生物多样性 ›› 2016, Vol. 24 ›› Issue (3): 304-312.DOI: 10.17520/biods.2015268

• • 上一篇    下一篇

长江上游特有种长鳍吻鮈种群数量和资源利用评估

熊飞1,*(), 刘红艳1, 段辛斌2,*(), 刘绍平2, 陈大庆2   

  1. 1 江汉大学生命科学学院, 武汉 430056
    2 中国水产科学研究院长江水产研究所, 武汉 430223
  • 收稿日期:2015-10-09 接受日期:2015-12-11 出版日期:2016-03-20 发布日期:2016-04-05
  • 通讯作者: 熊飞,段辛斌
  • 基金资助:
    国家自然科学基金(51109091和51310105036)

Estimating population abundance and utilization of Rhinogobio ventralis, an endemic fish species in the upper Yangtze River

Fei Xiong1,*(), Hongyan Liu1, Xinbin Duan2,*(), Shaoping Liu2, Daqing Chen2   

  1. 1 School of Life Sciences, Jianghan University, Wuhan 430056
    2 Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223
  • Received:2015-10-09 Accepted:2015-12-11 Online:2016-03-20 Published:2016-04-05
  • Contact: Xiong Fei,Duan Xinbin

摘要:

长鳍吻鮈(Rhinogobio ventralis)为长江上游特有种, 由于过度捕捞和大坝建设, 其种群生存受到极大威胁。为了解三峡工程蓄水后、金沙江一期工程蓄水前该物种的种群动态, 作者利用2007-2009年长江上游江津和宜宾江段调查获取的体长频率数据, 评估了其生长和死亡参数、种群数量及资源利用情况。结果表明, 长江上游长鳍吻鮈渔获群体体长范围为52-250 mm, 体重范围为2.7-307.2 g, 平均体长为150.8 ± 40.7 mm, 平均体重为72.3 ± 49.7 g。江津江段长鳍吻鮈平均体长(168.6 ± 29.5 mm)显著大于宜宾江段(125.6 ± 41.2 mm)。长鳍吻鮈体长-体重关系为: W = 6.06 × 10-6L3.20 (R2 = 0.98, P < 0.01, n = 436)。由体长频率法拟合出渐近体长(L)为338 mm, 生长系数(k)为0.24/yr。由Pauly公式、Gunderson和Dygert公式、Jensen公式等3种方法估算出其平均自然死亡系数为0.43。由长度转渔获物曲线估算出江津和宜宾江段长鳍吻鮈的总死亡系数分别为2.26和2.09。江津和宜宾江段长鳍吻鮈资源开发率分别为0.81和0.79, 已超过由Beverton-Holt动态综合模型估算出的最大开发率0.57和0.62。由体长实际种群分析估算出2007、2008和2009年江津江段长鳍吻鮈种群数量分别为68,247、67,432和176,266尾, 平均为103,982尾; 宜宾江段种群数量分别为22,953尾、46,340尾和34,021尾, 平均为34,438尾, 表明江津江段种群数量高于宜宾江段。长鳍吻鮈资源已被过度开发, 建议加强种群动态监测, 延长禁渔期及开展栖息地修复等措施保护这一特有物种。

关键词: 种群参数, 生长, 死亡, 种群数量, 资源评估, 长鳍吻鮈

Abstract

Rhinogobio ventralis, an endemic species in the upper Yangtze River, has been threatened by overfishing and dam construction. To understand its population dynamics after the Three Gorges Reservoir was built and before the Xiangjiaba and Xiluodu reservoirs were built, we employed body length-frequency data to estimate growth and mortality parameters, population abundance and utilization of the fish based on surveys in the Jiangjin and Yibin sections of the upper Yangtze River conducted from 2007-2009. Fish ranged from 52 to 250 mm in length and 2.7 to 307.2 g in weight, with an average length of 150.8 ± 40.7 mm and an average weight of 72.3 ± 49.7 g. The average size of the fish in the Jiangjin section of the Yangtze River (168.6 ± 29.5 mm) was significantly larger than that in Yibin section (125.6 ± 41.2 mm). The length-weight relationship of R. ventralis was well-fit with a power function, W = 6.06 × 10-6 L3.20 (R2 = 0.98, P < 0.01, n = 436). Asymptotic length (L) and growth constant (k) were estimated using length frequency data as 338 mm and 0.24/yr, respectively. Average natural mortality was comprehensively estimated as 0.43 using three empirical formulas proposed by Pauly, Gunderson & Dygert, and Jensen, respectively. The total mortalities were estimated using a length-converted catch curve analysis as 2.26 in the Jiangjin section and 2.09 in the Yibin section of the Yangtze River. The observed exploitation rates were 0.81 in the Jiangjin section and 0.79 in the Yibin section, which were higher than the maximum exploitation rates of 0.57 in the Jiangjin section and 0.62 in the Yibin section that were estimated using Beverton & Holt Y′/R analysis. Population abundance of R. ventralis in the Jiangjin section was estimated by length-structured virtual population analysis as 68,247 in 2007, 67,432 in 2008, and 176,266 in 2009, respectively, with an average of 103,982; while abundance in the Yibin section was estimated as 22,953 in 2007, 46,340 in 2008, and 34,021 in 2009, respectively, with an average of 34,438, indicating the population abundance was higher in the Jiangjin section than the Yibin section. We conclude that overfishing is occurring in these stocks of R. ventralis and recommend a longer period of monitoring in order to understand population dynamics of R. ventralis. We further suggest that management authorities establish a longer closed period for fishing and undertake habitat restoration to protect the endemic fish species.

Key words: population parameters, growth, mortality, population abundance, stock assessment, Rhinogobio ventralis