Biodiversity Science ›› 2018, Vol. 26 ›› Issue (9): 972-987.doi: 10.17520/biods.2018119

• Reviews • Previous Article     Next Article

Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland

Anrong Liu1, Teng Yang2, Wei Xu1, Zijian Shangguan1, Jinzhou Wang1, Huiying Liu1, Yu Shi2, Haiyan Chu2, Jin-Sheng He1, 3, *()   

  1. 1 Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871
    2 Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    3 State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou 730020
  • Received:2018-04-16 Accepted:2018-05-25 Online:2019-01-05
  • He Jin-Sheng E-mail:jshe@pku.edu.cn
  • About author:

    # Co-first authors

The diversity and abundance of below-ground microorganisms and animals play an important role in shaping above-ground biodiversity and helps maintain ecosystem function. Yet, we have a limited understanding of belowground biodiversity, e.g. its spatial/temporal patterns, driving factors and responses to global change and human activities. This knowledge gap is particularly acute for the Tibetan alpine grassland that is sensitive to climate change and occupies 60% of the area of the Tibetan Plateau. Here, we first review recent studies that reported the drivers of patterns in five major soil organism groups, including fungi, bacteria, archaea, nematodes and arthropods on Tibetan alpine grassland. We then focus on the responses of soil biodiversity to climate change and human activities. Finally, we highlight some open questions for future research of soil diversity on the Tibetan alpine grassland. Specifically, we recommend that future studies examine (1) The mechanisms underlying distribution patterns of belowground biodiversity; (2) Links between aboveground and belowground biodiversity; (3) Effects of belowground biodiversity on the health and functioning of ecosystems; (4) Manipulative experiments of belowground biodiversity.

Key words: soil microorganisms, soil animals, biodiversity, species richness, climate change, human activities

Fig. 1

The number of papers related to above- and below- ground biodiversity on Tibetan alpine grassland in the last ten years (2008-2017). Data source: Web of Science, CNKI."

Table 1

The driving factors of soil biodiversity and its responses to climate change and human activities on the Tibetan alpine grassland"

研究尺度
Research scale
影响因素
Influencing factors
真菌 Fungus 细菌 Bacteria 古菌 Archaea 线虫 Nematode 节肢动物 Arthropod
样带
Transect
主导因子
Dominant factors
植物多样性
Plant diversity
(Yang et al, 2017)
- 土壤含水量; 土壤碳氮比
Soil water content; Soil carbon-nitrogen ratio (Shi et al, 2016)
年均降水量; 土壤有机质; 土壤pH; 温度季节变化
Mean annual precipitation; Soil organic carbon content; Soil pH; Temperature seasonality (Zhao et al, 2017)
植物多样性
Plant diversity
(Zhao et al, 2017)
其他因素
Other factors
年均降水量; 碳氮比; 土壤总磷; 溶解性有机碳
Carbon : nitrogen ratio; Soil total phosphorus; Dissolved organic carbon content
(Yang et al, 2017)
植物根生物量; 土壤有机碳; 土壤氮; 土壤磷; 地上生物量的氮磷含量
Root biomass; Soil organic carbon; Soil nitrogen; Soil phosphorus; Nitrogen and phosphorus in aboveground biomass
(Jing et al, 2015)
土壤可利用氮; 地上生物量
Soil total available nitrogen; Aboveground biomass
(Jing et al, 2015)
植物多样性
Plant diversity
(Zhao et al, 2017)
年均降水量; 土壤有机质; 土壤pH; 温度季节变化
Mean annual precipitation; Soil organic carbon; Soil pH; Temperature seasonality (Zhao et al, 2017)
样点
Site
植被类型
Vegetation type
高寒草原 > 高寒草甸 Alpine steppe > Alpine meadow (Zhang Y et al, 2016) 高寒草甸 > 高寒草地
Alpine meadow > Alpine steppe (Zhang Y et al, 2016; Zhang et al, 2017)
- - -
草地退化Grassland degradation 增加 Increase
(Li et al, 2016)
增加 Increase
(Li et al, 2016)
- - 减少 Decrease (吴鹏飞和杨大星, 2011; 吴鹏飞等, 2013; Wu et al, 2015; 高艳美和吴鹏飞, 2016; 龙伟等, 2017)
短期增温实验
Short-term warming
不显著 Not significant (Xiong et al, 2014; Zhang K et al, 2016; Zhang Y et al, 2016) 不显著 Not significant (Zhang K et al, 2016; Zhang Y et al, 2016) - - -
降水实验/
水分梯度
Altered
precipitation
不显著 Not significant
(Xiong et al, 2014; Zhang Y et al, 2016)
不显著 Not significant
(Zhang K et al, 2016; Li et al, 2017)
增加 Increase
(Li et al, 2017)
- -
外源养分输入
Nutrient input
氮肥不显著, 磷肥降低 Nitrogen not significant; Phosphorus decrease (He et al, 2016) - - 增加 Increase
(王静等, 2015;
Hu et al, 2017
)
-
放牧 Graze 不显著 Not significant
(Zhang Y et al, 2016)
不显著 Not significant
(Zhang Y et al, 2016)
- 增加 Increase
(Hu et al, 2015;
武崎等, 2016
)
-
围封 Enclosed - 不显著 Not significant
(高凤等, 2017)
- 增加 Increase (薛会英等, 2016, 2017) -

Fig. 2

Climate change and human activities affect ecosystem function and health through regulating biodiversity. (1) Distribution pattern and underlying mechanism of belowground biodiversity; (2) The linkage between aboveground and belowground biodiversity; (3) Effect of belowground biodiversity on the ecosystem functions and health; (4) Manipulative experiments of belowground biodiversity."

Fig. 3

The belowground biodiversity of different grassland types in Qinghai-Tibetan Plateau and Inner Mongolia Plateau (mean ± SE)"

[59] Lü C, Tian H (2007) Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research Atmospheres, 112(D22S05).
[60] Ma W, He J, Yang Y, Wang X, Liang C, Anwar M, Zeng H, Fang J, Schmid B (2010) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
[61] Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He J-S (2017) Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378.
[62] Mageau MT, Costanza R, Ulanowicz RE (1998) Quantifying the trends expected in developing ecosystems. Ecological Modelling, 112, 1-22.
[63] Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science, 316, 1746-1748.
[64] Mcguire KL, Bent E, Borneman J, Majumder A, Allison SD, Tresederi KK (2010) Functional diversity in resource use by fungi. Ecology, 91, 2324-2332.
[65] Meng XW, Mao ZC, Chen GH, Yang YH, Xie BY (2009) Diversity of soil Archaea in Tibetan Mila Mountains. Acta Microbiologica Sinica, 49, 994-1002. (in Chinese with English abstract)
[孟祥伟, 茆振川, 陈国华, 杨宇红, 谢丙炎 (2009) 西藏米拉山土壤古菌16s rRNA及amoA基因多样性分析. 微生物学报, 49, 994-1002.]
[66] Philippot L, Spor A, Henault C, Bru D, Bizouard F, Jones CM, Sarr A, Maron P (2013) Loss in microbial diversity affects nitrogen cycling in soil. Isme Journal, 7, 1609-1619.
[67] Purkhold U, Pommerening-Roser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16s rRNA and amoA sequence analysis: Implications for molecular diversity surveys. Applied and Environmental Microbiology, 66, 5368-5382.
[68] Qiu J (2008) The third pole. Nature, 454, 393-396.
[69] Qin Y, Druzhinina IS, Pan XY, Yuan ZL (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, 34, 1245-1259.
[70] Ruan WB, Wu JB, Zhang X, Li J, Xu H, Zhao NX, Chen L, Duan YX, Chen LJ, Gao YB (2007) Soil nematode diversity in Stipa grandis community in the mid-east of Inner Mongolia. Chinese Journal of Applied and Environmental Biology, 13, 333-337. (in Chinese with English abstract)
[阮维斌, 吴建波, 张欣, 李晶, 许华, 赵念席, 陈磊, 段玉玺, 陈立洁, 高玉葆 (2007) 内蒙古中东部大针茅群落土壤线虫多样性研究. 应用与环境生物学报, 13, 333-337.]
[71] Shi G, Yao B, Liu Y, Jiang S, Wang W, Pan J, Zhao X, Feng H, Zhou H (2017) The phylogenetic structure of AMF communities shifts in response to gradient warming with and without winter grazing on the Qinghai-Tibet Plateau. Applied Soil Ecology, 121, 31-40.
[72] Shi Y, Adams JM, Ni Y, Yang T, Jing X, Chen L, He J, Chu H (2016) The biogeography of soil archaeal communities on the eastern Tibetan Plateau. Scientific Reports, 6, 1-8.
[73] Si GC, Yuan YL, Wang J, Wang GP, Lei TZ, Zhang GX (2015) Effects of fencing on microbial communities and soil enzyme activities in Damxung alpine grassland. Pratacultural Science, 32, 1-10. (in Chinese with English abstract)
[斯贵才, 袁艳丽, 王建, 王光鹏, 雷天柱, 张更新 (2015) 围封对当雄县高寒草原土壤微生物和酶活性的影响. 草业科学, 32, 1-10.]
[74] Simmons BL, Wall DH, Adams BJ, Ayres E, Barrett JE, Virginia RA (2009) Long-term experimental warming reduces soil nematode populations in the Mcmurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 41, 2052-2060.
[75] Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Partel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science, 346, 1-11.
[76] Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature, 379, 718-720.
[77] Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
[78] Tilman D, Isbell F, Cowles JM (2014) Biodiversity and ecosystem functioning. Annual Review of Ecology, Evolution, and Systematics, 21, 998-1002.
[79] Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, Fukuda S, Ushio M, Nakaoka S, Onoda Y, Yoshida K, Schlaeppi K, Bai Y, Sugiura R, Ichihashi Y, Minamisawa K, Kiers ET (2018) Core microbiomes for sustainable agroecosystems. Nature Plants, 4, 247-257.
[80] Treseder KK, Holden SR (2013) Fungal carbon sequestration. Science, 339, 1528-1529.
[81] van der Heijden MGA, Klironomos JN, Ursic M (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
[82] van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters, 11, 296-310.
[83] van der Heijden MGA, Dombrowski N, Schlaeppi K (2017) Continuum of root-fungal symbioses for plant nutrition. Proceedings of the National Academy of Sciences, USA, 114, 11574-11576.
[84] Viketoft M, Palmborg C, Sohlenius B, Huss-Danell K, Bengtsson J (2005) Plant species effects on soil nematode communities in experimental grasslands. Applied Soil Ecology, 30, 90-103.
[85] Viketoft M (2008) Effects of six grassland plant species on soil nematodes: A glasshouse experiment. Soil Biology and Biochemistry, 40, 906-915.
[86] Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270.
[87] Wall DH, Nielsen UN, Six J (2015) Soil biodiversity and human health. Nature, 528, 69-76.
[88] Wall DH, Bardgett RD, Behanpelletier V, Herrick JE, Hefin Jones T, Six J, Strong DR, Putten WHVD, Wall DH, Bardgett RD (2013) Soil Ecology and Ecosystem Services. Oxford University Press, Oxford.
[89] Wall DH, Bardgett RD, Kelly E (2010) Biodiversity in the dark. Nature Geoscience, 3, 297-298.
[90] Wang B, Teng Y, Xu Y, Chen W, Ren W, Li Y, Christie P, Luo Y (2018) Effect of mixed soil microbiomes on pyrene removal and the response of the soil microorganisms. Science of the Total Environment, 640/641, 9-17.
[91] Wang G, Wang Y, Li Y, Cheng H (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai-Tibet Plateau, China. Catena, 70, 506-514.
[92] Wang J, Hu J, Du GZ (2015) Effects of nitrogen and phosphorus on the soil nematode community in Tibetan Plateau alpine meadows. Acta Prataculturae Sinica, 24, 20-28. (in Chinese with English abstract)
[王静, 胡靖, 杜国祯 (2015) 施氮磷肥对青藏高原高寒草甸土壤线虫群落组成的影响. 草业学报, 24, 20-28.]
[93] Wang Y, Li C, Kou Y, Wang J, Tu B, Li H, Li X, Wang C, Yao M (2017) Soil pH is a major driver of soil diazotrophic community assembly in Qinghai-Tibet alpine meadows. Soil Biology and Biochemistry, 115, 547-555.
[94] Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
[95] Wei Z, Yang TJ, Friman VP, Xu YC, Shen QR, Jousset A (2015) Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health. Nature Communication, 6, 8413.
[96] Wilkins DA (1999) Assessing ecosystem health. Trends in Ecology & Evolution, 13, 397-402.
[97] Wolters V (2001) Biodiversity of soil animals and its function. European Journal of Soil Biology, 37, 221-227.
[98] Wu HT, Lü XG, Yang Q, Jiang M (2006) Ecological characteristics and functions of soil fauna community. Acta Pedologica Sinica, 43, 314-323. (in Chinese with English abstract)
[武海涛, 吕宪国, 杨青, 姜明 (2006) 土壤动物主要生态特征与生态功能研究进展. 土壤学报, 43, 314-323.]
[99] Wu JB, Ruan WB, Xie FX, Li J, Gao YB (2008a) Diversity and community analysis of soil nematodes associated with three plant species in Mu Us sandy land of Ordos Plateau. Biodiversity Science, 16, 547-554. (in Chinese with English abstract)
[吴建波, 阮维斌, 谢凤行, 李晶, 高玉葆 (2008a) 毛乌素沙地三种植物根际土壤线虫群落和多样性分析. 生物多样性, 16, 547-554.]
[100] Wu JB, Ruan WB, Zhang X, Li J, Guo HY, Li J, Gao YB (2008b) Diversity of soil nematode communities in roots of Caragana Fabr. in the Inner Mongolia Plateau, China. Chinese Journal of Applied and Environmental Biology, 14, 624-629. (in Chinese with English abstract)
[吴建波, 阮维斌, 张欣, 李晶, 郭宏宇, 李晶, 高玉葆 (2008b) 内蒙古高原锦鸡儿属 (Caragana Fabr.) 植物根围线虫群落多样性研究. 应用与环境生物学报, 14, 624-629.]
[101] Wu P, Zhang H, Wang Y (2015) The response of soil macroinvertebrates to alpine meadow degradation in the Qinghai-Tibetan Plateau, China. Applied Soil Ecology, 90, 60-67.
[102] Wu P, Liu X, Liu S, Wang J, Wang Y (2014) Composition and spatio-temporal variation of soil microarthropods in the biodiversity hotspot of northern Hengduan Mountains, China. European Journal of Soil Biology, 62, 30-38.
[103] Wu PF, Zhang HZ, Cui LW, Wickings KG, Fu SL, Wang CT (2017) Impacts of alpine wetland degradation on the composition, diversity and trophic structure of soil nematodes on the Qinghai-Tibetan Plateau. Scientific Reports, 7, 837.
[104] Wu PF, Yang DX (2011) Effect of habitat degradation on soil meso- and microfaunal communities in the Zoigê Alpine Meadow, Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 31, 3745-3757. (in Chinese with English abstract)
[吴鹏飞, 杨大星 (2011) 若尔盖高寒草甸退化对中小型土壤动物群落的影响. 生态学报, 31, 3745-3757.]
[105] Wu PF, Zhang HZ, Cui LW, Zhong HM, Wang Y (2013) Response of soil macrofauna communities to degradation of alpine meadow. Acta Pedologica Sinica, 50, 786-799. (in Chinese with English abstract)
[吴鹏飞, 张洪芝, 崔丽巍, 钟红梅, 王永 (2013) 大型土壤动物群落对高寒草甸退化的响应. 土壤学报, 50, 786-799.]
[106] Wu Q, Wu PF, Wang Q, Wen YL, Gao YM, Zhang RZ, Long W (2016) Effects of grazing intensity on the community structure and diversity of different soil fauna in alpine meadow. Scientia Agricultura Sinica, 49, 1826-1834. (in Chinese with English abstract)
[武崎, 吴鹏飞, 王群, 文勇立, 高艳美, 张荣芝, 龙伟 (2016) 放牧强度对高寒草地不同类群土壤动物的群落结构和多样性的影响. 中国农业科学, 49, 1826-1834.]
[107] Wu T, Ayres E, Bardgett RD, Wall DH, Garey JR (2011) Molecular study of worldwide distribution and diversity of soil animals. Proceedings of the National Academy of Sciences, USA, 108, 17720-17725.
[108] Xiang S, Yao T, An L, Xu B, Wang J (2005) 16s rRNA sequences and differences in bacteria isolated from the Muztag Ata glacier at increasing depths. Applied & Environmental Microbiology, 71, 4619-4627.
[109] Xiang X, Gibbons SM, He JS, Wang C, He D, Li Q, Ni YY, Chu HY (2016) Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau. PeerJ, 4, e2226.
[110] Xiao HY, Liu H, Li B, Yuan XZ, Sun SC, Chen ZL (2012) Soil fauna diversity in the rotational grazing pasture in subalpine meadow. Scientia Agricultura Sinica, 45, 292-301. (in Chinese with English abstract)
[肖红艳, 刘红, 李波, 袁兴中, 孙书存, 陈忠礼 (2012) 亚高山草甸冬夏季牧场土壤动物群落多样性. 中国农业科学, 45, 292-301.]
[111] Xie GD, Lu CX, Leng YF, Zheng D, Li SC (2003) Ecological assets valuation of the Tibetan Plateau. Journal of Natural Resources, 18, 189-196.
[谢高地, 鲁春霞, 冷允法, 郑度, 李双成 (2003) 青藏高原生态资产的价值评估. 自然资源学报, 18, 189-196.]
[112] Xiong J, Peng F, Sun H, Xue X, Chu H (2014) Divergent responses of soil fungi functional groups to short-term warming. Microbial Ecology, 68, 708-715.
[113] Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14, 2457-2466.
[114] Xue HY, Luo DQ, Wang HY, Qu XL (2017) Effects of free grazing or enclosure on soil in alpine meadow in north Tibet, China. Acta Pedologica Sinica, 54, 480-492. (in Chinese with English abstract)
[薛会英, 罗大庆, 王鸿源, 屈兴乐 (2017) 藏北高寒草甸土壤线虫群落对围封及自由放牧的响应. 土壤学报, 54, 480-492.]
[115] Xue HY, Luo DQ, Hu F, Li HX, Wang JS, Qu XL, Wang HY, Yu BZ, Sun Q (2016) Effect of short-term enclosure on soil nematode communities in an alpine meadow in Northern Tibet. Acta Ecologica Sinica, 36, 6139-6148. (in Chinese with English abstract)
[薛会英, 罗大庆, 胡锋, 李辉信, 王景升, 屈兴乐, 王鸿源, 于宝政, 孙巧 (2016) 短期围封对西藏北部高寒草甸土壤线虫群落的影响. 生态学报, 36, 6139-6148.]
[116] Yang T, Adams JM, Shi Y, He JS, Jing X, Chen L, Tedersoo L, Chu H (2017) Soil fungal diversity in natural grasslands of the Tibetan Plateau: Associations with plant diversity and productivity. New Phytologist, 215, 756-765.
[117] Yang Y, Li P, He H, Zhao X, Datta A, Ma W, Zhang Y, Liu X, Han W, Wilson MC, Fang J (2015) Long-term changes in soil pH across major forest ecosystems in China. Geophysical Research Letters, 42, 933-940.
[1] Bachar A, Al-Ashhab A, Soares MIM, Sklarz MY, Angel R, Ungar ED, Gillor O (2010) Soil microbial abundance and diversity along a low precipitation gradient. Microbial Ecology, 60, 453-461.
[2] Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
[118] Yang YH, Ji CJ, Ma WH, Wang SF, Wang SP (2012) Significant soil acidification across northern China’s grasslands during 1980s-2000s. Global Change Biology, 7, 2292-2300.
[119] Yang YH, Rao S, Hu HF, Chen AP, Ji CJ, Zhu B, Zuo WY, Li XR, Shen HH, Wang ZH, Tang YH, Fang JY (2004) Plant species richness of alpine grasslands in relation to environmental factors and biomass on the Tibetan Plateau. Biodiversity Science, 12, 200-205. (in Chinese with English abstract)
[3] Bardgett RD (2007) The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press, Oxford.
[4] Bardgett RD, Cook R (1998) Functional aspects of soil animal diversity in agricultural grasslands. Applied Soil Ecology, 10, 263-276.
[119] [杨元合, 饶胜, 胡会峰, 陈安平, 吉成均, 朱彪, 左闻韵, 李轩然, 沈海花, 王志恒, 唐艳鸿, 方精云 (2004) 青藏高原高寒草地植物物种丰富度及其与环境因子和生物量的关系. 生物多样性, 12, 200-205.]
[120] Yao M, Rui J, Niu H, Heděnec P, Li J, He Z, Wang J, Cao W, Li X (2017) The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe. Catena, 152, 47-56.
[5] Basset Y, Cizek L, Cuenoud P, Didham RK, Guilhaumon F, Missa O, Novotny V, Odegaard F, Roslin T, Schmidl J, Tishechkin AK, Winchester NN, Roubik DW, Aberlenc H, Bail J, Barrios H, Bridle JR, Castano-Meneses G, Corbara B, Curletti G, Da Rocha WD, de Bakker D, Delabie JHC, Dejean A, Fagan LL, Floren A, Kitching RL, Medianero E, Miller SE, de Oliveira EG, Orivel J, Pollet M, Rapp M, Ribeiro SP, Roisin Y, Schmidt JB, Sorensen L, Leponce M (2012) Arthropod diversity in a tropical forest. Science, 338, 1481-1484.
[6] Bjornlund L, Mork S, Vestergard M, Ronn R (2006) Trophic interactions between rhizosphere bacteria and bacterial feeders influenced by phosphate and aphids in barley. Biology and Fertility of Soils, 43, 1-11.
[121] Yao TD, Xiang SR, Zhang XJ, Wang NL, Wang YQ (2006) Microorganisms in the Malan ice core and their relation to climatic and environmental changes. Global Biogeochemical Cycles, 20, GB1004.
[122] Yu C, Zhang Y, Claus H, Zeng R, Zhang X, Wang J (2012) Ecological and environmental issues faced by a developing Tibet. Environmental Science & Technology, 46, 1979-1980.
[7] Bongers T, Ferris H (1999) Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14, 224-228.
[8] Bongers T, Bongers M (1998) Functional diversity of nematodes. Applied Soil Ecology, 10, 239-251.
[123] Zhang B, Wu X, Zhang G, Zhang W, Liu G, Chen T, Qin Y, Zhang B, Sun L (2017) Response of soil bacterial community structure to permafrost degradation in the upstream regions of the Shule River Basin, Qinghai-Tibet Plateau. Geomicrobiology Journal, 34, 300-308.
[124] Zhang HZ, Wu PF, Yang DX, Cui LW, He XJ, Xiong YQ (2011) Dynamics of soil meso- and microfauna communities in Zoigê Alpine Meadows on the Qinghai-Tibet Plateau, China. Acta Ecologica Sinica, 31, 4385-4397. (in Chinese with English abstract)
[9] Cai XB, Peng YL, Yang MN, Zhang T, Zhang Q (2014) Grassland degradation decrease the diversity of arbuscular mycorrhizal fungi species in Tibet Plateau. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 333-339.
[10] Chau JF, Bagtzoglou AC, Willig MR (2011) The effect of soil texture on richness and diversity of bacterial communities. Environmental Forensics, 12, 333-341.
[124] [张洪芝, 吴鹏飞, 杨大星, 崔丽巍, 何先进, 熊远清 (2011) 青藏东缘若尔盖高寒草甸中小型土壤动物群落特征及季节变化. 生态学报, 31, 4385-4397.]
[125] Zhang K, Shi Y, Jing X, He J, Sun R, Yang Y, Shade A, Chu H (2016) Effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau. Frontiers in Microbiology, 7, 104.
[11] Chen BD, Li XJ, Xu TL, Xie W (2018) Advances in the biogeography of arbuscular mycorrhizal fungi. Acta Ecologica Sinica, 38, 1167-1175. (in Chinese with English abstract)
[陈保冬, 李雪静, 徐天乐, 谢伟 (2018) 丛枝菌根真菌生物地理学研究进展. 生态学报, 38, 1167-1175.]
[126] Zhang X, Zhang G, Chen Q, Han X (2013a) Soil bacterial communities respond to climate changes in a temperate steppe. PLoS ONE, 8, e78616.
[127] Zhang X, Chen Q, Han X (2013b) Soil bacterial communities respond to mowing and nutrient addition in a steppe ecosystem. PLoS ONE, 8, e84210.
[12] Chen H, Zhu Q, Peng C, Wu N, Wang Y, Fang X, Gao Y, Zhu D, Yang G, Tian J, Kang X, Piao S, Ouyang H, Xiang W, Luo Z, Jiang H, Song X, Zhang Y, Yu G, Zhao X, Gong P, Yao T, Wu J (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Global Change Biology, 19, 2940-2955.
[13] Chen Y, Ding J, Peng Y, Li F, Yang G, Liu L, Qin S, Fang K, Yang Y (2016) Patterns and drivers of soil microbial communities in Tibetan alpine and global terrestrial ecosystems. Journal of Biogeography, 43, 2027-2039.
[128] Zhang Y, Dong S, Gao Q, Liu S, Zhou H, Ganjurjav H, Wang X (2016) Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 562, 353-363.
[129] Zhao HL, Liu RT, Zhou RL, Qu H, Pan CC, Wang Y, Li J (2013) Properties and mechanisms of change of soil macro-fauna communities in the desertification process of Horqin sandy grassland. Acta Prataculturae Sinica, 22, 70-77. (in Chinese with English abstract)
[14] Cole L, Buckland SM, Bardgett RD (2005) Relating microarthropod community structure and diversity to soil fertility manipulations in temperate grassland. Soil Biology and Biochemistry, 37, 1707-1717.
[15] De Deyn GB, van der Putten WH (2005) Linking aboveground and belowground diversity. Trends in Ecology & Evolution, 20, 625-633.
[129] [赵哈林, 刘任涛, 周瑞莲, 曲浩, 潘成臣, 王燕, 李瑾 (2013) 沙漠化对科尔沁沙质草地大型土壤动物群落的影响及其成因分析. 草业学报, 22, 70-77.]
[130] Zhao K, Jing X, Sanders NJ, Chen L, Shi Y, Flynn DFB, Wang Y, Chu H, Liang W, He J (2017) On the controls of abundance for soil-dwelling organisms on the Tibetan Plateau. Ecosphere, 8, e0190.
[16] De Deyn GB, Raaijmakers CE, Zoomer HR, Berg MP, de Ruiter PC, Verhoef HA, Bezemer TM, van der Putten WH (2003) Soil invertebrate fauna enhances grassland succession and diversity. Nature, 422, 711-713.
[17] De Boer W (2017) Upscaling of fungal-bacterial interactions: From the lab to the field. Current Opinion in Microbiology, 37, 35-41.
[131] Zhang XZ, Yang YP, Piao SL, Bao WK, Wang SP, Wang GX, Sun H, Luo TX, Zhang YJ, Shi PL, Liang EY, Shen MG, Wang JS, Gao QZ, Zhang YL, Ouyang H (2015) Ecological change on the Tibetan Plateau. Chinese Science Bulletin, 60, 3048-3056. (in Chinese with English abstract)
[张宪洲, 杨永平, 朴世龙, 包维楷, 汪诗平, 王根绪, 孙航, 罗天祥, 张扬建, 石培礼, 梁尔源, 沈妙根, 王景升, 高清竹, 张镱锂, 欧阳华 (2015) 青藏高原生态变化. 科学通报, 60, 3048-3056.]
[18] Decaëns T (2010) Macroecological patterns in soil communities. Global Ecology and Biogeography, 19, 287-302.
[19] Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P (2006) The values of soil animals for conservation biology. European Journal of Soil Biology, 42, S23-S38.
[132] Zhang ZH, Zhou HK, Zhao XQ, Yao BQ, Ma Z, Dong QM, Zhang ZH, Wang WY, Yang YW (2018) Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau. Biodiversity Science, 26, 111-129. (in Chinese with English abstract)
[张中华, 周华坤, 赵新全, 姚步青, 马真, 董全民, 张振华, 王文颖, 杨元武 (2018) 青藏高原高寒草地生物多样性与生态系统功能的关系. 生物多样性, 26, 111-129.]
[20] Delgado-Baquerizo M, Maestre FT, Gallardol A, Bowker MA, Wallenstein MD, Luis Quero J, Ochoa V, Gozalo B, Garcia-Gomez M, Soliveres S, Garcia-Palacios P, Berdugo M, Valencia E, Escolar C, Arredondo T, Barraza-Zepeda C, Bran D, Antonio Carreiral J, Chaieb M, Conceicao AA, Derak M, Eldridge DJ, Escudero A, Espinosa CI, Gaitan J, Gatica MG, Gomez-Gonzalez S, Guzman E, Gutierrez JR, Florentino A, Hepper E, Hernandez RM, Huber-Sannwald E, Jankju M, Liu J, Mau RL, Miriti M, Monerris J, Naseri K, Noumi Z, Polo V, Prina A, Pucheta E, Ramirez E, Ramirez-Collantes DA, Romao R, Tighe M, Torres D, Torres-Diaz C, Ungar ED, Val J, Wamiti W, Wang D, Zaady E (2013) Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 502, 672-676.
[21] Ding MJ, Zhang YL, Sun XM, Liu LS, Wang ZF (2012) Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009. Chinese Science Bulletin, 57, 3185-3194. (in Chinese with English abstract)
[133] Zheng Y, Kim Y, Tian X, Chen L, Yang W, Gao C, Song M, Xu X, Guo L (2014a) Differential responses of arbuscular mycorrhizal fungi to nitrogen addition in a near pristine Tibetan alpine meadow. FEMS Microbiology Ecology, 89, 594-605.
[134] Zheng Y, Yang W, Hu H, Kim Y, Duan J, Luo C, Wang S, Guo L (2014b) Ammonia oxidizers and denitrifiers in response to reciprocal elevation translocation in an alpine meadow on the Tibetan Plateau. Journal of Soils and Sediments, 14, 1189-1199.
[135] Zheng YK, Wang XB, Gu YF, Zhang XP (2014) Diversity of ammonia-oxidizing archaea in Tibetan Zoigê Plateau wetland. Acta Microbiologica Sinica, 54, 1090-1096. (in Chinese with English abstract)
[21] [丁明军, 张镱锂, 孙晓敏, 刘林山, 王兆锋 (2012) 近10年青藏高原高寒草地物候时空变化特征分析. 科学通报, 57, 3185-3194.]
[22] Drenovsky RE, Vo D, Graham KJ, Scow KM (2004) Soil water content and organic carbon availability are major determinants of soil microbial community composition. Microbial Ecology, 48, 424-430.
[23] Duffy JE, Godwin CM, Cardinale BJ (2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261-264.
[24] Edgar RC (2013) UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996-998.
[135] [郑有坤, 王宪斌, 辜运富, 张小平 (2014) 若尔盖高原湿地土壤氨氧化古菌的多样性. 微生物学报, 54, 1090-1096.]
[136] Zhou J, Yang H, Tang F, Koide RT, Cui M, Liu Y, Sun Q, Insam H, Zhang Q (2017) Relative roles of competition, environmental selection and spatial processes in structuring soil bacterial communities in the Qinghai-Tibetan Plateau. Applied Soil Ecology, 117, 223-232.
[25] Feeney DS, Crawford JW, Daniell T, Hallett PD, Nunan N, Ritz K, Rivers M, Young IM (2006) Three-dimensional microorganization of the soil-root-microbe system. Microbial Ecology, 52, 151-158.
[26] Fu SL (2007) A review and perspective on soil biodiversity research. Biodiversity Science, 15, 109-115. (in Chinese with English abstract)
[137] Zhu P, Chen RS, Song YX, Han CT, Liu GX, Chen T, Zhang W (2017) Soil bacterial community composition and diversity of four representative vegetation types in the middle section of the Qilian Mountains, China. Acta Ecologica Sinica, 37, 3505-3514. (in Chinese with English abstract)
[朱平, 陈仁升, 宋耀选, 韩春坛, 刘光琇, 陈拓, 张威 (2017) 祁连山中部4种典型植被类型土壤细菌群落结构差异. 生态学报, 37, 3505-3514.]
[26] [傅声雷 (2007) 土壤生物多样性的研究概况与发展趋势. 生物多样性, 15, 109-115.]
[27] Gao F, Wang B, Shi YX, Zhang GX, Wang J, Si GC, Han CH, Yuan YL, Hu A (2017) The response of alpine grasslands ecosystem in the north Tibet to short-term enclosure. Acta Ecologica Sinica, 37, 4366-4374. (in Chinese with English abstract)
[高凤, 王斌, 石玉祥, 张更新, 王建, 斯贵才, 韩丛海, 袁艳丽, 胡盎 (2017) 藏北古露高寒草地生态系统对短期围封的响应. 生态学报, 37, 4366-4374.]
[28] Gao YM, Wu PF (2016) Effects of alpine meadow degradation on soil insect diversity in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 36, 2327-2336. (in Chinese with English abstract)
[高艳美, 吴鹏飞 (2016) 高寒草甸退化对土壤昆虫多样性的影响. 生态学报, 36, 2327-2336.]
[29] García-Guzmán G, Heil M (2014) Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases. New Phytologist, 201, 1106-1120.
[30] Guesewell S, Gessner MO (2009) N∶P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Functional Ecology, 23, 211-219.
[31] Guo LD (2012) Progress of microbial species diversity research in China. Biodiversity Science, 20, 572-580. (in Chinese with English abstract)
[郭良栋 (2012) 中国微生物物种多样性研究进展. 生物多样性, 20, 572-580.]
[32] He D, Xiang X, He J, Wang C, Cao G, Adams J, Chu H (2016) Composition of the soil fungal community is more sensitive to phosphorus than nitrogen addition in the alpine meadow on the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 52, 1059-1072.
[33] He JZ, Li J, Zheng YM (2013) Thoughts on the microbial diversity-stability relationship in soil ecosystems. Biodiversity Science, 21, 411-420. (in Chinese with English abstract)
[贺纪正, 李晶, 郑袁明 (2013) 土壤生态系统微生物多样性-稳定性关系的思考. 生物多样性, 21, 411-420.]
[34] He JS, Wang ZQ, Fang JY (2004) Issues and prospects of belowground ecology with special reference to global climate change. Chinese Science Bulletin, 49, 1226-1233. (in Chinese)
[贺金生, 王政权, 方精云 (2004) 全球变化下的地下生态学: 问题与展望. 科学通报, 49, 1226-1233.]
[35] He RL, Chen YM, Deng CC, Yang WQ, Zhang J, Liu Y (2015) Seasonal responses of the soil meso- and microfauna to litter decomposition in alpine meadow of western Sichuan. Chinese Journal of Applied Ecology, 21, 350-357. (in Chinese with English abstract)
[和润莲, 陈亚梅, 邓长春, 杨万勤, 张健, 刘洋 (2015) 中小型土壤动物对川西高山草甸枯落物分解的季节响应. 应用与环境生物学报, 21, 350-357.]
[36] Heijden MGAV, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
[37] Hou JH, Gao BJ, Dong JX, Gao LJ, Liu YH, Li LH (2008) Community diversity of arthropod in forest-steppe ecotone in southeast edge of Inner Mongolia tableland. Scientia Silvae Sinicae, 44(3), 94-101. (in Chinese with English abstract)
[侯建华, 高宝嘉, 董建新, 高立杰, 刘颖华, 李兰会 (2008) 内蒙古高原东南缘森林-草原交错带节肢动物群落多样性特征. 林业科学, 44(3), 94-101.]
[38] Hu J, Chen G, Hassan WM, Chen H, Li J, Du G (2017) Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau. European Journal of Soil Biology, 78, 7-16.
[39] Hu J, Wu J, Ma M, Nielsen UN, Wang J, Du G (2015) Nematode communities response to long-term grazing disturbance on Tibetan Plateau. European Journal of Soil Biology, 69, 24-32.
[40] Isbell F, Craven D, Connolly J, Loreau M, Schmid B, Beierkuhnlein C, Bezemer TM, Bonin C, Bruelheide H, de Luca E, Ebeling A, Griffin JN, Guo Q, Hautier Y, Hector A, Jentsch A, Kreyling J, Lanta V, Manning P, Meyer ST, Mori AS, Naeem S, Niklaus PA, Polley HW, Reich PB, Roscher C, Seabloom EW, Smith MD, Thakur MP, Tilman D, Tracy BF, van der Putten WH, van Ruijven J, Weigelt A, Weisser WW, Wilsey B, Eisenhauer N (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 526, 574-577.
[41] Jia ZJ, Weng JH, Lin XG, Ralf C (2010) Microbial ecology of archaeal ammonia oxidation—A review. Acta Microbiologica Sinica, 50, 431-437. (in Chinese with English abstract)
[贾仲君, 翁佳华, 林先贵, Ralf C (2010) 氨氧化古菌的生态学研究进展. 微生物学报, 50, 431-437.]
[42] Jing X, Sanders NJ, Shi Y, Chu H, Classen AT, Zhao K, Chen L, Shi Y, Jiang Y, He J (2015) The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6, 8159.
[43] Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 185, 631-647.
[44] Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AF, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM (2013) Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology, 22, 5271-5277.
[45] Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179.
[46] Klein JA, Harte J, Zhao XQ (2008) Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 11, 775-789.
[47] Kong WD (2013) A review of microbial diversity in polar terrestrial environments. Biodiversity Science, 21, 456-467. (in Chinese with English abstract)
[孔维栋 (2013) 极地陆域微生物多样性研究进展. 生物多样性, 21, 456-467.]
[48] Lanzen A, Epelde L, Garbisu C, Anza M, Martin-Sanchez I, Blanco F, Mijangos I (2015) The community structures of prokaryotes and fungi in mountain pasture soils are highly correlated and primarily influenced by pH. Frontiers in Microbiology, 6, 1321.
[49] Li GX, Ma KM (2018) Progress in the study of elevational patterns of soil microbial diversity. Acta Ecologica Sinica, 38, 1521-1529. (in Chinese with English abstract)
[厉桂香, 马克明 (2018) 土壤微生物多样性海拔格局研究进展. 生态学报, 38, 1521-1529.]
[50] Li Y, Wang S, Jiang L, Zhang L, Cui S, Meng F, Wang Q, Li X, Zhou Y (2016) Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222.
[51] Li Y, Adams J, Shi Y, Wang H, He J, Chu H (2017) Distinct soil microbial communities in habitats of differing soil water balance on the Tibetan Plateau. Scientific Reports, 7, 46407.
[52] Liang W, Zhong S, Hua J, Cao C, Jiang Y (2007) Nematode faunal response to grassland degradation in Horqin sandy land. Pedosphere, 17, 611-618.
[53] Liu X, Zhao D, Cheng JW, Chen HY, Liu XM, Baoyin TGT, Li YH (2017) Effects of grazing and mowing on macrofauna communities in a typical steppe of Inner Mongolia, China. Chinese Journal of Applied Ecology, 28, 1869-1878. (in Chinese with English abstract)
[刘霞, 赵东, 程建伟, 陈海燕, 刘新民, 宝音陶格涛, 李永宏 (2017) 放牧和刈割对内蒙古典型草原大型土壤动物的影响. 应用生态学报, 28, 1869-1878.]
[54] Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Johnson NC, Feng H (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist, 194, 523-535.
[55] Liu Y, Yao T, Jiao N, Liu X, Kang S, Luo T (2013) Seasonal dynamics of the bacterial community in Lake Namco, the largest Tibetan lake. Geomicrobiology Journal, 30, 17-28.
[56] Liu Y, Yao T, Zhu L, Jiao N, Liu X, Zeng Y, Jiang H (2009) Bacterial diversity of freshwater alpine Lake Puma Yumco on the Tibetan Plateau. Geomicrobiology Journal, 26, 131-145.
[57] Liu Y, Delgado-Baquerizo M, Trivedi P, He J, Wang J, Singh BK (2017) Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change. Soil Biology and Biochemistry, 107, 208-217.
[58] Long W, Gao YM, Wu PF (2017) Effects of alpine meadow degradation on epigeic arthropod communities in Zoigê. Chinese Journal of Ecology, 37, 128-138. (in Chinese with English abstract)
[龙伟, 高艳美, 吴鹏飞 (2017) 若尔盖高寒草甸退化对表栖节肢动物群落的影响. 生态学杂志, 37, 128-138.]
[1] Yi Li Zhiyao Tang Yujing Yan Ke Wang Lei Cai Jinsheng He Song Gu Yijian Yao. (2020) Incorporating species distribution modelling into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis . Biodiv Sci, 28(1): 0-0.
[2] Wenying Zhuang Yi Li Huandi Zheng Zhaoqing Zeng Xincun Wang. (2020) Threat status of macro-ascomycetes in China and analysis of its threatening factors . Biodiv Sci, 28(1): 0-0.
[3] Shun Li, Liang Zou, Yinan Gong, Haitao Yang, Tianming Wang, Limin Feng, Jianping Ge. (2019) Advances in LiDAR technology in the field of animal ecology . Biodiv Sci, 27(9): 1021-1031.
[4] Rui Yang, Qinyi Peng, Yue Cao, Le Zhong, Shuyu Hou, Zhicong Zhao, Cheng Huang. (2019) Transformative changes and paths toward biodiversity conservation in China . Biodiv Sci, 27(9): 1032-1040.
[5] Yongmin Li, Xiaobing Wu. (2019) A revised species list of amphibians and reptiles in the Anhui Province . Biodiv Sci, 27(9): 1002-1011.
[6] Junning Li, Tong Li, Yulian Wei. (2019) Relationship between diversity of wood-decaying fungi and their host wood in the Fenglin National Nature Reserve . Biodiv Sci, 27(8): 880-886.
[7] Zhang Yuanyuan. (2019) China’s strategy for incorporating traditional knowledge associated with biodiversity into international multi-lateral agreements . Biodiv Sci, 27(7): 708-715.
[8] Cao Ning, Xue Dayuan. (2019) On biodiversity conservation by Zhuang traditional culture: A case study in Jingxi City of Guangxi Zhuang Autonomous Region . Biodiv Sci, 27(7): 728-734.
[9] Yang Yunhui, Bai Keyu, Jarvis Devra, Long Chunlin. (2019) Xishuangbanna cucumber landraces and associated traditional knowledge . Biodiv Sci, 27(7): 743-748.
[10] Sun Beibei, Yu Cungen, Liu Hui, Yan Wenchao, Zhang Wenjun, Dai Dongxu. (2019) Spring and autumn shrimp and crab biodiversity in the east Nanji Islands . Biodiv Sci, 27(7): 787-795.
[11] Ding Lubin, Ma Nan, Wang Guoping, He Siyuan, Min Qingwen. (2019) Visual analysis of hotspots and emerging trends in traditional knowledge associated with biodiversity . Biodiv Sci, 27(7): 716-727.
[12] Kong Jiaxin, Zhang Zhaochen, Zhang Jian. (2019) Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect . Biodiv Sci, 27(7): 796-812.
[13] Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. (2019) Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China . Biodiv Sci, 27(6): 619-629.
[14] Mu Jun, Wang Jiaojiao, Zhang Lei, Li Yunbo, Li Zhumei, Su Haijun. (2019) Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve, Guizhou, China . Biodiv Sci, 27(6): 683-688.
[15] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. (2019) Influence of future climate change in suitable habitats of tea in different countries . Biodiv Sci, 27(6): 595-606.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed