生物多样性 ›› 2015, Vol. 23 ›› Issue (6): 775-783. DOI: 10.17520/biods.2015076 cstr: 32101.14.biods.2015076
所属专题: 昆虫多样性与生态功能
毕孟杰1,*, 沈梦伟2,*, 周可新3, 毛岭峰4, 陈圣宾3,**(), 彭培好2,**(
)
收稿日期:
2015-08-04
接受日期:
2015-09-15
出版日期:
2015-11-20
发布日期:
2015-12-02
通讯作者:
毕孟杰,沈梦伟,陈圣宾,彭培好
基金资助:
Mengjie Bi1,*, Mengwei Shen2,*, Kexin Zhou3, Lingfeng Mao4, Shengbin Chen3,**(), Peihao Peng2,**(
)
Received:
2015-08-04
Accepted:
2015-09-15
Online:
2015-11-20
Published:
2015-12-02
Contact:
Bi Mengjie,Shen Mengwei,Chen Shengbin,Peng Peihao
摘要:
生物体的外在形态(个体大小及异速生长)不仅是分类学的重要依据, 也是影响生物与环境相互作用的重要功能性状。昆虫体型的地理分异及其机制是昆虫生物地理学的重要基础。本文基于中国省级行政区的瓢虫体型、分布和环境因子数据, 运用相关和回归分析, 探索了中国瓢虫体型(体长、体宽与长宽比)的纬度地带性及其与环境因子的关系。为了确定营养级对瓢虫体型特征的影响, 我们对全部瓢虫、植食性瓢虫和捕食性瓢虫分别进行分析。研究结果表明: (1)瓢虫的体型大小具有显著的纬度地带性, 即纬度越高, 瓢虫的体长或体宽越大, 符合贝格曼法则。与温度相关的环境因子是导致瓢虫体型大小地理分异的主要环境因素, 因为瓢虫以成虫越冬, 体型越大则能量储存越多, 冬眠期间的耐饥力越强; (2)由于食性和食物空间分布的差异, 在各个纬度上, 植食性瓢虫体型总是大于捕食性瓢虫; 捕食性瓢虫的长宽比与纬度呈显著正相关, 即纬度越高, 瓢虫体型越狭长; 而植食性瓢虫的长宽比与纬度没有显著的相关性; 捕食性瓢虫的长宽比与年降水量呈显著负相关, 因为年降水量降低导致植被的斑块化增加, 引起捕食对象分布更为分散, 从而要求瓢虫具有更强的飞行能力, 即更大的长宽比。综上所述, 在省级尺度上, 温度和降水分别主要影响瓢虫的大小和长宽比, 其效应随营养级(食性)的变化而变化。
毕孟杰, 沈梦伟, 周可新, 毛岭峰, 陈圣宾, 彭培好 (2015) 中国瓢虫体型的地理分异及其与环境因子的关系. 生物多样性, 23, 775-783. DOI: 10.17520/biods.2015076.
Mengjie Bi, Mengwei Shen, Kexin Zhou, Lingfeng Mao, Shengbin Chen, Peihao Peng (2015) Geographical variance of ladybird morphology and environmental correlates in China. Biodiversity Science, 23, 775-783. DOI: 10.17520/biods.2015076.
图1 中国全部瓢虫体长(A)、体宽(B)和长宽比(C)的省级分布格局
Fig. 1 Spatial patterns of body length (A), body width (B) and aspect ratio (C) of all ladybirds at the provincial level
因变量 Response variables | 预测因子 Predictors | 校正R2 Adjusted R2 | P |
---|---|---|---|
全部瓢虫 All ladybirds | |||
体长 Body length | TEM (-0.923), MI (+0.346), AREA (-0.049) | 0.462 | 0.011 |
体宽 Body width | TEM (-0.795), MI (+0.488), AREA (+0.069) | 0.341 | 0.009 |
长宽比 Aspect ratio | PRE (-0.972), AREA (-0.382) | 0.609 | 0.011 |
植食性瓢虫 Herbivorous ladybirds | |||
体长 Body length | TEMvar (+0.874), AREA (-0.324) | 0.645 | 0.005 |
体宽 Body width | TEMvar (+0.847), MI (-0.237), AREA (-0.310) | 0.711 | 0.003 |
长宽比 Aspect ratio | PRE (-0.192), AREA (+0.364) | 0.046 | 0.173 |
捕食性瓢虫 Predaceous ladybirds | |||
体长 Body length | TEMmin (-0.756), AREA (+0.119) | 0.682 | 0.005 |
体宽 Body width | TEMmin (-0.623), AREA (+0.216) | 0.582 | 0.006 |
长宽比 Aspect ratio | PRE (-0.818), AREA (+0.401) | 0.395 | 0.058 |
表1 基于Akaike信息量准则(AIC)筛选出的瓢虫体型最优模型
Table 1 The best models selected for ladybird shape based on Akaike Information Criterion (AIC)
因变量 Response variables | 预测因子 Predictors | 校正R2 Adjusted R2 | P |
---|---|---|---|
全部瓢虫 All ladybirds | |||
体长 Body length | TEM (-0.923), MI (+0.346), AREA (-0.049) | 0.462 | 0.011 |
体宽 Body width | TEM (-0.795), MI (+0.488), AREA (+0.069) | 0.341 | 0.009 |
长宽比 Aspect ratio | PRE (-0.972), AREA (-0.382) | 0.609 | 0.011 |
植食性瓢虫 Herbivorous ladybirds | |||
体长 Body length | TEMvar (+0.874), AREA (-0.324) | 0.645 | 0.005 |
体宽 Body width | TEMvar (+0.847), MI (-0.237), AREA (-0.310) | 0.711 | 0.003 |
长宽比 Aspect ratio | PRE (-0.192), AREA (+0.364) | 0.046 | 0.173 |
捕食性瓢虫 Predaceous ladybirds | |||
体长 Body length | TEMmin (-0.756), AREA (+0.119) | 0.682 | 0.005 |
体宽 Body width | TEMmin (-0.623), AREA (+0.216) | 0.582 | 0.006 |
长宽比 Aspect ratio | PRE (-0.818), AREA (+0.401) | 0.395 | 0.058 |
1 | Ahn CH, Tateishi R (1994) Development of a global 30-minute grid potential evapotranspiration data set.Photogrammetry and Remote Sensing, 33, 12-21. |
2 | Allen JA (1877) The influence of physical conditions in the genesis of species.Radical Review, 1, 108-140. |
3 | Arnett AE, Gotelli NJ (2003) Bergmann’s rule in larval ant lions: testing the starvation resistance hypothesis.Ecological Entomology, 28, 645-650. |
4 | Azevedo RBR, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster.Evolution, 52, 1353-1362. |
5 | Barbault R (1988) Body size, ecological constraints, and the evolution of life-history strategies.Evolutionary Biology, 22, 261-286. |
6 | Bergmann C (1847) Ueber die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse.Gottinger Studien, 3, 595-708. |
7 | Blackburn TM, Gaston KJ, Loder N (1999) Geographic gradients in body size: a clarification of Bergmann’s rule.Diversity and Distributions, 5, 165-174. |
8 | Blanckenhorn WU, Demont M (2004) Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum?Integrative and Comparative Biology, 44, 413-424. |
9 | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology.Ecology, 85, 1771-1789. |
10 | Chown SL, Gaston KJ (2010) Body size variation in insects: a macroecological perspective.Biological Reviews, 85, 139-169. |
11 | Comont RF, Roy HE, Lewis OT, Harrington R, Shortall CR, Purse BV (2012) Using biological traits to explain ladybird distribution patterns.Journal of Biogeography, 39, 1772-1781. |
12 | Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology.Global Ecology and Biogeography, 12, 53-64. |
13 | Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münke- müller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance.Ecography, 36, 27-46. |
14 | Dutilleul P (1993) Modifying the t test for assessing the correlation between two spatial processes.Biometrics, 49, 305-314. |
15 | Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification.The American Naturalist, 160, 784-802. |
16 | Gardner JL, Peters A, Kearney MR, Joseph L, Heinsohn R (2011) Declining body size: a third universal response to warming.Trends in Ecology and Evolution, 52, 285-291. |
17 | Gruner DS (2003) Regressions of length and width to predict arthropod biomass in the Hawaiian Islands.Pacific Science, 57, 325-336. |
18 | Hoffmann AA, Shirriffs J (2002) Geographic variation for wing shape in Drosophila serrata.Evolution, 56, 1068-1073. |
19 | Huang XL (黄晓磊), Qiao GX (乔格侠) (2006) Research status and trends in aphidology.Acta Entomologica Sinica(昆虫学报), 49, 1017-1026. (in Chinese with English abstract) |
20 | Kuang XJ (匡先矩), Ge F (戈峰), Xue FS (薛芳森) (2015) Geographic variation in body size and sexual dimorphism in insects.Acta Entomologica Sinica(昆虫学报), 58, 351-360. (in Chinese with English abstract) |
21 | Martinson HM, Schneider K, Gilbert J, Hines JE, Hambäck PA, Fagan WF (2008) Detritivory: stoichiometry of a neglected trophic level.Ecological Research, 23, 487-491. |
22 | Masakis S (1967) Geographic variation and climatic adaptation in a field cricket (Orthoptera: Gryllidae).Evolution, 21, 725-741. |
23 | Mousseau TA (1997) Ectotherms follow the converse to Bergmann’s rule.Evolution, 51, 630-632. |
24 | New M, Hulme M, Jones P (1999) Representing twentieth-century space-time climate variability. Part I. Development of a 1961-90 mean monthly terrestrial climatology.Journal of Climate, 12, 829-856. |
25 | Nylin S, Svärd L (1991) Latitudinal patterns in the size of European butterflies.Ecography, 14, 192-202. |
26 | Pang H (庞虹) (2001) Current situation of the systematics of Coccinellidae.Entomological Knowledge(昆虫知识), 39, 17-22. (in Chinese with English abstract) |
27 | Pang H (庞虹), Ren SX (任顺祥), Zeng T (曾涛), Pang XF (庞雄飞) (2004) Biodiversity and Their Utilization of Coccinellidae in China (中国瓢虫物种多样性及其利用). Guangdong Science and Technology Press, Guangzhou. (in Chinese) |
28 | Park O (1949) Application of the converse Bergmann principle to the carabid beetle, Dicaelus purpuratus.Physiological Zoology, 22, 359-372. |
29 | Peters R (1983) Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei.Journal of Biological Chemistry, 258, 11427-11429. |
30 | Qian H (2013) Environmental determinants of woody plant diversity at a regional scale in China.PLoS ONE, 8, e75832. |
31 | Quinn GP, Keough MJ (2002) Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge. |
32 | Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology.Ecography, 33, 46-50. |
33 | Ren SX (任顺祥), Wang XM (王兴民), Pang H (庞虹), Peng ZQ (彭正强), Zeng T (曾涛) (2009) Colored Pictorial Handbook of Ladybird Beetles (中国瓢虫原色图鉴). Science Press, Beijing. (in Chinese) |
34 | Renault D, Hance T, Vannier G, Vernon P (2003) Is body size an influential parameter in determining the duration of survival at low temperatures in Alphitobius diaperinus Panzer (Coleoptera: Tenebrionidae)?Journal of Zoology, 259, 381-388. |
35 | Rogers LE, Hinds WT, Buschbom RL (1976) A general weight vs. length relationship for insects.Annals of the Entomological Society of America, 69, 387-389. |
36 | Shelomi M (2012) Where are we now? Bergmann’s rule sensu lato in insects.The American Naturalist, 180, 511-519. |
37 | Sheridan JA, Bickford D (2011) Shrinking body size as an ecological response to climate change.Nature Climate Change, 1, 401-406. |
38 | Vandewoestijne S, Van Dyck H (2011) Flight morphology along a latitudinal gradient in a butterfly: Do geographic clines differ between agricultural and woodland landscapes?Ecography, 34, 876-886. |
39 | Wang XM (王兴民), Chen XS (陈晓胜), Qiu BL (邱宝利), Ren SX (任顺祥) (2014) Methods and technologies for collecting, surveying and sampling predatory ladybirds (Coleoptera: Coccinellidae).Chinese Journal of Applied Entomology(应用昆虫学报), 51, 1362-1366. (in Chinese with English abstract) |
40 | Yom-Tov Y, Geffen E (2006) Geographic variation in body size: the effects of ambient temperature and precipitation.Oecologia, 148, 213-218. |
41 | Zhang J (张健), Chen SB (陈圣宾), Chen B (陈彬), Du YJ (杜彦君), Huang XL (黄晓磊), Pan XB (潘旭斌), Zhang Q (张强) (2013) Citizen science: integrating scientific research, ecological conservation and public participation.Biodiversity Science(生物多样性), 21, 738-749. (in Chinese with English abstract) |
42 | Zhang MG, Zhou ZK, Chen WY, Slik JWF, Cannon CH, Raes N (2012) Using species distribution modeling to improve conservation and land use planning of Yunnan, China.Biological Conservation, 153, 257-264. |
43 | Zhao J (赵静), Cui NN (崔宁宁), Zhang F (张帆), Yin XC (印象初), Xu YY (许永玉) (2010) Effects of body size and fat content on cold tolerance in adults of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae).Acta Entomologica Sinica(昆虫学报), 52, 1213-1219. (in Chinese with English abstract) |
[1] | 宋远昊, 龚吕, 李贲, 胡阳, 李秀珍. 辽河口不同退塘还湿方式对大型底栖动物的影响[J]. 生物多样性, 2025, 33(2): 24316-. |
[2] | 魏诗雨, 宋天骄, 罗佳宜, 张燕, 赵子萱, 茹靖雯, 易华, 林雁冰. 秦岭火地塘针叶林土壤细菌群落的海拔分布格局[J]. 生物多样性, 2024, 32(9): 24180-. |
[3] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[4] | 姚仁秀, 陈燕, 吕晓琴, 王江湖, 杨付军, 王晓月. 海拔及环境因子影响杜鹃属植物的表型特征和化学性状[J]. 生物多样性, 2023, 31(2): 22259-. |
[5] | 王晓凤, 饶杰生, 杨涛, 刘文聪, 田希, 陈稀, 刘其明, 徐衍潇, 张秋雨, 张洪强, 张旭, 欧晓昆, 沈泽昊. 云南鸡足山半湿润常绿阔叶林群落木本植物多样性格局与环境解释[J]. 生物多样性, 2023, 31(11): 23217-. |
[6] | 闫冰, 陆晴, 夏嵩, 李俊生. 城市土壤微生物多样性研究进展[J]. 生物多样性, 2022, 30(8): 22186-. |
[7] | 汪婷, 周立志. 合肥市小微湿地鸟类多样性的时空格局及其影响因素[J]. 生物多样性, 2022, 30(7): 21445-. |
[8] | 薛文凯, 孟华旦尚, 王艳红, 朱攀, 德吉, 郭小芳. 纳木措可培养丝状真菌多样性及其与理化因子关系[J]. 生物多样性, 2022, 30(6): 21473-. |
[9] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[10] | 孙佳欢, 刘冬, 朱家祺, 张书宁, 高梅香. 小麦-玉米轮作农田土壤螨多样性空间分布格局[J]. 生物多样性, 2022, 30(12): 22292-. |
[11] | 吴墨栩, 安明态, 田力, 刘锋. 茂兰喀斯特森林木本植物性系统数量特征及其与环境因子的关系[J]. 生物多样性, 2022, 30(11): 22025-. |
[12] | 施雨含, 任宗昕, 王维嘉, 徐鑫, 刘杰, 赵延会, 王红. 中国-喜马拉雅三种黄耆属植物与其传粉熊蜂的空间分布预测[J]. 生物多样性, 2021, 29(6): 759-769. |
[13] | 蒋日进,张琳琳,徐开达,李鹏飞,肖祎,樊紫薇. 浙江中南部近岸海域游泳动物功能群特征与多样性[J]. 生物多样性, 2019, 27(12): 1330-1338. |
[14] | 吴初平, 韩文娟, 江波, 刘博文, 袁位高, 沈爱华, 黄玉洁, 朱锦茹. 浙江定海次生林内物种丰富度与生物量和生产力关系的环境依赖性[J]. 生物多样性, 2018, 26(6): 545-553. |
[15] | 陶夏秋, 崔绍朋, 蒋志刚, 初红军, 李娜, 杨道德, 李春旺. 新疆阿勒泰地区爬行动物区系及多样性海拔分布格局[J]. 生物多样性, 2018, 26(6): 578-589. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn