Biodiversity Science ›› 2013, Vol. 21 ›› Issue (6): 699-708.doi: 10.3724/SP.J.1003.2013.10082

• Orginal Article • Previous Article     Next Article

Spatial pattern of zooplankton diversity in Lianjiang River, Guangdong Province, China

Yuan Gao, Zini Lai*(), Jie Li, Chao Wang, Yanyi Zeng, Qianfu Liu, Wanling Yang   

  1. Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380
  • Received:2013-04-03 Accepted:2013-09-03 Online:2013-12-02
  • Lai Zini E-mail:znlai01@163.com

Twelve dams have been built along the Lianjiang River, the largest tributary of the Beijiang River in Guangdong Province, China. To understand the spatial distribution of zooplankton diversity developing after the establishment of these dams and cascades, and also the effects that these dams have had on zooplankton community structure, a study was conducted on the aquatic ecosystem in October 2007. Twelve sampling sites (S1-S12) along the main stream of Lianjiang River were established to study the composition of different groups of zooplankton and dominant species, the spatial distribution of abundance, biomass, diversity index of zooplankton as well as the zooplankton community, and relationships with environmental factors. Records showed that there were 76 species of zooplankton, which included 19 species of protozoa, 25 species of rotifer, 17 species of cladocera and 15 species of copepoda. Species numbers of zooplankton were greatest in sites S2 to S4, and lowest in S5. The dominant species were Stentor polymorphrus, Brachionus calyciflorus, Bosmina longirostris and Ectocyclops phaleratus, and significant differences in the distribution of dominant species existed between sampling points. Abundance of zooplankton fluctuated between 921.00 and 2,160.35 individuals/L, with highest abundance occurring in S5 and lowest in S1. Biomass of zooplankton fluctuated between 0.198 and 0.699 mg/L, with the highest value occurring in S5 and the lowest in S1. Generally, the values of Margalef species richness index, Shannon-Wiener diversity index and Pielou Evenness index of different zooplankton groups showed higher in upstream and lower in middle and downstream. PCA analysis showed a significant association between zooplankton community and environmental factors such as ammonia nitrogen, permanganate index, pH and transparence. We concluded that significant differences in ecological factors between habitats, such as nutrients, caused by cascade development, were the key factors determining the spatial distribution of zooplankton diversity in the Lianjiang river.

Key words: dam, zooplankton, dominant species, abundance, biomass, community structure, spatial pattern

Fig. 1

Map of sampling sites in the Lianjiang River"

Fig. 2

Spatial variations of water environmental factors in the Lianjiang River"

Table 1

Spatial variations in species richness of different groups of zooplankton in the Lianjiang River"

种数
Species number
采样点 Sampling sites
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12
原生动物 Protozoa 7 7 7 7 4 6 6 6 5 5 5 5
轮虫类 Rotatoria 9 11 13 14 8 13 13 13 12 11 10 10
枝角类 Cladocera 7 8 7 6 2 6 5 5 5 4 4 3
桡足类 Copepoda 7 7 6 6 3 5 5 4 3 4 3 3
浮游动物 Zooplankton 30 33 33 33 17 30 29 28 25 24 22 21

Table 2

Similarity coefficients of zooplankton communities among 12 sampling sites in the Lianjiang River"

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11
S2 0.26
S3 0.31 0.38
S4 0.26 0.38 0.43
S5 0.18 0.30 0.32 0.35
S6 0.22 0.33 0.37 0.40 0.31
S7 0.26 0.31 0.44 0.41 0.39 0.37
S8 0.23 0.41 0.45 0.45 0.45 0.49 0.50
S9 0.22 0.25 0.38 0.38 0.45 0.38 0.50 0.47
S10 0.20 0.29 0.35 0.46 0.46 0.32 0.47 0.44 0.53
S11 0.18 0.30 0.30 0.27 0.30 0.33 0.38 0.28 0.42 0.39
S12 0.19 0.28 0.31 0.31 0.41 0.28 0.35 0.32 0.48 0.45 0.72

Table 3

Dominant species of zooplankton in the Lianjiang River"

优势种
Dominant species
优势度
Dominance
原生动物 Protozoa
多态喇叭虫 Stentor polymorphrus 0.209
旋回侠盗虫 Strobilidium gyrans 0.206
王氏似铃壳虫 Tintinnopsis wangi 0.071
腔裸口虫 Holophrya atra 0.026
大草履虫 Paramecium caudatum 0.025
轮虫类 Rotatoria
萼花臂尾轮虫 Brachionus calyciflorus 0.252
针簇多肢轮虫 Polyarthra trigla 0.142
螺形龟甲轮虫 Keratella cochlearis 0.117
镰状臂尾轮虫 Brachionus falcatus 0.049
角突臂尾轮虫 B. angularis 0.040
长足轮虫 Rotaria neptunia 0.039
十指平甲轮虫 Platyias militaris 0.039
浦达臂尾轮虫 Brachionus budapestiensis 0.026
裂足臂尾轮虫 B. diversicornis 0.025
枝角类 Cladocera
长额象鼻溞 Bosmina longirostris 0.145
多刺裸腹溞 Moina macrocopa 0.046
脆弱象鼻溞 Bosmina fatalis 0.039
圆形盘肠溞 Chydorus sphaericus 0.020
桡足类 Copepoda
胸饰外剑水蚤 Ectocyclops phaleratus 0.087
汤匙华哲水蚤 Sinocalanus dorrii 0.042
模式有爪猛水蚤 Onychocamptus mohammed 0.029

Fig. 3

Ordination diagram of the first two axes of principle correspondence analysis of zooplankton and sampling sites in the Lianjiang River"

Fig. 4

Spatial variations of abundance and biomass of zooplankton in the Lianjiang River"

Fig. 5

Margalef index, Shannon-Wiener index and Evenness index of zooplankton in the Lianjiang River"

Fig. 6

Ordination diagram of the first two axes of principle correspondence analysis of zooplankton and environmental factors in the Lianjiang River"

Table 4

Correlation coefficient for abundance of zooplankton axis1 and axis2, environment factors axis1and axis2, and environment factors in the Lianjiang River"

SPAX1 SPAX2 SPAX3 SPAX4 ENAX1 ENAX2 ENAX3 ENAX4
SPAX2 0
SPAX3 0 0
SPAX4 0 0 0
ENAX1 0.97 0.02 -0.05 -0.13
ENAX2 0.02 0.68 0.13 0.06 0.02
ENAX3 -0.04 0.09 0.97 -0.15 -0.05 0.13
ENAX4 -0.16 0.05 -0.18 0.78 -0.16 0.07 -0.19
透明度 Transparence -0.39 0.17 0.12 -0.34 -0.41 0.24 0.13 -0.43
pH -0.43 0.15 0.81 -0.04 -0.44 0.22 0.84 -0.05
溶解氧 Dissolved oxygen -0.30 -0.10 0.43 -0.10 -0.31 -0.15 0.45 -0.12
总磷 Total phosphorus -0.13 0.02 -0.31 0.31 -0.14 0.02 -0.32 0.39
总氮 Total nitrogen 0.20 0.23 0.31 0.50 0.21 0.34 0.32 0.64
氨氮 Ammonia nitrogen 0.72 -0.17 0.26 -0.23 0.74 -0.24 0.27 -0.30
高锰酸盐指数 Permanganate index 0.39 -0.17 0.04 0.02 0.40 -0.25 0.04 0.03
硅酸盐 Silicate -0.02 0.17 0.12 0.57 -0.02 0.25 0.12 0.74
透明度
Transparence
pH 溶解氧
Dissolved
oxygen
总磷
Total
phosphorus
总氮
Total
nitrogen
氨氮
Ammonia nitrogen
高锰酸盐指数 Permanganate
index
透明度 Transparence
pH 0.42
溶解氧 Dissolved oxygen 0.64 0.63
总磷 Total phosphorus -0.50 -0.16 -0.58
总氮 Total nitrogen -0.30 0.36 0.16 0.13
氨氮 Ammonia nitrogen -0.25 -0.17 -0.10 -0.50 0.01
高锰酸盐指数 Permanganate index -0.58 -0.36 -0.17 0.05 -0.01 0.18
硅酸盐 Silicate -0.39 0.05 -0.31 0.39 0.42 -0.08 0.16
1 Badosa A, Boix D, Brucet S, López-Flores R, Gascón S, Quintana XD (2007) Zooplankton taxonomic and size diversity in Mediterranean coastal lagoons (NE Iberian Peninsula): influence of hydrology, nutrient composition, food resource availability and predation. Estuarine,Coastal and Shelf Science, 71, 335-346.
2 Chen XM (陈雪梅) (1981) Biomass calculation of freshwater Copepoda.Acta Hydrobiologica Sinica(水生生物学集刊), 7, 397-408. (in Chinese with English abstract)
3 Du P (杜萍), Liu JJ (刘晶晶), Xu XQ (徐晓群), Chen QZ (陈全震), Zeng JN (曾江宁), Jiang ZB (江志兵), Wang Q (王琪) (2011) Comparison studies on zooplankton ecological characteristics of Xiangshan Bay in different habitats in winter.Fisheries Science & Technology Information(水产科技情报), 38, 92-99. (in Chinese)
4 Echaniz SA, Vignatti AM, De Paggi SJ, Paggi JC, Pilati A (2006) Zooplankton seasonal abundance of South American saline shallow lakes.International Review of Hydrobiology, 91, 86-100.
5 Havel JE, Medley KA, Dickerson KD, Angradi TR, Bolgrien DW, Bukaveckas PA, Jicha TM (2009) Effect of main-stem dams on zooplankton communities of the Missouri River (USA).Hydrobiologia, 628, 121-135.
6 Huang XF (黄祥飞) (1981) Application of the simplified method of weight determination to various species of planktonic rotifers in Lake Donghu, Wuhan. Acta Hydrobiologica Sinica(水生生物学集刊), 7, 409-416. (in Chinese with English abstract)
7 Huang XF (黄祥飞), Hu CY (胡春英) (1986) Body length-weight regression relationship in freshwater cladocera. In: Symposium on Crustacean Research in China (甲壳动物学论文集) (ed. Editorial Committee of Symposium on Crustacea)(甲壳动物学论文集编辑委员会)), pp. 147-157. Science Press, Beijing. (in Chinese with English abstract )
8 Ji HH (纪焕红), Ye SF (叶属峰) (2006) Ecological distribution characteristics of zooplankton and its relationship with environmental factors in the Changjiang River estuary.Marine Sciences(海洋科学), 30(6), 23-30. (in Chinese with English abstract)
9 Li J (李捷), Luo JR (罗建仁), Li XH (李新辉), Tan XC (谭细畅), Wang C (王超), Guo SC (郭绍常) (2007) Investigation of fish resources and analysis of resources decline along Lianjiang River.Freshwater Fisheries(淡水渔业), 37(3), 49-53. (in Chinese with English abstract)
10 Li J (李捷), Li XH (李新辉), Jia XP (贾晓平), Tan XC (谭细畅), Wang C (王超), Li YF (李跃飞), Shao XF (邵晓风) (2012) Relationship between fish community diversity and environmental factors in the Lianjiang River, Guangdong, China. Acta Ecologica Sinica(生态学报), 32, 5795-5805. (in Chinese with English abstract)
11 Ma KP (马克平) (1994) The methods of biotic community diversity measurement. In: Principles and Methodologies of Biodiversity Studies (生物多样性研究的原理与方法)(ed. Biodiversity Committee, Chinese Academy of Sciences (中国科学院生物多样性委员会), pp. 147-157. China Science and Technology Press, Beijing. (in Chinese)
12 Margalef DR (1958) Information theory in ecology.General Systems, 3, 36-71.
13 Mei XX (梅象信), Xu ZH (徐正会), Zhang JL (张继玲), Zhao YX (赵宇翔) (2006) Ant species diversity on east slope of Xishan Forest Park in Kunming. Forest Research(林业科学研究), 19, 170-176. (in Chinese with English abstract)
14 Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N,N-Dimethyly formamide.Plant Physiology, 65, 478-479.
15 Pan JH (潘炯华) (1987) Fishery Resources of the Beijiang River in Pearl River System (珠江水系北江渔业资源). Guangdong Science & Technology Press, Guangzhou. (in Chinese)
16 Pielou EC (1966) Species-diversity and pattern-diversity in the study of ecological succession.Journal of Theoretical Biology, 10, 370-383.
17 Shannon CE, Weaver W (1963) The Mathematical Theory of Communication. University of Illinois Press, Urbana.
18 State Environmental Protection (国家环境保护总局) (2002) Water and Wastewater Monitoring Analysis Method (4th Edition) (水和废水监测分析方法, 第4版). China Environmental Science Press, Beijing. (in Chinese)
19 Tavernini S, Mura G, Rossetti G (2005) Factors influencing the seasonal phenology and composition of zooplankton communities in mountain temporary pools.International Review of Hydrobiology, 90, 358-375.
20 Wang C (王超), Li XH (李新辉), Lai ZN (赖子尼), Tan XC (谭细畅), Li J (李捷), Li YF (李跃飞) (2010) Preliminary study on phytoplankton community structure of Lianjiang.Guangdong Agricultural Sciences(广东农业科学), 37(3), 168-172. (in Chinese with English abstract)
21 Wu JX (吴建新), Yan BL (阎斌伦), Feng ZH (冯志华), Li Y (李玉), Xu JT (徐加涛), Li SH (李士虎), Shen X (申欣) (2011) Zooplankton ecology near the Tianwan Nuclear Power Station.Acta Ecologica Sinica(生态学报), 31, 6902-6911. (in Chinese with English abstract)
22 Wu L (吴利), Feng WS (冯伟松), Zhang TL (张堂林), Yu YH (余育和) (2011) Characteristics of zooplankton community and its relation to environmental factors in Lake Wuhu in spring and autumn.Journal of Hydroecology(水生态学杂志), 32(2), 31-37. (in Chinese with English abstract)
23 Xie JJ (谢进金), Xu YQ (许友勤), Chen YS (陈寅山), Dai CJ (戴聪杰), Chen ZY (陈朝阳) (2005) The relationship of community structure of zooplankton and the water pollution of the Jinjiang River Valley.Chinese Journal of Zoology(动物学杂志), 40(5), 8-13. (in Chinese with English abstract)
24 Xu ZL (徐兆礼), Wang YL (王云龙), Chen YQ (陈亚瞿), Shen HT (沈焕庭) (1995) An ecological study on zooplankton in maximum turbid zone of estuarine area of Changjiang (Yangtze) River.Journal of Fishery Sciences of China(中国水产科学), 2(1), 39-48. (in Chinese with English abstract)
25 Zeng Y (曾阳), Fu XE (付秀娥), Miao MS (苗明升), Fu RS (付荣恕), Chen LL (陈琳琳), Ren ZM (任宗明), Wang YW (王亚炜), Wei YS (魏源送) (2012) Water quality assessment of Wenyuhe River based on the cross-correlation analysis on the diversity of macro-zooplankton and water parameters.Asian Journal of Ecotoxicology(生态毒理学报), 2(7), 162-170. (in Chinese with English abstract)
26 Zhang ZS (章宗涉), Huang XF (黄祥飞) (1995) Studying Methods on Freshwater Plankton (淡水浮游生物研究方法). Science Press, Beijing. (in Chinese)
27 Zou M (邹鸣) (2005) The hydrological characteristics of Lianjiang River Basin.Guangdong Water Resources and Hydropower(广东水利水电), (6), 74-75. (in Chinese)
[1] Yun-Ting FANG Dongwei liu ying Tu Shanlong Li Shannan Huang Zhi Quan Ang Wang. (2020) Applications of nitrogen stable isotope techniques in the study of nitrogen cycle in terrestrial ecosystems . Chin J Plant Ecol, 44(生态技术与方法专辑): 0-0.
[2] . (2020) Eddy covariance technique and its applications in flux observations of terrestrial ecosystems . Chin J Plant Ecol, 44(生态技术与方法专辑): 0-0.
[3] Yaobin Song,Li Xu,Junpeng Duan,Weijun Zhang,Xiaolu Shentu,Tianxiang Li,Runguo Zang,Ming Dong. (2020) Sex ratio and spatial pattern of Taxus fuana, a Wild Plant with Extremely Small Populations in Tibet . Biodiv Sci, 28(3): 269-276.
[4] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. (2020) Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation . Biodiv Sci, 28(3): 333-339.
[5] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. (2020) Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations . Biodiv Sci, 28(3): 289-295.
[6] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. (2020) Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow . Biodiv Sci, 28(2): 107-116.
[7] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[8] Weihe Yang,Yuelong Chen,Yue Deng,Xingzhe Wang,Lijun Chen,Daming Hu,Xiuhai Luo,Dazhao Song,Zhishu Xiao. (2019) Preliminary surveys of mammals and birds by infrared camera traps in the Sichuan Baishuihe National Nature Reserve . Biodiv Sci, 27(9): 1012-1015.
[9] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[10] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
[11] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. (2019) Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China . Chin J Plant Ecol, 43(7): 557-565.
[12] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. (2019) Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis . Chin J Plant Ecol, 43(6): 501-511.
[13] LI Pin, Muledeer TUERHANBAI, TIAN Di, FENG Zhao-Zhong. (2019) Seasonal dynamics of soil microbial biomass carbon, nitrogen and phosphorus stoichiometry across global forest ecosystems . Chin J Plant Ecol, 43(6): 532-542.
[14] Xing Yuan, Wu Xiaoping, Ouyang Shan, Zhang Junqian, Xu Jing, Yin Senlu, Xie Zhicai. (2019) Assessment of macrobenthos biodiversity and potential human-induced stressors in the Ganjiang River system . Biodiv Sci, 27(6): 648-657.
[15] LIU Lu, GE Jie-Lin, SHU Hua-Wei, ZHAO Chang-Ming, XU Wen-Ting, SHEN Guo-Zhen, XIE Zong-Qiang. (2019) C, N and P stoichiometric ratios in mixed evergreen and deciduous broadleaved forests in Shennongjia, China . Chin J Plant Ecol, 43(6): 482-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed