生物多样性 ›› 2022, Vol. 30 ›› Issue (12): 22334. DOI: 10.17520/biods.2022334
所属专题: 土壤生物与土壤健康
收稿日期:
2022-06-15
接受日期:
2022-10-29
出版日期:
2022-12-20
发布日期:
2022-11-29
通讯作者:
*E-mail: chenj@ioz.ac.cn
基金资助:
Yannan Chen1,2, Cheng Liang1,2, Jun Chen1,2,*()
Received:
2022-06-15
Accepted:
2022-10-29
Online:
2022-12-20
Published:
2022-11-29
Contact:
*E-mail: chenj@ioz.ac.cn
摘要:
在全球环境变化的大背景下, 生物多样性丧失日益加剧。土壤动物作为生物多样性重要组成之一, 受到广泛的关注。位于我国江西省新岗山的亚热带森林生物多样性与生态系统功能实验样地(BEF-China)是全世界25个森林生物多样性控制实验样地之一。本研究自2019年9月至2022年4月在BEF-China两个不同树种组成的样地(A样地和B样地)内采样, 共获得甲螨23,704头, 隶属于34科50属61种。本文分析和对比了两个样地内甲螨群落结构的差异, 及其多度、物种丰富度、Shannon多样性指数的季节性差异; 通过Pearson检验探讨了甲螨多度与环境因子的关系。结果表明: 在A、B两个不同树种组成的森林生态系统内, 土壤甲螨群落结构及其季节动态具有显著差异。具体表现在: A样地奥甲螨科、罗甲螨科、若甲螨科和尖棱甲螨科的相对多度高于B样地; B样地菌甲螨科、盖头甲螨科和礼服甲螨科的相对多度高于A样地。A样地中夏季和秋季甲螨多度、物种丰富度和Shannon多样性指数显著低于春季和冬季; 而B样地中秋季甲螨多度和物种丰富度与春季差异不显著。Pearson检验结果显示, 凋落物木质素含量与单翼甲螨科和菌甲螨科多度呈负相关关系, 而与奥甲螨科多度呈正相关关系。菌甲螨科多度与土壤和凋落物同一理化因子的相关性基本相同(碳氮比除外), 但与凋落物碳氮比呈正相关关系而与土壤碳氮比呈负相关关系。
陈燕南, 梁铖, 陈军 (2022) 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例. 生物多样性, 30, 22334. DOI: 10.17520/biods.2022334.
Yannan Chen, Cheng Liang, Jun Chen (2022) The composition of the community structure of oribatid mites in subtropical forests of different tree species: A case study of Xingangshan, Jiangxi Province. Biodiversity Science, 30, 22334. DOI: 10.17520/biods.2022334.
A样地 Site A | B样地 Site B |
---|---|
青榨槭 Acer davidii | 臭椿 Ailanthus altissima |
米槠 Castanopsis carlesii | 拟赤杨 Alniphyllum fortune |
南酸枣 Choerospondias axillaris | 光皮桦 Betula luminifera |
细叶青冈 Cyclobalanopsis myrsinifolia | 丝栗栲 Castanopsis fargesii |
复羽叶栾树 Koelreuteria bipinnata | 黄果朴 Celtis Biondi |
枫香 Liquidambar formosana | 华杜英 Elaeocarpus chinensis |
苦楝 Melia azedarach | 秃瓣杜英 E. glabripetalus |
蓝果树 Nyssa sinensis | 薯豆 E. japonicus |
麻栎 Quercus acutissima | 山桐子 Idesia polycarpa |
白栎 Q. fabri | 黄绒润楠 Machilus grijsii |
短柄枹栎 Q. serrata | 红楠 M. thunbergii |
盐肤木 Rhus chinensis | 华东楠 M. leptophylla |
无患子 Sapindus Saponaria | 乳源木莲 Manglietia yuyuanensis |
山乌桕 Triadica cochinchinensis | 垂枝泡花树 Meliosma flexuosa |
乌桕 T. sebifera | 闽楠 Phoebe bournei |
锥栗 Castanea henryi | 乌冈栎 Quercus phillyraeoides |
表1 A样地与B样地树种组成
Table 1 The tree species of site A and site B
A样地 Site A | B样地 Site B |
---|---|
青榨槭 Acer davidii | 臭椿 Ailanthus altissima |
米槠 Castanopsis carlesii | 拟赤杨 Alniphyllum fortune |
南酸枣 Choerospondias axillaris | 光皮桦 Betula luminifera |
细叶青冈 Cyclobalanopsis myrsinifolia | 丝栗栲 Castanopsis fargesii |
复羽叶栾树 Koelreuteria bipinnata | 黄果朴 Celtis Biondi |
枫香 Liquidambar formosana | 华杜英 Elaeocarpus chinensis |
苦楝 Melia azedarach | 秃瓣杜英 E. glabripetalus |
蓝果树 Nyssa sinensis | 薯豆 E. japonicus |
麻栎 Quercus acutissima | 山桐子 Idesia polycarpa |
白栎 Q. fabri | 黄绒润楠 Machilus grijsii |
短柄枹栎 Q. serrata | 红楠 M. thunbergii |
盐肤木 Rhus chinensis | 华东楠 M. leptophylla |
无患子 Sapindus Saponaria | 乳源木莲 Manglietia yuyuanensis |
山乌桕 Triadica cochinchinensis | 垂枝泡花树 Meliosma flexuosa |
乌桕 T. sebifera | 闽楠 Phoebe bournei |
锥栗 Castanea henryi | 乌冈栎 Quercus phillyraeoides |
图1 BEF-China样地不同树种森林内甲螨群落组成。由外至内, 左侧第一圈为甲螨(Oribatida), 右侧为BEF-China; 第二圈为甲螨科级相对多度(0?100%); 第三圈左侧为不同甲螨类群(科级), 右侧为不同样地, 宽度代表甲螨多度; 甲螨类群与其出现的不同空间用线连接, 线的宽度为甲螨多度。Others代表多度小于100的类群。
Fig. 1 Community composition of oribatid mites in forests composited by different tree species. From outside circle to inside. The left side of the first circle is the name of Oribatida, the right side of the first circle is BEF-China. The second circle is percentage scale label (from 0?100%). The third circle is the family name and the site, the width of the line indicates the abundance of mites. We grouped the oribatid mite abundance less than 100 as others.
图2 不同树种组成森林中土壤甲螨群落结构及生态指标差异。A: A样地与B样地甲螨群落的非度量多维标度排序(non-metric multi-dimensional scaling, NMDS)分析结果(Stress = 0.1457)。其中椭圆代表围绕A、B两个样地甲螨群落的标准偏差, 红色的十字(OTU)代表群落中的甲螨物种。B、C、D分别表示两样地甲螨多度、物种丰富度和Shannon多样性指数差异。其中方块表示数据分布, 横线表示中位数, 圆点表示极值。
Fig. 2 Community structure and ecological indices of soil oribatid mites in different tree composition forest. A, Non-metric multidimensional scaling (NMDS) analysis showing the community composition of site A and site B. Ellipses represent the standard deviation around the centroids of each sampling site, red crosses refer to the lepidopteran oribatid mite species in each community. B, C, D, The difference of oribatid mites diversity between site A and site B. Boxes and whiskers represent the data distribution about the median, filled circles represent extreme values.
图3 不同树种组成森林样地中甲螨群落的季节动态变化。不同小写字母表示不同季节间差异显著(P < 0.05)。
Fig. 3 Seasonal dynamics of oribatid mite communities in different type forest. Different lower case letters showed significant difference among four seasons at the 0.05 level.
图4 不同树种组成森林样地中甲螨垂直分布的季节动态变化。图中不同小写字母表示不同组间差异显著(P < 0.05); Upper为0-10 cm土层, Lower为10-20 cm土层。
Fig. 4 Seasonal vertical distribution of oribatid mites in different type forest. Different letters showed significant difference among four seasons at the 0.05 level. Upper represent the 0-10 cm soil layer, and Lower was the 10-20 cm soil layer.
图5 土壤螨类多度与环境因子间相关关系的Pearson检验, 及A、B样地间甲螨群落和环境因子的Mantel检验。
Fig. 5 Pearson correlation analysis of the abundance of oribatid mites and environmental factors, and Mantel test of oribatid mites community and environmental factors in site A and site B. CWM_CN, Community weighted mean C/N ratio; CWM_NP, Community weighted mean N/P ratio; CWM_CP, Community weighted mean C/P ratio; CWM_Ca, Community weighted mean calcium content; CWM_M, Community weighted mean lignin content; S_Temp, Soil temperature; S_Humi, Soil humidity; S_LT, Soil litter thickness; S_Ca, Soil calcium content; S_pH, Soil pH value; S_NP, Soil N/P ratio; S_CP, Soil C/P ratio; S_CN, Soil C/N ratio.
[1] |
Chapin FS, Zavaleta ES, Eviner VT, Naylor RL, Vitousek PM, Reynolds HL, Hooper DU, Lavorel S, Sala OE, Hobbie SE, Mack MC, Diaz S (2000) Consequences of changing biodiversity. Nature, 405, 234-242.
DOI URL |
[2] |
Chen J, Liu D, Wang HF (2010) Oribatid mites of China: A review of progress, with a checklist. Zoosymposia, 4, 186-224.
DOI URL |
[3] |
Corral-Hernandez E, Maraun M, Iturrondobeitia JC (2015) Trophic structure of oribatid mite communities from six different oak forests (Quercus robur). Soil Biology and Biochemistry, 83, 93-99.
DOI URL |
[4] | Ding ZQ, Xu GR, Zhang S, Zhang YX, Ma KM (2022) Altitudinal pattern of soil fauna-plant interaction in Dongling Mountain, Beijing. Acta Ecologica Sinica, 42, 2741-2750. (in Chinese with English abstract) |
[ 丁彰琦, 徐国瑞, 张霜, 张育新, 马克明 (2022) 北京东灵山土壤动物-植物互作关系对海拔格局的响应. 生态学报, 42, 2741-2750.] | |
[5] |
Eissfeller V, Langenbruch C, Jacob A, Maraun M, Scheu S (2013) Tree identity surpasses tree diversity in affecting the community structure of oribatid mites (Oribatida) of deciduous temperate forests. Soil Biology and Biochemistry, 63, 154-162.
DOI URL |
[6] |
Gao MX, Lin L, Chang L, Sun X, Liu D, Wu DH (2018) Spatial patterns and assembly rules in soil fauna communities: A review. Biodiversity Science, 26, 1034-1050. (in Chinese with English abstract)
DOI |
[ 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉 (2018) 土壤动物群落空间格局和构建机制研究进展. 生物多样性, 26, 1034-1050.]
DOI |
|
[7] | Guo YM, Yin XQ, Ma C (2016) Characteristics and seasonal dynamics of soil fauna community in farmland ecosystem of different geomorphic types in Changbai Mountain. Chinese Journal of Applied and Environmental Biology, 22, 972-977. (in Chinese with English abstract) |
[ 郭玉梅, 殷秀琴, 马辰 (2016) 长白山地不同地貌类型农田生态系统土壤动物群落特征及季节动态. 应用与环境生物学报, 22, 972-977.] | |
[8] |
Hendricks JJ, Aber JD, Nadelhoffer KJ, Hallett RD (2000) Nitrogen controls on fine root substrate quality in temperate forest ecosystems. Ecosystems, 3, 57-69.
DOI URL |
[9] | Hu Y, Wu FZ, Wu QX, Kang ZJ, Yue K, Yang YS, Ni XY (2022) Seasonal variations of non-structural carbohydrates in fresh litters of three dominant tree species in subtropical forests. Acta Ecologica Sinica, 42, 1901-1910. (in Chinese with English abstract) |
[ 胡仪, 吴福忠, 吴秋霞, 康自佳, 岳楷, 杨玉盛, 倪祥银 (2022) 三个亚热带森林优势种凋落物非结构性碳水化合物含量的季节动态. 生态学报, 42, 1901-1910.] | |
[10] | Huang LR, Zhang XP (2008) Community characteristics of mid-micro soil animals in cold-temperate zone of the Daxing’an Mountains, China. Chinese Journal of Applied and Environmental Biology, 14, 388-393. (in Chinese with English abstract) |
[ 黄丽荣, 张雪萍 (2008) 大兴安岭寒温带地区中小型土壤动物群落特征. 应用与环境生物学报, 14, 388-393.] | |
[11] | Illig J, Langel R, Norton RA, Scheu S, Maraun M (2005) Where are the decomposers? Uncovering the soil food web of a tropical montane rain forest in southern Ecuador using stable isotopes (15N). Journal of Tropical Ecology, 21, 589-593. |
[12] |
Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM (2009) Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biology and Biochemistry, 41, 2122-2130.
DOI URL |
[13] | Jiao S, Chu H, Zhang B, Wei X, Chen W, Wei G (2022) Linking soil fungi to bacterial community assembly in arid ecosystems. iMeta, 1, e2. |
[14] | Jin SK, Wang JJ, Zhu S, Zhang Q, Li X, Zheng WJ, You WH (2016) Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China. Chinese Journal of Applied Ecology, 27, 2363-2371. (in Chinese with English abstract) |
[ 靳士科, 王娟娟, 朱莎, 张琪, 黎翔, 郑文静, 由文辉 (2016) 上海市不同类型城市森林中小型土壤动物群落结构特征. 应用生态学报, 27, 2363-2371.]
DOI |
|
[15] | Jin YL, Li BC, Geng L, Bu Y (2017) Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311. (in Chinese with English abstract) |
[ 靳亚丽, 李必成, 耿龙, 卜云 (2017) 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
DOI |
|
[16] | Jin YL, Yang SQ, Xu SS, Xia JH, Yang G, Zhang YF, Bu Y (2021) Vertical distribution and seasonal variations of soil fauna communities in Shanghai Jing’an Sculpture Park. Chinese Journal of Ecology, 40, 480-489. (in Chinese with English abstract) |
[ 靳亚丽, 杨斯琦, 徐珊珊, 夏建宏, 杨刚, 张云飞, 卜云 (2021) 上海静安雕塑公园土壤动物群落的垂直分布和季节变化. 生态学杂志, 40, 480-489.] | |
[17] |
Kardol P, Fanin N, Wardle DA (2018) Long-term effects of species loss on community properties across contrasting ecosystems. Nature, 557, 710-713.
DOI URL |
[18] |
Korboulewsky N, Perez G, Chauvat M (2016) How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry, 94, 94-106.
DOI URL |
[19] | Lin DD, Chen H, Chen H, Liu PP, Liu QS (2018) Soil mite community structure in the evergreen, broad-leaved forest of Fanjing Mountain, China. Chinese Journal of Applied and Environmental Biology, 24, 1185-1194. (in Chinese with English abstract) |
[ 林丹丹, 陈浒, 陈海, 刘盼盼, 刘青山 (2018) 梵净山常绿阔叶林土壤螨类群落结构. 应用与环境生物学报, 24, 1185-1194.] | |
[20] | Liu GS (1996) Soil Physical-chemical Analysis and Profile Description. China Standards Press, Beijing. (in Chinese) |
[ 刘光崧 (1996) 土壤理化分析与剖面描述. 中国标准出版社, 北京.] | |
[21] | Ma KP (2013) Studies on biodiversity and ecosystem function via manipulation experiments. Biodiversity Science, 21, 390-391. (in Chinese) |
[ 马克平 (2013) 生物多样性与生态系统功能的实验研究. 生物多样性, 21, 390-391.] | |
[22] | Ma SF, Hong M, Zhao B, Zhao W, Wang WD, Lu JY, Yang DL (2021) Effects of simulated nitrogen deposition on meso-micro soil fauna communities in meadow steppe. Soils, 53, 755-763. (in Chinese with English abstract) |
[ 马尚飞, 红梅,赵巴音那木拉, 赵乌英嘎, 王文东, 卢俊艳, 杨殿林 (2021) 模拟氮沉降对草甸草原中小型土壤节肢动物群落的影响. 土壤, 53, 755-763.] | |
[23] |
Manu M (2013) Diversity of soil mites (Acari: Mesostigmata: Gamasina) in various deciduous forest ecosystems of Muntenia region (southern Romania). Biological Letters, 50, 3-16.
DOI URL |
[24] |
Maraun M, Scheu S (2000) The structure of oribatid mite communities (Acari, Oribatida): Patterns, mechanisms and implications for future research. Ecography, 23, 374-383.
DOI URL |
[25] |
Mori AS, Ota AT, Fujii S, Seino T, Kabeya D, Okamoto T, Ito MT, Kaneko N, Hasegawa M (2015) Biotic homogenization and differentiation of soil faunal communities in the production forest landscape: Taxonomic and functional perspectives. Oecologia, 177, 533-544.
DOI PMID |
[26] | Norton RA, Behan-Pelletier VM (2009) Suborder Oribatida, Chapter 15. In: AManual of Acarology (KrantzGW,eds Walter DE), pp 421-564. Texas Tech University Press, Lubbock. |
[27] |
Pollierer MM, Langel R, Scheu S, Maraun M (2009) Compartmentalization of the soil animal food web as indicated by dual analysis of stable isotope ratios (15N/14N and 13C/12C). Soil Biology and Biochemistry, 41, 1221-1226.
DOI URL |
[28] |
Qin C, Ge Y, Gao J, Zhou S, Yu J, Wang B, Datry T (2022) Ecological drivers of macroinvertebrate metacommunity assembly in a subtropical river basin in the Yangtze River Delta, China. Science of the Total Environment, 837, 155687.
DOI URL |
[29] | Qin Z, Zhang JE, Li QF (2009) Community structure of soil meso- and micro-fauna in different habitats of urbanized region. Chinese Journal of Appilied Ecology, 20, 3049-3056. (in Chinese with English abstract) |
[ 秦钟, 章家恩, 李庆芳 (2009) 城市化地区不同生境下中小型土壤动物群落结构特征. 应用生态学报, 20, 3049-3056.] | |
[30] |
Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Canadian Journal of Forest Research, 20, 166-171.
DOI URL |
[31] |
Salamon J, Alphei J, Ruf A, Schaefer M, Scheu S, Schneider K, Sührig A, Maraun M (2006) Transitory dynamic effects in the soil invertebrate community in a temperate deciduous forest: Effects of resource quality. Soil Biology and Biochemistry, 38, 209-221.
DOI URL |
[32] | Schneider K, Migge S, Norton RA, Scheu S, Langel R, Reineking A, Maraun M (2004) Trophic niche differentiation in soil microarthropods (Oribatida, Acari): Evidence from stable isotope ratios (15N/14N). Soil Biology and Biochemistry, 36, 1769-1774. |
[33] | Subías LS (2022) Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes: Oribatida) del mundo (excepto fósiles). Monografías Electrónicas S.E.A., 12, 1-538. |
[34] | Tong FC, Wu ZH, Lin RX, Wu XJ, Deng HF, Yuan QY, Luan JW, Xiao YH (2022) Effects of Phyllostachys edulis expansion on soil oribatid mite community structure. Journal of Northeast Forestry University, 50(2), 59-64. (in Chinese with English abstract) |
[ 佟富春, 吴智华, 林瑞雪, 吴晓君, 邓惠方, 袁千允, 栾军伟, 肖以华 (2022) 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报, 50(2), 59-64.] | |
[35] |
Wallwork JA (1983) Oribatids in forest ecosystems. Annual Review of Entomology, 28, 109-130.
DOI URL |
[36] |
Wang MQ, Li Y, Chesters D, Anttonen P, Bruelheide H, Chen JT, Durka W, Guo PF, Hardtle W, Ma KP, Michalski SG, Schmid B, von Oheimb G, Wu CS, Zhang NL, Zhou QS, Schuldt A, Zhu CD (2019) Multiple components of plant diversity loss determine herbivore phylogenetic diversity in a subtropical forest experiment. Journal of Ecology, 107, 2697-2712.
DOI URL |
[37] |
Wang MQ, Li Y, Chesters D, Bruelheide H, Ma KP, Guo PF, Zhou QS, Staab M, Zhu CD, Schuldt A (2020) Host functional and phylogenetic composition rather than host diversity structure plant-herbivore networks. Molecular Ecology, 29, 2747-2762.
DOI URL |
[38] |
Wang Y, Wei W, Yang XZ, Chen LD, Yang L (2010) Interrelationships between soil fauna and soil environmental factors in China research advance. Chinese Journal of Applied Ecology, 21, 2441-2448. (in Chinese with English abstract)
PMID |
[ 王移, 卫伟, 杨兴中, 陈利顶, 杨磊 (2010) 我国土壤动物与土壤环境要素相互关系研究进展. 应用生态学报, 21, 2441-2448.]
PMID |
|
[39] | Yang XF, Bauhus J, Both S, Fang T, Hardtle W, Krober W, Ma KP, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Scholten T, Seidler G, Schmid B, von Oheimb G, Bruelheide H (2013) Establishment success in a forest biodiversity and ecosystem functioning experiment in subtropical China (BEF-China). European Journal of Forest Research, 132, 593-606. |
[40] | Yin WY (1992) Subtropical Soil Animals of China. Science Press, Beijing. (in Chinese) |
[ 尹文英 (1992) 中国亚热带土壤动物. 科学出版社, 北京.] | |
[41] | Yin XQ, Wu DH, Han XM (2003) Diversity of soil animal community in Xiao Hinggan Mountains. Scientia Geographica Sinica, 23, 316-322. (in Chinese with English abstract) |
[ 殷秀琴, 吴东辉, 韩晓梅 (2003) 小兴安岭森林土壤动物群落多样性的研究. 地理科学, 23, 316-322.] | |
[42] | Zhou YZ, Wu PF (2020) Diversity and spatiotemporal distribution of soil microarthropod communities in forests on the eastern slope of Gongga Mountain. Chinese Journal of Ecology, 39, 586-599. (in Chinese with English abstract) |
[ 周育臻, 吴鹏飞 (2020) 贡嘎山东坡森林小型土壤节肢动物群落多样性与时空分布. 生态学杂志, 39, 586-599.] |
[1] | 姜熠辉, 刘岳, 曾旭, 林喆滢, 王楠, 彭吉豪, 曹玲, 曾聪. 东海六个国家级海洋保护区鱼类多样性和连通性[J]. 生物多样性, 2024, 32(6): 24128-. |
[2] | 田瑜, 李俊生. 《昆明-蒙特利尔全球生物多样性框架》“3030”目标的内涵及实现路径分析[J]. 生物多样性, 2024, 32(6): 24086-. |
[3] | 连佳丽, 陈婧, 杨雪琴, 赵莹, 罗叙, 韩翠, 赵雅欣, 李建平. 荒漠草原植物多样性和微生物多样性对降水变化的响应[J]. 生物多样性, 2024, 32(6): 24044-. |
[4] | 马碧玉. 印度《生物多样性法》修订述要及对我国完善生物多样性保护法制的启示[J]. 生物多样性, 2024, 32(5): 23412-. |
[5] | 蔡颖莉, 朱洪革, 李家欣. 中国生物多样性保护政策演进、主要措施与发展趋势[J]. 生物多样性, 2024, 32(5): 23386-. |
[6] | 艾妍雨, 胡海霞, 沈婷, 莫雨轩, 杞金华, 宋亮. 附生维管植物多样性及其与宿主特征的相关性: 以哀牢山中山湿性常绿阔叶林为例[J]. 生物多样性, 2024, 32(5): 24072-. |
[7] | 鄢德奎. 中国生物多样性保护政策的共同要素、不足和优化建议[J]. 生物多样性, 2024, 32(5): 23293-. |
[8] | 赵富伟, 李颖硕, 陈慧. 新时期我国生物多样性法制建设思考[J]. 生物多样性, 2024, 32(5): 24027-. |
[9] | 刘荆州, 钱易鑫, 张燕雪丹, 崔凤. 基于潜在迪利克雷分布(LDA)模型的旗舰物种范式研究进展与启示[J]. 生物多样性, 2024, 32(4): 23439-. |
[10] | 吴乐婕, 刘泽康, 田星, 张群, 李博, 吴纪华. 海三棱藨草基因型多样性对种群营养生长和繁殖策略的影响[J]. 生物多样性, 2024, 32(4): 23478-. |
[11] | 李雪萌, 蒋际宝, 张曾鲁, 刘晓静, 王亚利, 吴宜钊, 李银生, 邱江平, 赵琦. 宝天曼国家级自然保护区蚯蚓物种多样性及其影响因素[J]. 生物多样性, 2024, 32(4): 23352-. |
[12] | 郝操, 吴东辉, 莫凌梓, 徐国良. 越冬动物肠道微生物多样性及功能研究进展[J]. 生物多样性, 2024, 32(3): 23407-. |
[13] | 刘海鸥, 杜乐山, 刘文慧, 李子圆, 潘丽波, 刘蕾. 全球生物多样性框架基金管理政策分析与启示[J]. 生物多样性, 2024, 32(3): 23334-. |
[14] | 倪艳梅, 陈莉, 董志远, 孙德斌, 李宝泉, 王绪敏, 陈琳琳. 黄河三角洲湿地生态修复区大型底栖动物群落结构与生态健康评价[J]. 生物多样性, 2024, 32(3): 23303-. |
[15] | 魏嘉欣, 姜治国, 杨林森, 熊欢欢, 金胶胶, 罗方林, 李杰华, 吴浩, 徐耀粘, 乔秀娟, 魏新增, 姚辉, 余辉亮, 杨敬元, 江明喜. 湖北神农架中亚热带山地落叶阔叶林25 ha动态监测样地群落物种组成与结构特征[J]. 生物多样性, 2024, 32(3): 23338-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn