生物多样性 ›› 2016, Vol. 24 ›› Issue (3): 262-270.DOI: 10.17520/biods.2015200
收稿日期:
2015-07-08
接受日期:
2016-01-15
出版日期:
2016-03-20
发布日期:
2016-04-05
通讯作者:
丁易
基金资助:
Qingqing Tang1, Yongtao Huang1, Yi Ding1,2,*(), Runguo Zang1,2
Received:
2015-07-08
Accepted:
2016-01-15
Online:
2016-03-20
Published:
2016-04-05
Contact:
Ding Yi
摘要:
不同物种间的功能性状差异是自然生态系统中物种共存的基础, 而物种内个体间的性状变异对物种的共存和分布同样具有重要作用。本文以湖北星斗山自然保护区亚热带常绿落叶阔叶混交林内28种主要树种(通过物种多度排序获得, 其中常绿和落叶树种各14种)为研究对象, 探讨不同叶习性树种的4种功能性状(比叶面积、叶干物质含量、叶面积和比茎密度)在种间和种内的差异程度。结果表明: (1)常绿和落叶树种在4种功能性状上均存在显著差异, 常绿树种的比叶面积和叶面积显著低于落叶树种, 但叶干物质含量和比茎密度则显著高于落叶树种; (2)比叶面积的变化主要来源于叶习性(57.49%), 叶面积变化主要来源于种间(66.80%)和种内变异(27.52%), 叶干物质含量的变化主要来源于种间(38.12%)和种内(33.88%)变异, 但比茎密度的变化主要来源于种内变异(51.50%), 其次为种间变异(32.52%); (3)常绿和落叶树种种间水平的性状相关性可能掩盖各功能性状之间的相关性。种内变异能够显著影响群落间的植物功能性状差异, 但不同功能性状的种内变异程度存在差异。
唐青青, 黄永涛, 丁易, 臧润国. 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异[J]. 生物多样性, 2016, 24(3): 262-270.
Qingqing Tang, Yongtao Huang, Yi Ding, Runguo Zang. Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests[J]. Biodiv Sci, 2016, 24(3): 262-270.
图1 星斗山常绿落叶阔叶混交林常绿和落叶树种4个功能性状箱式图。圆点代表植物个体性状值。落叶树种: 1-14; 常绿树种: 15-28。
Fig. 1 Boxplot of 4 plant functional traits value for evergreen and deciduous tree species of evergreen and deciduous broad-leaved mixed forest in Xingdoushan. The dot represents the trait value of plant individual. 1-14: Deciduous trees; 15 to 28: Evergreen trees; 1, Symplocos paniculata; 2, Viburnum setigerum; 3, Enkianthus serrulatus; 4, Carpinus fargesiana; 5, Bothrocaryum controversum; 6, Liquidambar formosana; 7, Fagus lucida; 8, Clethra fargesii; 9, Lindera glauca; 10, Sorbus folgneri; 11, Weigela japonica; 12, Euscaphis japonica; 13, Ficus heteromorpha; 14, Castanea henryi; 15, Lithocarpus cleistocarpus; 16, Symplocos anomala; 17, Symplocos phyllocalyx; 18, Eurya alata; 19, Cyclobalanopsis multinervis; 20, Litsea elongata; 21, Dendrobenthamia angustata; 22, Daphniphyllum macropodum; 23, Machilus lichuanensis; 24, Lithocarpus henryi; 25, Cyclobalanopsis glauca; 26, Viburnum erosum; 27, Nothopanax davidii; 28, Rhododendron stamineum. SLA, Specific leaf area; LDMC, Leaf dry matter content; LA, Lamina area; SSD, Stem specific density.
图2 星斗山常绿落叶阔叶混交林常绿和落叶树种不同叶习性的植物功能性状变异系数。圆圈代表物种平均性状值, 柱状图代表物种间的变异系数, 箱式图代表物种个体之间的变异系数。
Fig. 2 Coefficient of variation of plant functional traits for plant species with different leaf habits of evergreen and deciduous broad-leaved mixed forest in Xingdoushan. The circle represents the average trait value of the species. Histograms represent interspecific coefficient of variation and box figures represent intraspecific coefficient of variation. D: Deciduous trees; E: Evergreen trees; SLA, Specific leaf area; LDMC, Leaf dry matter content; LA, Lamina area; SSD, Stem specific density.
性状 Trait | 贡献百分比 Percentage of contribution (%) | |||
---|---|---|---|---|
叶习性 Leaf habit | 种间 Interspecific | 种内 Intraspecific | 随机误差 Random error | |
比叶面积 Specific leaf area 叶干物质含量 Leaf dry matter content 叶面积 Lamina area 比茎密度 Stem specific density 平均值 Mean | 57.49 21.92 0.33 7.52 21.81 | 12.47 38.12 66.80 32.52 37.48 | 25.51 33.88 27.52 51.50 34.60 | 4.53 6.08 5.35 8.46 6.11 |
表1 叶习性、种间及种内对不同植物功能性状变异的贡献
Table 1 Contributions of leaf habit, interspecific and intraspecific to different plant functional traits variation
性状 Trait | 贡献百分比 Percentage of contribution (%) | |||
---|---|---|---|---|
叶习性 Leaf habit | 种间 Interspecific | 种内 Intraspecific | 随机误差 Random error | |
比叶面积 Specific leaf area 叶干物质含量 Leaf dry matter content 叶面积 Lamina area 比茎密度 Stem specific density 平均值 Mean | 57.49 21.92 0.33 7.52 21.81 | 12.47 38.12 66.80 32.52 37.48 | 25.51 33.88 27.52 51.50 34.60 | 4.53 6.08 5.35 8.46 6.11 |
性状 Trait | 种间 Interspecific level | 种内(胸径作为协变量的偏相关系数) Intraspecific (Partial correlation rates of DBH as covariate) | |||||||
---|---|---|---|---|---|---|---|---|---|
SLA | LDMC | LA | SSD | SLA | LDMC | LA | SSD | ||
落叶树种 Deciduous plant | |||||||||
比叶面积 Specific leaf area (SLA) | 1.00 | 1.00 | |||||||
叶干物质含量 Leaf dry matter content (LDMC) | -0.50 | 1.00 | -0.40*** (-0.40***) | 1.00 | |||||
叶面积 Lamina area (LA) | 0.14 | -0.57* | 1.00 | 0.03 (0.03) | -0.36*** (-0.35**) | 1.00 | |||
比茎密度 Stem specific density (SSD) | -0.06 | 0.45 | -0.42 | 1.00 | -0.03 (-0.03) | 0.26*** (0.22**) | -0.23*** (-0.18***) | 1.00 | |
常绿树种 Evergreen plant | |||||||||
比叶面积 SLA | 1.00 | 1.00 | |||||||
叶干物质含量 LDMC | -0.54* | 1.00 | -0.49*** (-0.48***) | 1.00 | |||||
叶面积 LA | -0.25 | -0.09 | 1.00 | -0.14*** (-0.10*) | -0.06 (-0.02**) | 1.00 | |||
比茎密度 SSD | 0.27 | -0.27 | 0.09 | 1.00 | 0.03 (0.04) | 0.04 (-0.04) | -0.05 (0.01) | 1.00 |
表2 常绿和落叶树种种间和种内水平性状相关性
Table 2 Trait correlation of evergreen and deciduous plants between interspecific and intraspecific level
性状 Trait | 种间 Interspecific level | 种内(胸径作为协变量的偏相关系数) Intraspecific (Partial correlation rates of DBH as covariate) | |||||||
---|---|---|---|---|---|---|---|---|---|
SLA | LDMC | LA | SSD | SLA | LDMC | LA | SSD | ||
落叶树种 Deciduous plant | |||||||||
比叶面积 Specific leaf area (SLA) | 1.00 | 1.00 | |||||||
叶干物质含量 Leaf dry matter content (LDMC) | -0.50 | 1.00 | -0.40*** (-0.40***) | 1.00 | |||||
叶面积 Lamina area (LA) | 0.14 | -0.57* | 1.00 | 0.03 (0.03) | -0.36*** (-0.35**) | 1.00 | |||
比茎密度 Stem specific density (SSD) | -0.06 | 0.45 | -0.42 | 1.00 | -0.03 (-0.03) | 0.26*** (0.22**) | -0.23*** (-0.18***) | 1.00 | |
常绿树种 Evergreen plant | |||||||||
比叶面积 SLA | 1.00 | 1.00 | |||||||
叶干物质含量 LDMC | -0.54* | 1.00 | -0.49*** (-0.48***) | 1.00 | |||||
叶面积 LA | -0.25 | -0.09 | 1.00 | -0.14*** (-0.10*) | -0.06 (-0.02**) | 1.00 | |||
比茎密度 SSD | 0.27 | -0.27 | 0.09 | 1.00 | 0.03 (0.04) | 0.04 (-0.04) | -0.05 (0.01) | 1.00 |
1 | Ackerly DD, Cornwell WK (2007) A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145. |
2 | Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, La- vorel S (2010a) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific vari- ability in plant traits. Functional Ecology, 24, 1192-1201. |
3 | Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S (2010b) Intraspecific functional variability: extent, structure and sources of variation. Journal of Ecology, 98, 604-613. |
4 | Auger S, Shipley B (2013) Interspecific and intraspecific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428. |
5 | Bao L, Liu YH (2009) Comparison of leaf functional traits in different forest communities in Mountains Dongling of Beijing. Acta Ecologica Sinica, 29, 3692-3703.(in Chinese with English abstract) |
[宝乐, 刘艳红 (2009) 东灵山地区不同森林群落叶功能性状比较. 生态学报, 29, 3692-3703.] | |
6 | Baraloto C, Paine CET, Patino S, Bonal D, Herault B, Chave J (2010) Functional trait variation and sampling strategies in species-rich plant communities. Functional Ecology, 24, 208-216. |
7 | Chapin FSI, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Díaz S (2000) Consequences of changing biodiversity. Nature, 405, 234-242. |
8 | Condit R (1998) Ecological implications of changes in drought patterns: shifts in forest composition in Panama. Climatic Change, 39, 413-427. |
9 | Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAV, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335. |
10 | Cornwell WK, Ackerly DD (2009) Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs, 79, 109-126. |
11 | Díaz S, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany A, Hodgson JG, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Thompson K, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F (2004) The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295-304. |
12 | Ding Y, Zang RG, Letcher SG, Liu SR, He FL (2012) Disturbance regime changes the trait distribution, phylogenetic structure and community assembly of tropical rain forests. Oikos, 121, 1263-1270. |
13 | Editorial Board of Forest in China(2000) Forest in China, Vol 3, Broad-leaved Forest. China Forestry Publishing House, Beijing |
[中国森林编辑委员会 (2000) 中国森林第三卷: 阔叶森林. 中国林业出版社, 北京.] | |
14 | Fortunel C, Paine CET, Fine PVA, Kraft NJB, Baraloto C (2014) Environmental factors predict community functional composition in Amazonian forests. Journal of Ecology, 102, 145-155. |
15 | Garnier E, Cortez J, Billes G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004) Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85, 2630-2637. |
16 | Gratani L, Meneghini M, Pesoli P, Crescente MF (2003) Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. Trees-Structure and Function, 17, 515-521. |
17 | Grime JP (1977) Evidence for existence of three primary strategies in plants and its relevance to ecological and evolu- tionary theory. The American Naturalist, 111, 1169-1194. |
18 | Huang YT, Yao L, Ai XR, Lü SA, Ding Y (2015) Quantitative classification of the subtropical evergreen-deciduous broad- leaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39, 990-1002.(in Chinese with English abstract) |
[黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 (2015) 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析. 植物生态学报, 39, 990-1002.] | |
19 | Jackson BG, Peltzer DA, Wardle DA (2013) The withinspecies leaf economic spectrum does not predict leaf litter decomposability at either the within-species or whole community levels. Journal of Ecology, 101, 1409-1419. |
20 | Jung V, Albert CH, Violle C, Kunstler G, Loucougaray G, Spiegelberger T (2014) Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology, 102, 45-53. |
21 | Jung V, Violle C, Mondy C, Hoffmann L, Muller S (2010) Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140. |
22 | Kang M, Chang SX, Yan E, Wang X (2014) Trait variability differs between leaf and wood tissues across ecological scales in subtropical forests. Journal of Vegetation Science, 25, 703-714. |
23 | Kitajima K (1994) Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98, 419-428. |
24 | Kraft NJB, Valencia R, Ackerly DD (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582. |
25 | Laforest-Lapointe I, Martínez-Vilalta J, Retana J (2014) Intraspecific variability in functional traits matters: case study of Scots pine. Oecologia, 175, 1337-1348. |
26 | Laughlin DC (2014) Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecology Letters, 17, 771-784. |
27 | Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
28 | Liu XJ, Ma KP (2015) Plant functional traits-concepts, applications and future directions. Science China: Life Science, 45, 325-339.(in Chinese with English abstract) |
[刘晓娟, 马克平 (2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
29 | Messier J, Mcgill BJ, Lechowicz MJ (2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848. |
30 | Mouillot D, Graham N, Villeger S, Mason N, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28, 167-177. |
31 | Perez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quetier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC (2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234. |
32 | Plourde BT, Boukili VK, Chazdon RL, Anten N (2015) Radial changes in wood specific gravity of tropical trees: inter‐ and intraspecific variation during secondary succession. Functional Ecology, 29, 111-120. |
33 | Poorter L, Kitajima K (2007) Carbohydrate storage and light requirements of tropical moist and dry forest tree species. Ecology, 88, 1000-1011. |
34 | Quigley MF, Platt WJ (2003) Composition and structure of seasonally deciduous forests in the Americas. Ecological Monographs, 73, 87-106. |
35 | Read QD, Moorhead LC, Swenson NG, Bailey JK, Sanders NJ (2014) Convergent effects of elevation on functional leaf traits within and among species. Functional Ecology, 28, 37-45. |
36 | Reich PB, Walters MB, Ellsworth DS (1992) Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
37 | Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas LV, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419. |
38 | Siso S, Camarero JJ, Gil-Pelegrin E (2001) Relationship be- tween hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees- Structure and Function, 15, 341-345. |
39 | Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a Neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170. |
40 | Tomlinson KW, Poorter L, Bongers F, Borghetti F, Jacobs L, van Langevelde F (2014) Relative growth rate variation of evergreen and deciduous savanna tree species is driven by different traits. Annals of Botany, 114, 315-324. |
41 | Valverde BOJ, Smemo KA, Feinstein LM, Kershner MW, Blackwood CB, Guo D (2013) The distribution of below-ground traits is explained by intrinsic species differences and intraspecific plasticity in response to root neighbours. Journal of Ecology, 101, 933-942. |
42 | Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252. |
43 | Violle C, Navas M, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional. Oikos, 116, 882-892. |
44 | Webb CT, Hoeting JA, Ames GM, Pyne MI, Poff NL (2010) A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters, 13, 267-283. |
45 | Weiher E, Freund D, BuntonT, Lee T (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2403-2413 |
46 | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen J, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hiko- saka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004) The worldwide leaf economics spectrum. Nature, 428, 821-827. |
47 | Yao L, Ai XR, Lü SA, Feng G, Liu JC, Huang YT (2015) Characteristics of community types and structures, and spe- cies diversity of natural secondary forests in Xingdou Mountain of Hubei Province. Scientia Silvae Sinicae, 51(11), 1-7.(in Chinese with English abstract) |
[姚兰, 艾训儒, 吕世安, 冯广, 刘峻城, 黄永涛 (2015) 湖北星斗山天然次生林的群落类型、结构与物种多样性特征. 林业科学, 51(11), 1-7.] |
[1] | 苏华 许宏 苏本营 李永庚. 养分添加对退化草地豆科植物草木樨功能性状的影响[J]. 植物生态学报, 2020, 44(预发表): 0-0. |
[2] | 曹嘉瑜 袁泉 刘建峰 徐德宇 樊海东 陈海燕 谭斌 刘立斌 叶铎 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 0-0. |
[3] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[4] | 魏慧玉,陈凯,王备新. 澜沧江流域水生昆虫群落分类多样性和功能多样性海拔格局的空间尺度依赖性[J]. 生物多样性, 2020, 28(4): 504-514. |
[5] | 王世彤, 徐耀粘, 杨腾, 魏新增, 江明喜. 微生境对黄梅秤锤树野生种群叶片功能性状的影响[J]. 生物多样性, 2020, 28(3): 277-288. |
[6] | 陈俊, 姚兰, 艾训儒, 朱江, 吴漫玲, 黄小, 陈思艺, 王进, 朱强. 基于功能性状的水杉原生母树种群生境适应策略[J]. 生物多样性, 2020, 28(3): 296-302. |
[7] | 于文波 黎绍鹏. 基于现代物种共存理论的入侵生态学概念框架[J]. 生物多样性, 2020, 28(12): 0-0. |
[8] | 丁威,王玉冰,向官海,迟永刚,鲁顺保,郑淑霞. 小叶锦鸡儿灌丛化对典型草原群落结构与生态系统功能的影响[J]. 植物生态学报, 2020, 44(1): 33-43. |
[9] | 王玉冰,孙毅寒,丁威,张恩涛,李文怀,迟永刚,郑淑霞. 长期氮添加对典型草原植物多样性与初级生产力的影响及途径[J]. 植物生态学报, 2020, 44(1): 22-32. |
[10] | 符义稳, 田大栓, 汪金松, 牛书丽, 赵垦田. 内蒙古和青藏高原草原植物叶片与根系氮利用效率空间格局及影响因素[J]. 植物生态学报, 2019, 43(7): 566-575. |
[11] | 赵丹丹, 马红媛, 李阳, 魏继平, 王志春. 水分和养分添加对羊草功能性状和地上生物量的影响[J]. 植物生态学报, 2019, 43(6): 501-511. |
[12] | 顾菡娇,张参参,汪金松,施雪文,夏瑞雪,刘斌,陈伏生,卜文圣. 中国竹类植物基本形态学功能性状的比较[J]. 生物多样性, 2019, 27(6): 585-594. |
[13] | 谢立红,黄庆阳,曹宏杰,杨帆,王继丰,倪红伟. 五大连池火山色木槭叶功能性状特征[J]. 生物多样性, 2019, 27(3): 286-296. |
[14] | 郝姝珺, 李晓宇, 侯嫚嫚, 赵秀海. 长白山温带森林不同演替阶段群落功能性状的空间变化[J]. 植物生态学报, 2019, 43(3): 208-216. |
[15] | 张入匀, 李艳朋, 倪云龙, 桂旭君, 练琚愉, 叶万辉. 鼎湖山南亚热带常绿阔叶林叶功能性状沿群落垂直层次的种内变异[J]. 生物多样性, 2019, 27(12): 1279-1290. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright ©2017 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 86-10-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn