘要:
为探索不同降雨年型及栽培方式下外来杂草与本地作物的竞争机制, 为未来全球变化背景下控制外来杂草提供理论依据, 本研究以广泛入侵东北农田生态系统的外来杂草反枝苋(Amaranthus retroflexus)和本地作物大豆(Glycine max)为研究对象, 在遮雨棚内人工模拟正常、欠缺、丰沛三种降雨年型, 采用盆栽实验的方法, 研究两种植物在单种和混种条件下的生长季节动态。结果表明, 降雨丰沛年两种植物的株高和总生物量均大于降雨正常年, 降雨欠缺年则均小于降雨正常年。生长季初期两种植物的根冠比均在降雨欠缺年最高, 说明两种植物均可通过增大根系的生物量分配, 减少地上生物量的分配来适应干旱环境。在三种降雨年型下, 混种时大豆的株高、相对生长速率及总生物量均显著小于单种大豆, 而反枝苋则相反, 尽管有时不显著, 说明种间竞争抑制大豆生长而促进反枝苋的生长, 两种植物之间的竞争是不对称竞争。总的来看, 降雨增加有利于提高大豆的竞争能力, 降雨减少有利于提高反枝苋的竞争能力, 随着生长发育的推移, 这种现象更明显。反枝苋可以在较广的降雨变化范围内保持较高的株高、相对生长速率及生物量, 这很可能是其成为全球范围成功入侵的外来杂草的重要原因之一; 干旱更有利于反枝苋入侵大豆田。
姜佰文, 李静, 陈睿, 鲁萍, 李琦, 肖同玉, 白雅梅, 张险峰, 李亦奇 (2018) 降雨年型变化及竞争对反枝苋和大豆生长的影响. 生物多样性, 26, 1158-1167. DOI: 10.17520/biods.2018213.
Baiwen Jiang, Jing Li, Rui Chen, Ping Lu, Qi Li, Tongyu Xiao, Yamei Bai, Xianfeng Zhang, Yiqi Li (2018) Effects of annual precipitation pattern variation and different cultivation modes on the growth of Amaranthus retroflexus and Glycine max. Biodiversity Science, 26, 1158-1167. DOI: 10.17520/biods.2018213.
图1 不同降雨年型的模拟降雨量分布。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。
Fig. 1 Distribution of simulated precipitation in different annual precipitation patterns. AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern.
株高 Height | 相对生长速率 RGR | 根冠比 R/S | 总生物量 Total biomass | |
---|---|---|---|---|
反枝苋 Amaranthus retroflexus | ||||
栽培方式 Cultivation mode (Cult.) | 10.13** | 227.91*** | 3.99 ns | 2,862.44*** |
降雨年型 Precipitation pattern (Prec.) | 56.76*** | 41.66*** | 88.75*** | 388.53*** |
采样时间 Sampling time (Samp.) | 1,023.21*** | 15,173.44*** | 332.55*** | 3,435.53*** |
栽培方式 × 降雨年型 Cult. × Prec. | 14.23*** | 37.79*** | 4.32* | 29.16*** |
栽培方式 × 采样时间 Cult. × Samp. | 5.82** | 14.74*** | 1.92 ns | 366.46*** |
采样时间 × 降雨年型 Samp. × Prec. | 17.56*** | 10.31*** | 30.41*** | 73.84*** |
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. | 5.44*** | 4.81** | 13.21*** | 40.47*** |
大豆 Glycine max | ||||
栽培方式 Cultivation mode (Cult.) | 1,314.58*** | 32.78*** | 64.97*** | 2,043.58*** |
降雨年型 Precipitation pattern (Prec.) | 532.56*** | 7.53** | 153.70*** | 527.47*** |
采样时间 Sampling time (Samp.) | 560.08*** | 638.95*** | 337.36*** | 884.17*** |
栽培方式 × 降雨年型 Cult. × Prec. | 3.30ns | 5.41* | 36.27** | 0.83 ns |
栽培方式 × 采样时间 Cult. × Samp. | 131.53*** | 28.96*** | 5.95** | 219.98*** |
采样时间 × 降雨年型 Samp. × Prec. | 31.31*** | 24.19*** | 18.22*** | 102.11*** |
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. | 3.78** | 12.87*** | 16.86*** | 37.72*** |
表1 降雨年型、栽培方式、采样时间及其交互作用对反枝苋和大豆的株高、相对生长速率、根冠比和总生物量的影响(F值, RMANOVA)
Table 1 Repeated measurements of variance analysis (F value) of the effects of precipitation pattern, cultivation mode, sampling time, and their interactions on height, relative growth rate (RGR), root/shoot ratio (R/S) and total biomass of Amaranthus retroflexus and Glycine max
株高 Height | 相对生长速率 RGR | 根冠比 R/S | 总生物量 Total biomass | |
---|---|---|---|---|
反枝苋 Amaranthus retroflexus | ||||
栽培方式 Cultivation mode (Cult.) | 10.13** | 227.91*** | 3.99 ns | 2,862.44*** |
降雨年型 Precipitation pattern (Prec.) | 56.76*** | 41.66*** | 88.75*** | 388.53*** |
采样时间 Sampling time (Samp.) | 1,023.21*** | 15,173.44*** | 332.55*** | 3,435.53*** |
栽培方式 × 降雨年型 Cult. × Prec. | 14.23*** | 37.79*** | 4.32* | 29.16*** |
栽培方式 × 采样时间 Cult. × Samp. | 5.82** | 14.74*** | 1.92 ns | 366.46*** |
采样时间 × 降雨年型 Samp. × Prec. | 17.56*** | 10.31*** | 30.41*** | 73.84*** |
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. | 5.44*** | 4.81** | 13.21*** | 40.47*** |
大豆 Glycine max | ||||
栽培方式 Cultivation mode (Cult.) | 1,314.58*** | 32.78*** | 64.97*** | 2,043.58*** |
降雨年型 Precipitation pattern (Prec.) | 532.56*** | 7.53** | 153.70*** | 527.47*** |
采样时间 Sampling time (Samp.) | 560.08*** | 638.95*** | 337.36*** | 884.17*** |
栽培方式 × 降雨年型 Cult. × Prec. | 3.30ns | 5.41* | 36.27** | 0.83 ns |
栽培方式 × 采样时间 Cult. × Samp. | 131.53*** | 28.96*** | 5.95** | 219.98*** |
采样时间 × 降雨年型 Samp. × Prec. | 31.31*** | 24.19*** | 18.22*** | 102.11*** |
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. | 3.78** | 12.87*** | 16.86*** | 37.72*** |
图2 不同降雨年型及栽培方式对反枝苋和大豆株高的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05, ** P < 0.01, *** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。
Fig. 2 Effects of precipitation patterns and cultivation modes on plant height of Amaranthus retroflexus and Glycine max. The values in the figures are means ± standard error, n = 4. Different capital letters indicate significant differences between growth periods for the same precipitation pattern, different lowercase letters indicate significant differences between precipitation patterns for the same growth period (P < 0.05), and asterisk indicates significant difference between the plants in mixed-culture and the plants in mono-culture grown in the same precipitation treatment and the same growth stage (* P < 0.05, ** P < 0.01, *** P < 0.001). AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern.
图3 不同降雨年型及栽培方式对反枝苋和大豆总生物量的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05,** P < 0.01,*** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。
Fig. 3 Effects of precipitation patterns and cultivation modes on total biomass of Amaranthus retroflexus and Glycine max. The values in the figures are means ± standard error, n = 4. Different capital letters indicate significant differences between growth periods for the same precipitation pattern, different lowercase letters indicate significant differences between precipitation patterns for the same growth period (P < 0.05), and asterisk indicates significant difference between the plants in mixed-culture and the plants in mono-culture grown in the same precipitation treatment and the same growth stage (* P < 0.05, ** P < 0.01, *** P < 0.001). AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern.
图4 不同降雨年型及栽培方式对反枝苋和大豆根冠比的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05, ** P < 0.01, *** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。
Fig. 4 Effects of precipitation patterns and cultivation modes on root/shoot ratio of Amaranthus retroflexus and Glycine max. The values in the figures are means ± standard error, n = 4. Different capital letters indicate significant differences between growth periods for the same precipitation pattern, different lowercase letters indicate significant differences between precipitation patterns for the same growth period (P < 0.05), and asterisk indicates significant difference between the plants in mixed-culture and the plants in mono-culture grown in the same precipitation treatment and the same growth stage (* P < 0.05, ** P < 0.01, *** P < 0.001). AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern.
图5 不同降雨年型及栽培方式对反枝苋和大豆相对生长速率的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05,** P < 0.01,*** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。
Fig. 5 Effects of precipitation patterns and cultivation modes on the relative growth rate of Amaranthus retroflexus and Glycine max. The values in the figures are means ± standard error, n = 4. Different capital letters indicate significant differences between growth periods for the same precipitation pattern, different lowercase letters indicate significant differences between precipitation patterns for the same growth period (P < 0.05), and asterisk indicates significant difference between the plants in mixed-culture and the plants in mono-culture grown in the same precipitation treatment and the same growth stage (* P < 0.05, ** P < 0.01, *** P < 0.001). AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern.
降雨年型 Precipitation pattern (Prec.) | 采样时间 Sampling time (Samp.) | 采样时间 × 降雨年型 Samp. × Prec. | |
---|---|---|---|
反枝苋植株相对生物量 Relative biomass of the plant (RB) of Amaranthus retroflexus | 167.06*** | 707.34*** | 135.35*** |
大豆植株相对生物量 Relative biomass of the plant (RB) of Glycine max | 73.55*** | 375.41*** | 72.50*** |
表2 降雨年型、采样时间及其交互作用对反枝苋和大豆的植株相对生物量(RB)的影响(F值)
Table 2 Repeated measurements of variance analysis (F value) of the effects of precipitation pattern, sampling time, and their interaction on the relative biomass of the plant (RB) of Amaranthus retroflexus and Glycine max
降雨年型 Precipitation pattern (Prec.) | 采样时间 Sampling time (Samp.) | 采样时间 × 降雨年型 Samp. × Prec. | |
---|---|---|---|
反枝苋植株相对生物量 Relative biomass of the plant (RB) of Amaranthus retroflexus | 167.06*** | 707.34*** | 135.35*** |
大豆植株相对生物量 Relative biomass of the plant (RB) of Glycine max | 73.55*** | 375.41*** | 72.50*** |
图6 不同降雨年型及栽培方式对反枝苋和大豆植株相对生物量的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 各物种各降雨处理各时期相对生物量与1.0的差异均显著(降雨正常年6月除外)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年; RBA.r: 反枝苋单株相对生物量; RBG.m: 大豆单株相对生物量。
Fig. 6 Effects of precipitation patterns and cultivation modes on the relative biomass of the individual plant of Amaranthus retroflexus and Glycine max. The values in the figures are means ± standard error, n = 4. Different capital letters indicate significant differences between growth periods for the same precipitation pattern, different lowercase letters indicate significant differences between precipitation patterns for the same growth period (P < 0.05), and the relative biomass of each species in each period of precipitation pattern was significantly different from that of 1.0 (except for the average annual precipitation pattern in June). AP, Average annual precipitation pattern; DP, Deficient annual precipitation pattern; PP, Plentiful annual precipitation pattern; RBA.r, Relative biomass of the individual plant of A. retroflexus; RBG.m, Relative biomass of the individual plant of G. max.
[1] | Bai X, Ta L, Zhao MW, Liu CC, Wei GY, Cui LT, Zeng GJ, Qin J (2016) New research progress on alien invasive plant Amaranthus retroflexus L. from 2010 to 2015. Crops, 173(4), 12-19. (in Chinese with English abstract) |
[柏祥, 塔莉, 赵美微, 刘传才, 魏国印, 崔力拓, 曾广娟, 秦津 (2016) 外来入侵植物反枝苋的最新研究进展. 作物杂志, 173(4), 12-19.] | |
[2] | Bazzaz FA, Garbutt K, Reekie EG, Williams WE (1989) Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2. Oecologia, 79, 223-235. |
[3] | Blumenthal D, Chimner RA, Welker JM, Morgan JA (2008) Increased snow facilitates plant invasion in mixed grass prairie. New Phytologist, 179, 440-448. |
[4] | Bonifas KD, Lindqiust JL (2009) Effects of nitrogen supply on the root morphology of corn and velvetleaf. Journal of Plant Nutrition, 32, 1371-1382. |
[5] | Bradley BA, Blumenthal DM, Wilcove DS, Ziska DS (2010) Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310-318. |
[6] | Caplan JS, Yeakley JA (2010) Water relations advantages for invasive Rubus armeniacus over two native ruderal congeners. Plant Ecology, 210, 169-179. |
[7] | Cong X, Wu Y, Lu P, Xu NT, Liang H, Tian QY, Wang P, Zhang DX (2013) The effects of nitrogen fluctuation on the maximum net photosynthetic rate and photosynthetic nitrogen use efficiency of redroot pigweed (Amaranthus retroflexus) and soybean (Glycine max). Crops, 152(1), 81-85. (in Chinese with English abstract) |
[丛雪, 吴岩, 鲁萍, 徐宁彤, 梁慧, 田秋阳, 王鹏, 张东旭 (2013) 氮素波动对反枝苋和大豆最大净光合速率和光合氮利用效率的影响. 作物杂志, 152(1), 81-85.] | |
[8] | Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology and Systematics, 34, 183-211. |
[9] | Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528-534. |
[10] | Dawson W, Rohr RP, Kleunen MV, Fischer M (2012) Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist, 194, 859-867. |
[11] | Dong QZ, Yang XY, Zhang Y, Xue H, Liu LL (2006) Effect of inadequate rainfall on yield and relative traits in soybean. Soybean Science & Technology, (3), 5-8. (in Chinese with English abstract) |
[董全中, 杨兴勇, 张勇, 薛红, 刘玲玲 (2006) 降雨量不足对大豆产量及农艺性状影响的研究. 大豆科技, (3), 5-8.] | |
[12] | Dukes J, Mooney H (1999) Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135-139. |
[13] | Dunbar KR, Facelli JM (1999) The impact of a novel invasive species, Orbea variegata (African carrion flower), on the chenopod shrublands of South Australia. Journal of Arid Environments, 41, 37-48. |
[14] | Ewe SM, Sternberg LDSL (2002) Seasonal water-use by the invasive exotic, Schinus terebinthifolius, in native and disturbed communities. Oecologia, 133, 441-448. |
[15] | Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081. |
[16] | Hao CY, Zhao W, Zhao TQ (2011) Comparative research on regional respond to global climate change in China. Area Research and Development, 30(3), 56-61. (in Chinese with English abstract) |
[郝成元, 赵伟, 赵同谦 (2011) 全球气候变化背景下中国敏感区区域响应比较. 地域研究与开发, 30(3), 56-61.] | |
[17] | Harrington R, Brown B, Reich P (1989) Ecophysiology of exotic and native shrubs in southern Wisconsin. Oecologia, 80, 356-367. |
[18] | Huntington TG (2006) Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83-95. |
[19] | Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Report of a Special Report of Working Groups I and II of the IPCC. Summary for Policymakers. . (accessed on 2018-01-01 |
[20] | Knezevic SZ, Weise SF, Swanton CJ (2017) Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Science, 42, 568-573. |
[21] | Lovelli S, Perniola M, Ferrara A, Amato M, Tommaso TD (2010) Photosynthetic response to water stress of pigweed (Amaranthus retroflexus) in a southern-mediterranean area. Weed Science, 58, 126-131. |
[22] | Lu P, Jin CG, Zhang X, Jiang BW, Yan NN, Xiao TY, Bai YM, Li JX, Chen R, Li J (2017) The responses of the ecophysiological characteristics of Amaranthus retroflexus and Glycine max to seasonal rainfall fluctuations. Crops, 177(2), 119-125. (in Chinese with English abstract) |
[鲁萍, 金成功, 张茜, 姜佰文, 闫南南, 肖同玉, 白雅梅, 李景欣, 陈睿, 李静 (2017) 反枝苋和大豆对降雨季节波动的生理生态响应. 作物杂志, 177(2), 119-125.] | |
[23] | Lu P, Li JX, Jin CG, Jiang BW, Bai YM (2016) Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition. PLoS ONE, 11, e0156285. |
[24] | Lu P, Liang H, Wang HY, Bai YM, Gao FJ, Song G, Wu Y, Tian QY (2010) Research progress on exotic invasive weed Amaranthus retroflexus. Chinese Journal of Ecology, 29, 1662-1670. (in Chinese with English abstract) |
[鲁萍, 梁慧, 王宏燕, 白雅梅, 高凤杰, 宋戈, 吴岩, 田秋阳 (2010) 外来入侵杂草反枝苋的研究进展. 生态学杂志, 29, 1662-1670.] | |
[25] | McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology, 80, 2581-2593. |
[26] | Poorter L (1999) Growth response of 15 rain forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13, 396-410. |
[27] | Vaughn LG, Bernards ML, Arkebauer TJ, Lindqiust JL (2016) Corn and velvetleaf (Abutilon theophrasti) growth and transpiration efficiency under varying water supply. Weed Science, 64, 596-604. |
[28] | Xu GH, Wang HY, Liu J (2009) Effects of RRS on the amount and diversity of bacteria in rhizospheric soil. Acta Ecologica Sinica, 29, 4535-4541. (in Chinese with English abstract) |
[徐广惠, 王宏燕, 刘佳 (2009) 抗草甘膦转基因大豆(RRS)对根际土壤细菌数量和多样性的影响. 生态学报, 29, 4535-4541.] | |
[29] | Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulse. Ecology, 89, 621-634. |
[30] | Zheng YL, Feng YL, Liu WX, Liao ZY (2009) Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology, 203, 263-271. |
[31] | Zou WX, Han XZ, Jiang H, Yang CB (2009) Characteristics of precipitation in black soil region and response of soil moisture dynamics in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 27(9), 196-202. (in Chinese with English abstract) |
[邹文秀, 韩晓增, 江恒, 杨春葆 (2009) 东北黑土区降水特征及其对土壤水分的影响. 农业工程学报, 27(9), 196-202.] |
[1] | 李艳朋, 倪云龙, 许涵, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9): 1186-1197. |
[2] | 欧阳园丽, 张参参, 林小凡, 田立新, 顾菡娇, 陈伏生, 卜文圣. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29(6): 746-758. |
[3] | 张剑坛, 李艳朋, 张入匀, 倪云龙, 周文莹, 练琚愉, 叶万辉. 基于枝条木材密度分级的鼎湖山南亚热带常绿阔叶林树高曲线模型[J]. 生物多样性, 2021, 29(4): 456-466. |
[4] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[5] | 郭志文, 郑景明. 用植物生活史性状预测种子扩散方式[J]. 生物多样性, 2017, 25(9): 966-971. |
[6] | 潘玉梅, 唐赛春, 韦春强, 李象钦. 不同光照和水分条件下鬼针草属入侵种与本地种生长、光合特征及表型可塑性的比较[J]. 生物多样性, 2017, 25(12): 1257-1266. |
[7] | 刘何铭, 马遵平, 杨庆松, 方晓峰, 林庆凯, 宗意, 阿尔达克·阿庆, 王希华. 天童常绿阔叶林定居幼苗存活和生长的关联[J]. 生物多样性, 2017, 25(1): 11-22. |
[8] | 熊飞, 刘红艳, 段辛斌, 刘绍平, 陈大庆. 长江上游特有种长鳍吻鮈种群数量和资源利用评估[J]. 生物多样性, 2016, 24(3): 304-312. |
[9] | 黎磊, 耿宇鹏, 兰志春, 陈家宽, 宋志平. 异质生境中水生植物表型可塑性的研究进展[J]. 生物多样性, 2016, 24(2): 216-227. |
[10] | 王宁, 李卫芳, 周兵, 闫小红. 中国入侵克隆植物入侵性、克隆方式及地理起源[J]. 生物多样性, 2016, 24(1): 12-. |
[11] | 李玲娟, 熊勤犁, 潘开文, 张林. 土壤原生动物对川滇高山栎恢复时间的响应及生长季动态[J]. 生物多样性, 2015, 23(6): 793-801. |
[12] | 韩大勇, 杨允菲. 松嫩草地植物群落物种多度–分布关系及其解释[J]. 生物多样性, 2014, 22(3): 348-357. |
[13] | 童跃伟, 项文化, 王正文, Walter Durka, Markus Fischer. 地形、邻株植物及自身大小对红楠幼树生长与存活的影响[J]. 生物多样性, 2013, 21(3): 269-277. |
[14] | 汪殷华, 米湘成, 陈声文, 李铭红, 于明坚. 古田山常绿阔叶林主要树种2002-2007年间更新动态[J]. 生物多样性, 2011, 19(2): 178-189. |
[15] | 王利伟, 李步杭, 叶吉, 白雪娇, 原作强, 邢丁亮, 蔺菲, 师帅, 王绪高, 郝占庆. 长白山阔叶红松林树木短期死亡动态[J]. 生物多样性, 2011, 19(2): 260-270. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn