生物多样性 ›› 2014, Vol. 22 ›› Issue (5): 608-617.doi: 10.3724/SP.J.1003.2014.14112

• • 上一篇    下一篇

长白山不同海拔梯度裸肉足虫群落分布特征

刘芳1, 3, 李琪1, *(), 申聪聪2, 褚海燕2, 梁文举1   

  1. 1 中国科学院沈阳应用生态研究所森林与土壤生态国家重点实验室, 沈阳 110164
    2 中国科学院南京土壤所土壤与农业可持续发展重点实验室, 南京 210008
    3 中国科学院大学, 北京 100049
  • 收稿日期:2014-06-03 接受日期:2014-08-01 出版日期:2014-09-20
  • 通讯作者: 李琪 E-mail:liq@iae.ac.cn
  • 基金项目:
    国家自然科学基金(31170484和41371254)

Distribution of gymnamoebae communities along an elevational gradient in Changbai Mountains

Fang Liu1, 3, Qi Li1, *(), Congcong Shen2, Haiyan Chu2, Wenju Liang1   

  1. 1 State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164
    2 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008
    3 University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2014-06-03 Accepted:2014-08-01 Online:2014-09-20
  • Contact: Li Qi E-mail:liq@iae.ac.cn

裸肉足虫作为联结微生物和大中型土壤动物的重要环节, 在土壤生态系统物质循环和能量流动过程中起着重要作用。为探明裸肉足虫群落沿海拔梯度的分布特征及其主要驱动因子, 作者在长白山北坡选择不同海拔梯度(700 m、1,000 m、1,300 m、1,600 m、1,900 m和2,200 m), 采用最大可能数法对裸肉足虫进行了培养计数, 并采用平板培养、标记、分离再培养的方法进行了分类鉴定, 分析比较了不同海拔梯度裸肉足虫的群落组成和结构特征。结果表明: 长白山北坡裸肉足虫物种丰富, 不同海拔梯度裸肉足虫丰富度指数存在显著差异, 且与土壤酸碱度呈极显著正相关关系。其中林分较为单一的岳桦(Betula ermanii)林带(1,900 m)裸肉足虫丰富度最低, 位于植被交错带的针阔混交林带(1,000 m)裸肉足虫丰富度最大, Shannon-Wiener多样性指数和Pielou均匀度指数在不同海拔梯度间不存在显著性差异, 但变化趋势与丰富度一致。聚类分析结果显示, 1,300 m、1,600 m和1,900 m海拔带以及700 m和2,200 m海拔带裸肉足虫群落组成较为相似。典范对应分析(canonical correspondence analysis, CCA)显示, 裸肉足虫群落组成和结构主要受土壤酸碱度、铵态氮以及碳氮比的影响, 而海拔和土壤含水量对其没有显著影响。综上, 裸肉足虫群落多样性随海拔梯度的增加并未呈现递减或单峰的变化趋势, 土壤的基本理化性质是驱动裸肉足虫群落分布的主要因素; 此外, 地上植被也可能通过凋落物和根系分泌物间接影响裸肉足虫的群落组成和多样性。

关键词: 裸肉足虫, 多样性, 海拔梯度, 土壤理化特性, 植被带

As an important component of soil food web, gymnamoebae play a significant role in nutrient cycling and energy flows of terrestrial ecosystems by linking soil microorganisms and macro- and meso-fauna. Along an elevational gradient (700 m, 1,000 m, 1,300 m, 1,600 m, 1,900 m, 2,200 m) in Changbai Mountains, the community composition and structure of gymnamoebae were compared using most probable number (MPN) method and plate cultivation technique. The result suggested that gymnameobae richness differed significantly among the various elevational levels and was positively correlated with soil pH. The lowest richness was observed in an Betula ermanii forest with monospecies dominance (1,900 m), while the highest richness was observed in the 1,000 m ecotone. Shannon-Wiener diversity index and Pielou envenness index performed similar patterns with richness, with no significant differences observed among different elevational levels. The community composition of gymnamoebae was more similar among 1,300 m, 1,600 m and 1,900 m and between 2,200 m and 700 m elevations. Canonical correspondence analysis showed that gymnamoebae community structure was correlated with soil pH, ammonium nitrogen and C/N ratio. However, gymnamoebae communities were not influenced by altitude and soil water content. In conclusion, unlike macroorganisms (e.g. trees and animals), the richness and diversity of gymnamoebae did not show monotonically decreasing or hump-shaped patterns along the elevational gradient, and soil physicochemical characteristics were the main factors that influencing their distribution. In addition, gymnamoebae community composition and structure might be also indirectly regulated by vegetation type through litter and root exudates.

Key words: gymnamoebae, diversity, elevational gradient, soil physicochemical characteristics, vegetation zone

图1

长白山不同海拔梯度土壤理化特性。不同字母表示在α=0.05水平上差异显著(n=5)。"

表1

不同海拔梯度裸肉足虫各属出现的频率和隶属营养类型"

属名及其缩写
Taxa (genus) with abbreviations
裸肉足虫出现频率
Detection frequency of gymnamoebae (p)
营养类群
Feeding guild
700 m 1,000 m 1,300 m 1,600 m 1,900 m 2,200 m
棘变虫属 Acanthamoeba (Acant) +++ +++ +++ +++ +++ +++ O
变形虫属 Amoeba (Amoeb) + B
Acrachnula (Acrac) + + + + F
粘虫属 Biomyxa (Biomy) ++ P
卡变虫属 Cashia (Cashi) + ++ + B+Y
指变虫属 Dactylamoeba (Dacty) ++ + P+A
刺变虫属 Echinamoeba (Echin) +++ ++++ +++ +++ +++ +++ B
丝变虫属 Filamoeba (Filam) ++ +++ ++ + B
拟斑瘤菌虫属 Guttulinopsis (Guttu) + +++ + B
哈氏虫属 Hartmannella (Hartm) + +++ ++ + ++ +++ B
马氏虫属 Mayorella (Mayor) ++ B+P+A
纳氏虫属 Naegleria (Naegl) + +++ +++ + + ++ B
核形虫属 Nuclearia (Nucle) +++ +++ + + F+A
副变虫属 Paramoeba (Param) ++ P+A
平变虫属 Platyamoeba (Platy) +++ +++ +++ +++ +++ +++ B
多卓变虫属 Polychaos (Polyc) + P+A
根变虫属 Rhizamoeba (Rhiza) + + + P
囊变虫属 Saccamoeba (Sacca) ++ ++ +++ + + B
Stachyamoeba (Stach) + +++ + + ++ B
甲变虫属 Thecamoeba (Theca) +++ +++ +++ +++ +++ +++ B+P
毛变虫属 Tricamoeba (Trica) ++ #
简变虫属 Vahlkampfia (Vahlk) +++ +++ +++ +++ +++ +++ B
蒲变虫属 Vannella (Vanne) + ++ ++ B
杆变虫属 Vexillifera (Vexil) +++ +++ +++ +++ +++ ++ B

图2

长白山不同海拔梯度裸肉足虫群落丰度(a)、Shannon-Wiener多样性指数(b)、Margalef丰富度指数(c)和Pielou均匀度指数(d)。不同字母表示在0.05水平上差异显著(n=5)。"

图3

不同海拔裸肉足虫属聚类分析树状图(以平方欧氏距离使用最近邻元素聚类法进行系统聚类)"

图4

裸肉足虫群落和土壤环境因子之间的典范对应分析排序图。(a)采样点和环境变量排序图; (b)裸肉足虫属与环境变量的排序图。 700 m; 1,000 m; 1,300 m; 1,600 m; 1,900 m; 2,200 m。对应的环境变量: TC: 全碳; TN: 全氮; C/N: 碳氮比; Altitude: 海拔; NH4+-N: 铵态氮。裸肉足虫属名缩写见表1。"

附图1

长白山部分土壤裸肉足虫照片。a-c: 甲变虫属; d, e: 简变虫属; f, g: 马氏虫属; h, i: 蒲变虫属; j: 平变虫属; k-m:棘变虫属; n: 刺变虫属。"

1 Adl MS, Gupta VVSR (2006) Protists in soil ecology and forest nutrient cycling. Canadian Journal of Forest Research, 36, 1805-1817.
2 Anderson OR (2002) Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of gymnamoebae in soils of varying porosity and organic content: evidence of microbiocoenoses. Journal of Eukaryotic Microbiology, 49, 17-23.
3 Anderson OR (2006) The density and diversity of gymnamoebae associated with terrestrial moss communities (Bryophyta: Bryopsida) in a northeastern U.S. forest. Journal of Eukaryotic Microbiology, 53, 275-279.
4 Ba S (巴桑), Huang X (黄香), Pu B (普布), Ma ZX (马正学) (2014) Community characteristics of sarcodines and flagellates and water environment evaluation in Lalu Wetlands. Wetland Science(湿地科学), 12, 182-191. (in Chinese with English abstract)
5 Bai F, Sang WG, Li GQ, Liu RG, Chen LZ, Wang K (2008) Long-term protection effects of national reserve to forest vegetation in 4 decades: biodiversity change analysis of major forest types in Changbai Mountain Nature Reserve, China. Science in China, Series C: Life Sciences, 51, 948-958.
6 Bass P, Bischoff PJ (2001) Seasonal variability in abundance and diversity of soil gymnamoebae along a short transect in southeastern USA. Journal of Eukaryotic Microbiology, 48, 475-479.
7 Bischoff PJ (2002) An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A. Acta Protozoologica, 41, 183-189.
8 Bonkowski M (2003) Protozoa and plant growth: the microbial loop in soil revisited. New Phytologist, 162, 617-631.
9 Bovee EC, Sawyer TK (1979) Marine Flora and Fauna of the Northeastern United States: Protozoa, Sarcodina, Amoebae. U.S. Government Printing Office, Washington, D.C.
10 Brown S, Smirnov AV (2004) Diversity of gymnamoebae in grassland soil in southern Scotland. Protistology, 3, 191-195.
11 Chen SF (陈素芳), Xu RL (徐润林) (2003) Advances of the studies on the soil protozoa. Acta Scientiarum Naturalium Universitatis Sunyatseni(中山大学学报(自然科学版)), 42(Suppl.), 187-194. (in Chinese with English abstract)
12 Clarholm M (1981) Protozoan grazing of bacteria in soil-impact and importance. Microbial Ecology, 7, 343-350.
13 Corno G, Jürgens K (2006) Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Applied and Environmental Microbiology, 72, 78-86.
14 Cortés-Pérez S, Rodríguez-Zaragoza S, Mendoza-López MR (2013) Trophic structure of amoeba communities near roots of Medicago sativa after contamination with fuel oil no. 6. Microbial Ecology, 67, 430-442.
15 Couâteaux MM, Darbyshire JF (1998) Functional diversity amongst soil protozoa. Applied Soil Ecology, 10, 229-237.
16 Cui ZD (崔振东) (1986) Ecological distribution of soil protozoa under coniferous-broad-leaved mixed forest in northern slope of Changbai Mountain. Journal of Ecology(生态学杂志), 5(2), 1-5. (in Chinese with English abstract)
17 Culter DW (1920) A method for estimating the number of active protozoa in the soil. The Journal of Agricultural Science, 10, 135-143.
18 Esteban GF, Clarke KJ, Olmo JL, Finlay BJ (2006) Soil protozoa: an intensive study of population dynamics and community structure in an upland grassland. Applied Soil Ecology, 33, 137-151.
19 Farrell M, Prendergast-Miller M, Jones DL, Hill PW, Condron LM (2014) Soil microbial organic nitrogen uptake is regulated by carbon availability. Soil Biology and Biochemistry, 77, 261-267.
20 Feng WS (冯伟松), Yu YH (余育和) (2000) Ecological studies on the soil protozoans of the Fildes Peninsula, Antarctica. Acta Hydrobiologica Sinica(水生生物学报), 24, 610-615. (in Chinese with English abstract)
21 Fierer N, McCain CM, Meir P, Zimmermann M, Rapp JM, Silman MR, Knight R (2011) Microbes do not follow the elevational diversity patterns of plants and animals. Ecology, 92, 797-804.
22 Guo ZL (郭忠玲), Zheng JP (郑金萍), Ma YD (马元丹), Li QK (李庆康), Yu GR (于贵瑞), Han SJ (韩士杰), Fan CN (范春楠), Liu WD (刘万德) (2006) Researches on litter fall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China. Acta Ecologica Sinica(生态学报), 26, 1037-1046. (in Chinese with English abstract)
23 Hao ZQ (郝占庆), Li BH (李步杭), Zhang J (张健), Wang XG (王绪高), Ye J (叶吉), Yao XL (姚晓琳) (2008) Broad-leaved korean pine (Pinus koraiensis) mixed forest plot in Changbaishan (CBS) of China: community composition and structure. Journal of Plant Ecology(植物生态学报), 32, 238-250. (in Chinese with English abstract)
24 Jiang P (姜萍), Zhao G (赵光), Ye J (叶吉), Cui GF (崔国发), Deng HB (邓红兵) (2003) Structure of forest communities on the northern slope of Changbai Mountain and its variation along elevation gradient. Chinese Journal of Ecology(生态学杂志), 22(6), 28-32. (in Chinese with English abstract)
25 Ma ZX (马正学), Shen HX (申海香), Kang RQ (康瑞琴), Ning YZ (宁应之), Ran LY (冉丽媛) (2009) Species diversity of aquatic sarcomastigophora in scenic spots and historic sites of Maiji Mountain. Acta Hydrobiologica Sinica(水生生物学报), 33, 468-477. (in Chinese with English abstract)
26 Margalef R (1972) Homage to Evelyn Hutchinson, or why is there an upper limit to diversity. Transactions of the Connecticut Academy of Arts and Sciences, 44, 211-235.
27 Mayzlish E, Steinberger Y (2004) Effects of chemical inhibitors on soil protozoan dynamics in a desert ecosystem. Biology and Fertility of Soils, 39, 415-421.
28 Mayzlish-Gati E, Steinberger Y (2007) Ameba community dynamics and diversity in a desert ecosystem. Biology and Fertility of Soils, 43, 357-366.
29 Ning YZ (宁应之), Shen YF (沈韫芬) (1998a) Soil protozoa in typical zones of China. I. Faunal characteristics and distribution of species. Acta Zoologica Sinica(动物学报), 44, 5-10. (in Chinese with English abstract)
30 Ning YZ (宁应之), Shen YF (沈韫芬) (1998b) Soil protozoa in typical zones of China. II. Ecology study. Acta Zoologica Sinica(动物学报), 44, 271-276. (in Chinese with English abstract)
31 Ning YZ (宁应之), Li QL (李琦路), Li XH (李晓鸿), Ma ZX (马正学), Mao JP (毛金平), Liu K (刘恺), Bai XM (白雪梅) (2007) Specific diversity of soil amoebae and flagellates in the National Nature Reserve of Baishuijiang, Gansu. Chinese Journal of Zoology(动物学杂志), 42(4), 81-88. (in Chinese with English abstract)
32 Page FC (1988) A New Key to Freshwater and Soil Gymn- amoebae. Freshwater biological Association, Ambleside.
33 Pielou EC (1966) Species diversity and pattern diversity in the study of ecological succession. Journal of Theoretical Biology, 10, 370-383.
34 Shannon CE, Weaver W (1949) The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.
35 Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204-211.
36 Shen HX (申海香), Ma ZX (马正学), Ma SS (马尚盛), Ning YZ (宁应之), Wang J (王娟) (2009) Community characteristics of soil sarcodinid and flagellate in Taohuagou Forest Park in Xiaolong Mountains of Gansu. Chinese Journal of Ecology(生态学杂志), 28(1), 38-44. (in Chinese with English abstract)
37 Smirnov AV, Brown S (2004) Guide to the methods of study and identification of soil gymnamoebae. Protistology, 3, 148-190.
38 Wall DH, Bardgett RD, Kelly EF (2010) Biodiversity in the dark. Nature Geoscience, 3, 297-298.
39 Xu RL (徐润林), Sun YX (孙逸湘) (2000) Community characteristics of soil ciliated protozoan at Dapeng Peninsula. Chinese Journal of Applied Ecology(应用生态学报), 11, 428-430. (in Chinese with English abstract)
40 Xu WD (徐文铎), He XY (何兴元), Chen W (陈玮), Liu CF (刘常富) (2004) Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology(生态学杂志), 23(5), 162-174. (in Chinese with English abstract)
41 Yu DY (于德永), Hao ZQ (郝占庆), Ji LZ (姬兰柱), Li Y (李扬), Xiong ZP (熊在平), Ye J (叶吉) (2003) Dissimilarity of plant communities with changes in altitudes on the northern slope of Changbai Mountain. Chinese Journal of Ecology(生态学杂志), 22(5), 1-5. (in Chinese with English abstract)
42 Zou T (邹涛), Shen HX (申海香), Ma ZX (马正学), Ning YZ (宁应之) (2009) Community characteristics of soil sarco- mastigophora in the Mayan forest region of the National Nature Reserve of Xiaolong Mountains. Zoological Research(动物学研究), 30, 571-577. (in Chinese with English abstract)
[1] 庄文颖 李熠 郑焕娣 曾昭清 王新存. (2020) 中国大型子囊菌受威胁现状及致危因素分析(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[2] 李熠 唐志尧 闫昱晶 王科 蔡磊 贺金生 古松 姚一建. (2020) 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例(大型真菌红色名录专辑). 生物多样性, 28(1): 0-0.
[3] 李顺, 邹亮, 宫一男, 杨海涛, 王天明, 冯利民, 葛剑平. (2019) 激光雷达技术在动物生态学领域的研究进展. 生物多样性, 27(9): 1021-1031.
[4] 杨锐, 彭钦一, 曹越, 钟乐, 侯姝彧, 赵智聪, 黄澄. (2019) 中国生物多样性保护的变革性转变及路径. 生物多样性, 27(9): 1032-1040.
[5] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[6] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[7] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[8] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[9] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[10] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[11] 李永民, 吴孝兵. (2019) 安徽省两栖爬行动物名录修订. 生物多样性, 27(9): 1002-1011.
[12] 许金石,柴永福,刘晓,岳明,郭垚鑫,康慕谊,刘全儒,郑成洋,吉成均,闫明,张峰,高贤明,王仁卿,石福臣,张钦弟,王茂. (2019) 华北区域环境梯度上阔叶林构建模式及分布成因. 植物生态学报, 43(9): 732-741.
[13] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[14] 余仲东, 余知和, 金世宇, 王龙. (2019) 我国黄曲霉遗传多样性与产毒特性. 生物多样性, 27(8): 842-853.
[15] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed