生物多样性 ›› 2016, Vol. 24 ›› Issue (2): 205-215.doi: 10.17520/biods.2015127

• • 上一篇    下一篇

植原体遗传多样性研究现状与展望

于少帅1, 2, 徐启聪1, 林彩丽1, 王圣洁1, 田国忠1, , A;*()   

  1. 1 .中国林业科学研究院森林生态环境与保护研究所, 国家林业局森林保护学重点实验室, 北京 100091
    2 自然农法国际研究开发中心, 日本国松本市 3901401
  • 收稿日期:2015-05-12 接受日期:2015-09-06 出版日期:2016-02-20
  • 通讯作者: 田国忠 E-mail:tian3691@163.com
  • 基金项目:
    国家自然科学基金(31370644)和国家微生物资源平台项目(NIMR2014-7)

Genetic diversity of phytoplasmas: research status and prospects

Shaoshuai Yu1, 2, Qicong Xu1, Caili Lin1, Shengjie Wang1, Guozhong Tian1, *()   

  1. 1 Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Key Laboratory of Forest Protection of State Forestry Administration, Beijing 100091, China
    2 International Nature Farming Research Center, Matsumoto 3901401, Japan
  • Received:2015-05-12 Accepted:2015-09-06 Online:2016-02-20
  • Contact: Tian Guozhong E-mail:tian3691@163.com

植原体是引起众多植物病害的一类重要的无细胞壁的原核致病菌, 其寄主种类多、危害面积广, 对经济、环境等影响严重。大量研究表明植原体存在丰富的遗传多样性。本文就植原体遗传多样性研究现状作一概要评述, 并对植原体遗传变异的研究技术、产生机制、与致病性关系等今后可能的研究方向作一展望。对已完成的5个植原体全基因组序列分析发现, 它们在大小、结构和功能等方面皆存在显著差异, 缺少很多标准代谢所需的基因。不同植原体中质粒的数量、大小和功能等也存在一定差异。植原体含有2个核糖体RNA编码基因, 其序列在不同株系中的变异奠定了现今植原体分类鉴定的基础。对植原体蛋白编码基因如核糖体蛋白编码基因(rp)、蛋白延伸因子基因(tuffusA)、转运蛋白基因(secYsecA)、效应子及非编码区序列如启动子、假基因等的深入研究可进一步揭示植原体更丰富的遗传变异特征。由于植原体分离培养困难, 人们对其形态特征、生理代谢等了解甚少, 因而全基因组测序、多位点序列分析等现代分子生物学技术将会成为植原体遗传变异研究的主要手段。植原体遗传多样性研究进展有助于从分子水平上系统地阐明植原体遗传变异规律、系统进化特征及其与寄主(植物和昆虫)、生态环境间的互作和适应关系, 并产生新的认识。这对于提高植原体的分类鉴定、致病机制、流行预测及病害防治等研究水平具有重要的作用和意义。

关键词: 植原体, 遗传变异, 系统进化, 分类鉴定, 植物(介体昆虫)-植原体互作, 多位点序列分析(MLSA)

Phytoplasmas are cell wall-less prokaryotic pathogens causing many plant diseases with various host plants, widely geographical distribution and adverse impacts on economics and environments. Abundant genetic diversity of the phytoplasmas has been evidenced by vast researches. In the paper, we conducted a comparatively systematic and comprehensive schematic review and comment on the research status of phytoplasma genetic diversity. We discussed the potential research directions with respect to research technology and generation mechanism of phytoplasmal genetic variation as well as relationships to pathogenicity in future. Analysis on five phytoplasmas whose whole genomes have been completed has indicated the definite genetic variation in size, structure and function of phytoplasmal genomes, which lack many genes for standard metabolic functions. There are different number, size and function of the plasmids in various phytoplasma strains. Two copies of ribosomal RNA operons among all the phytoplasmas showed significant variation which provided the present foundation for classification and identification of phytoplasmas. Studies on protein-encoding genes, such as ribosomal protein (rp), elongation factors (tuf and fusA), translocation proteins (secY and secA), effector molecules as well as non-encoding sequences such as promoters and pseudogenes have further revealed the rich genetic diversity of phytoplasmas. Since inadequate information is known regarding the characteristics of morphology, cultivation, physiology and metabolism due to the difficulty in culturing phytoplasma in vitro, modern molecular techniques for example whole genome sequencing and multilocus sequence analysis (MLSA) are efficient ways to research phytoplasmal genetic variation. Discoveries and developed techniques have facilitated a system-wide approach to revealing phytoplasma genetic variation, phylogenetic evolution as well as the relationships of their interaction with hosts (plant and insect vector) and adaptation to ecological conditions from the molecular level, and led to new insights. This will be of great importance in increasing the level of classification and determination of phytoplasmas, epidemiological forecasting and the control of relevant diseases.

Key words: phytoplasma, genetic variation, phylogenetic evolution, classification and identification, plant (insect vector)-phytoplasma interaction, multilocus sequence analysis (MLSA)

表1

5种植原体全基因组基本特征 (Oshima et al, 2004; Bai et al, 2006; Tran-Nguyen et al, 2008; Kube et al, 2008 ; Andersen et al, 2013)"

株系
Strains
洋葱黄化植原体
Onion yellows (OY-M)
翠菊黄化植原体
Aster yellows
witches’-broom
(AYWB)
苹果簇生植原体
Candidatus
mali (AT)
澳大利亚葡萄黄化 植原体
Candidatus australiense
(PAa)
草莓致死黄化 植原体
Strawberry lethal yellows
(SLY)
引起病害
Causing diseases
洋葱黄化
Onion yellows
翠菊黄化
Aster yellows
苹果丛枝
Apple proliferation
葡萄黄化
Grapevine yellows
草莓致死黄化
Strawberry lethal yellows
16Sr组 16Sr group 16SrI 16SrI 16SrX 16SrXII 16SrXII
基因组大小
Chromosome size (bp)
860,631 706,569 601,943 879,324 959,779
染色体形态
Chromosome organization
环状
Circular
环状
Circular
线状
Linear
环状
Circular
环状
Circular
G+C含量 G+C content (%) 28 27 21.4 27 27
编码区 Coding sequences (%) 73 72 78.9 74 78
总基因数 Total no. of genes 754 671 497 839 1,126
功能明确基因数
No. of protein-coding genes with assigned function
446 450 338 502 528
保守假拟基因数
No. of conserved hypothetical genes
51 149 72 214 249
假拟基因数
No. of hypothetical genes
257 72 87 123 349
tRNA基因数
No. of tRNA genes
32 31 32 35 35
rRNA操纵子数
No. of rRNA operons
2 2 2 2 2
质粒数量 No. of plasmids 2 4 0 1 1
1 Andersen MT, Liefting LW, Havukkala I, Beever RE (2013) Comparison of the complete genome sequence of two closely related isolates of ‘Candidatus Phytoplasma australiense’ reveals genome plasticity. BMC Genomics, 14, 529.
2 Andrews TD, Gojobori T (2004) Strong positive selection and recombination drive the antigenic variation of the PilE protein of the human pathogen Neisseria meningitides. Genetics, 166, 25-32.
3 Arashida R, Kakizawa S, Ishii Y, Hoshi A, Jung HY, Kagiwada S, Yamaji Y, Oshima K, Namba S (2008) Cloning and characterization of the antigenic membrane protein (Amp) gene and in situ detection of Amp from malformated flowers infected with Japanese hydrangea phyllody phytoplasma. Phytopathology, 98, 769-775.
4 Arnaud G, Malembic-Maher S, Salar P, Bonnet P, Maixner M, Marcone C, Boudon-Padieu E, Foissac X (2007) Multilocus sequence typing confirms the close genetic interrelatedness of three distinct Flavescence Dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Applied and Environmental Microbiology, 73, 4001-4010.
5 Bai XD, Zhang JH, Ewing A, Miller SA, Radek AJ, Shevchenko DV, Tsukerman K, Walunas T, Lapidus A, Campbell JW, Hogenhout SA (2006) Living with genome instability: the adaptation of phytoplasma to diverse environments of their insect and plant hosts. Journal of Bacteriology, 188, 3682-3696.
6 Berg M, Seemüller E (1999) Chromosomal organization and nucleotide sequence of the elongation factors G and Tu of the apple proliferation phytoplasma. Gene, 226, 103-109.
7 Berges R, Seemüller E (2002) Impact of phytoplasma infection of common alder (Alnus glutinosa) depends on strain virulence. Forestry Pathology, 32, 357-363.
8 Bertaccini A, Duduk B (2009) Phytoplasma and phytoplasma diseases: a review of recent research. Phytopathologia Mediterranea, 48, 355-378.
9 Christensen NM, Axelsen KB, Nicolaisen M, Schulz A (2005) Phytoplasmas and their interactions with hosts. Trends in Plant Science, 10, 526-535.
10 Davis MJ, Tsai JH, Cox RL, McDaniel LL, Harrison NA (1988) Cloning of chromosomal and extrachromosomal DNA of the mycoplasma-like organism that causes maize bushy stunt disease. Molecular Plant Microbe Interactions, 1, 295-302.
11 Davis RE, Jomantiene R, Zhao Y, Dally EL (2003) Folate biosynthesis pseudogenes, ΨfolP and ΨfolK, and an O-Sialoglycoprotein endopeptidase gene homolog in the phytoplasma genome. DNA and Cell Biology, 22, 697-706.
12 Davis RE, Jomantiene R, Zhao Y (2005) Lineage-specific decay of folate biosynthesis genes suggests ongoing host adaptation in phytoplasmas. DNA and Cell Biology, 24, 832-840.
13 Dickinson M, Hodgetts J (2013) Phytoplasma: Methods and Protocols. Humana Press, Totowa.
14 Doi Y, Teranaka M, Yora K, Asuyama H (1967) Mycoplasma or PLT group like microorganisms found in the phloem elements of pants infected with mulberry dwarf, potato witches’-broom, aster yellows or pauwlonia witches’-broom. Annals of the Phytopathological Society of Japan, 33, 259-266.
15 Firrao G, Martini M, Ermacora P, Loi N, Torelli E, Foissac X, Carle P, Kirkpatrick BC, Liefting L, Schneider B, Marzachi C, Palmano S (2013) Genome wide sequence analysis grants unbiased definition of species boundaries in “Candidatus Phytoplasma”. Systematic and Applied Microbiology, 36, 539-548.
16 Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M (2008) Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. International Journal of Systematic and Evolutionary Microbiology, 58, 1826-1837.
17 Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kaqiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proceedings of the National Academy of Sciences, USA, 106, 6416-6421.
18 Hu JX, Song CS, Lin CL, Geng XS, Tian GZ (2013) Sequencing the full-length DNA and the molecular characterization of four plasmids from plant pathogens of phytoplasma disease. Scientia Silvae Sinicae, 49(4), 90-97. (in Chinese with English abstract)
[胡佳续, 宋传生, 林彩丽, 耿显胜, 田国忠 (2013) 四种植物病害植原体病原质粒全序列测定及分子特征. 林业科学, 49(4), 90-97.]
19 Ishii Y, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Ya- maji Y, Oshima K, Namba S (2009a) In the non-insect- transmissible line of onion yellows phytoplasma (OY-NIM), the plasmid-encoded transmembrane protein ORF3 lacks the major promoter region. Microbiology, 155, 2058-2067.
20 Ishii Y, Oshima K, Kakizawa S, Hoshi A, Maejima K, Kagiwada S, Yamaji Y, Namba S (2009b) Process of reductive evolution during 10 years in plasmids of a non-insect- transmissible phytoplasma. Gene, 446, 51-57.
21 Jung HY, Miyata S, Oshima K, Kakizawa S, Nishiqawa H, Wei W, Suzuki S, Ugaki M, Hibi T, Namba S (2003) First complete nucleotide sequence and heterologous gene organization of the two rRNA operons in the phytoplasma genome. DNA and Cell Biology, 22, 209-215.
22 Kakizawa S, Oshima K, Nishigawa H, Jung HY, Wei W, Suzuki S, Tanaka M, Miyata S, Ugaki M, Namba S (2004) Secretion of immunodominant membrane protein from onion yellows phytoplasma through the Sec protein-translocation system in Escherichia coli. Microbiology, 150, 135-142.
23 Kakizawa S, Oshima K, Jung HY, Suzuki S, Nishigawa H, Arashida R, Miyata S, Ugaki M, Kishino H, Namba S (2006a) Positive selection acting on a surface membrane protein of the plant-pathogenic phytoplasmas. Journal of Bacteriology, 188, 3424-3428.
24 Kakizawa S, Oshima K, Namba S (2006b) Diversity and functional importance of phytoplasma membrane proteins, Trends in Microbiology, 14, 254-256.
25 Kison H, Seemüller E (2001) Differences in strain virulence of the European stone fruit yellows phytoplasma and susceptibility of stone fruit trees on various rootstocks to this pathogen. Journal of Phytopathology, 149, 533-541.
26 Koui T, Natsuaki T, Okuda S (2003) Phylogenetic analysis of elongation factor Tu gene of phytoplasmas from Japan. Journal of General Plant Pathology, 69, 316-319.
27 Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E (2008) The linear chromosome of the plant-pathogenic mycoplasma ‘Candidatus Phytoplasma mali’. BMC Genomics, 9, 306.
28 Kube M, Mitrovic J, Duduk B, Rabus R, Seemüller E (2012) Current view on phytoplasma genomes and encoded metabolism. The Scientific World Journal, article ID 185942.
29 Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell, 16, 3496-3507.
30 Lai F, Li Y, Xu QC, Tian GZ (2008) The present status on classification of phytoplasma. Microbiology China, 35(2), 291-295. (in Chinese with English abstract)
[赖帆, 李永, 徐启聪, 田国忠 (2008) 植原体的最新分类研究动态. 微生物学通报, 35(2), 291-295.]
31 Lai F, Song CS, Ren ZG, Lin CL, Xu QC, Li Y, Piao CG, Yu SS, Guo MW, Tian GZ (2014) Molecular characterization of a new member of the 16SrV group of phytoplasma associated with Bischofia polycarpa (Levl.) Airy Shaw witches’-broom disease in China by a multiple gene-based analysis. Australian Plant Pathology, 43, 557-569.
32 Lee IM, Davis RE, Gundersen-Rindal DE (2000) Phytoplasma: phytopathogenic mollicutes. Annual Review of Microbiology, 54, 221-255.
33 Lee IM, Gundersen-Rindal DE, Davis RE, Bartoszyk IM (1998) Revised classification scheme of phytoplasmas based on RFLP analyses of 16S rRNA and ribosomal protein gene sequence. International Journal of Systematic Bacteriology, 48, 1153-1169.
34 Lee IM, Gundersen-Rindal DE, Davis RE, Bottner KD, Marcone C, Seemüller E (2004) ‘Candidatus Phytoplasma asteris’, a novel phytoplasma taxon associated with aster yellows and related diseases. International Journal of Systematic and Evolutionary Microbiology, 54, 1037-1048.
35 Lee IM, Martini M, Bottner KD, Dane RA, Black MC, Troxclair N (2003) Ecological implications from a molecular analysis of phytoplasmas involved in an aster yellows epidemic in various crops in Texas. Phytopathology, 93, 1368-1377.
36 Lee IM, Zhao Y, Bottner KD (2006) SecY gene sequence analysis for finer differentiation of diverse strains in the aster yellows phytoplasma group. Molecular and Cellular Probes, 20, 87-91.
37 Li Y, Piao C, Tian G, Liu ZX, Guo MW, Lin CL, Wang XZ (2014) Multilocus sequences confirm the close genetic relationship of four phytoplasmas of peanut witches’-broom group 16SrII-A. Journal of Basic Microbiology, 54, 818-827.
38 Li Y, Tian GZ, Piao CG, Zhu SF (2005) Rapid molecular differentiation and identification of different phytoplasmas from several plants in China. Acta Phytopathologica Sinica, 35, 293-299. (in Chinese with English abstract)
[李永, 田国忠, 朴春根, 朱水芳 (2005) 我国几种植物上植原体的快速分子鉴别与鉴定的研究. 植物病理学报, 35, 293-299.]
39 Liefting LW, Andersen MT, Beever RE, Gardner RC, Forster RLS (1996) Sequence heterogeneity in two 16S rRNA genes of Phormium yellow leaf phytoplasma. Applied and Environmental Microbiology, 62, 3133-3139.
40 Liefting LW, Shaw ME, Kirkpatric BC (2004) Sequence analysis of two plasmids from the phytoplasma beet leafhopper-transmitted virescence agent. Microbiology, 150, 1809-1817.
41 Lim PO, Sears BB (1989) 16S rRNA sequence indicates that plant-pathogenic mycoplasma like organisms are evolutionarily distinct from animal mycoplasmas. Journal of Bacteriology, 171, 5901-5906.
42 Lim PO, Sears BB (1992) Evolutionary relationships of a plant-pathogenic mycoplasmalike organism and Acholeplasma laidlawii deduced from two ribosomal protein gene sequences. Journal of Bacteriology, 174, 2606-2611.
43 Lin CL, Zhou T, Li HF, Fan ZF, Li Y, Piao CG, Tian GZ (2009) Molecular characterization of two plasmids from paulownia witches’-broom phytoplasma and detection of a plasmid-encoded protein in infected plants. European Journal of Plant Pathology, 123, 321-330.
44 MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Tóth R, Nicolaisen M, Hogenhout SA (2011) Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiology, 157, 831-841.
45 Marinho VLA, Fabre S, Dollet M (2008) Genetic variability among isolates of coconut lethal yellowing phytoplasmas determined by heteroduplex mobility assay (HMA). Tropical Plant Pathology, 33, 377-380.
46 Martini M, Lee IM, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan AJ, Osler R (2007) Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. International Journal of Systematic and Evolutionary Microbiology, 57, 2037-2051.
47 Malembic-Maher S, Salar P, Filippin L, Carle P, Angelini E, Foissac X (2011) Genetic diversity of European phytoplasmas of the 16SrV taxonomic group and proposal of ‘Candidatus Phytoplasma rubi’. International Journal of Systematic and Evolutionary Microbiology, 61, 2129-2134.
48 Melamed S, Tanne E, Ben-Haim R, Edelbaum O, Yogev D, Sela I (2003) Identification and characterization of phytoplasmal genes, employing a novel method of isolating phytoplasmal genomic DNA. Journal of Bacteriology, 185, 6513-6520.
49 Mello APOA, Bedendo IP, Camargo LEA (2006) Sequence heterogeneity in the 16S rDNA of tomato big bud phytoplasma belonging to group 16SrIII. Phytopathology, 154, 245-249.
50 Miyata S, Furuki K, Oshima K, Sawayanagi T, Nishigawa H, Jung HY, Ugaki M, Namba S (2002) Complete nucleotide sequence of the S10-spc operon of phytoplasma: gene organization and genetic code resemble those of Bacillus subtilis. DNA and Cell Biology, 21, 527-534.
51 Morton A, Davies DL, Blomquist CL, Barbara DJ (2003) Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Molecular Plant Pathology, 4, 109-114.
52 Morvan G, Castelain C, Castelliere MG, Audergon JM (1991) An account of the attempts at controlling apricot chlorotic leaf roll with cross protection. Acta Horticulturae, 293, 555-561.
53 Mounsey KE, Streten C, Gibb KS (2006) Sequence characterization of four putative membrane-associated proteins from sweet potato little leaf strain V4 phytoplasma. Plant Pathology, 55, 29-35.
54 Nakashima K, Hayashi T (1997) Sequence analysis of extrachromosomal DNA of sugarcane white leaf phytoplasma. Annals of the Phytopathological Society of Japan, 63, 21-25.
55 Nishigawa H, Oshima K, Kakizawa S, Jung HY, Kuboyama T, Miyata S, Ugaki M, Namba S (2002a) A plasmid from a non-insect-transmissible line of a phytoplasma lacks two open reading frames that exist in the plasmid from the wild-type line. Gene, 298, 195-201.
56 Nishigawa H, Oshima K, Kakizawa S, Jung HY, Kuboyama T, Miyata S, Ugaki M, Namba S (2002b) Evidence of intermolecular recombination between extrachromosomal DNAs in phytoplasma: a trigger for the biological diversity of phytoplasm. Microbiology, 148, 1389-1396.
57 Oshima K, Kakizawa S, Nishigawa H, Kuboyama T, Miyata S, Ugaki M, Namba S (2001a) A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination. Virology, 285, 270-277.
58 Oshima K, Kakizawa S, Nishigawa H, Jung HY, Wei W, Suzuki S, Arashida R, Nakata D, Miyata S, Ugaki M, Namba S (2004) Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nature Genetics, 36, 27-29.
59 Oshima K, Miyata S, Sawayanagi T, Kakizawa S, Nishigawa H, Jung HY, Furuki K, Yanazaki M, Suzuki S, Wei W, Kuboyama T, Ugaki M, Namba S (2002) Minimal set of metabolic pathways suggested from the genome of onion yellows phytoplasma. Journal of General Plant Pathology, 68, 225-236.
60 Oshima K, Shiomi T, Kuboyama T, Sawayanaqi T, Nishigawa H, Kakizawa S, Miyata S, Ugaki M, Namba S (2001b) Isolation and characterization of derivative lines of the onion yellows phytoplasma that do not cause stunting or phloem hyperplasia. Phytopathology, 91, 1024-1029.
61 Palmano S, Kirkpatrick BC, Firrao G (2001) Expression of chloramphenicol acetyltransferase in Bacillus subtilis under the control of a phytoplasma promoter. FEMS Microbiology Letters, 199, 177-179.
62 Saccardo F, Cettul E, Palmano S, Noris E, Firrao G (2011) On the alleged origin of geminiviruses from extrachromosomal DNAs of phytoplasmas. BMC Evolutionary Biology, 11, 185.
63 Schneider B, Gibb KS, Seemüller E (1997) Sequence and RFLP analysis of the elongation factor Tu gene used in differentiation and classification of phytoplasmas. Microbiology, 143, 3381-3389.
64 Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M (1998) Current status of molecular classification of the phytoplasma. Journal of Plant Pathology, 80, 3-26.
65 Song CS (2014) Researches of the Thymidylate Kinase and the tRNA-isopentenyltransferase Genes from Paulownia Witches’-broom Phytoplasma. PhD dissertation, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing. (in Chinese with English abstract)
[宋传生 (2014) 泡桐丛枝植原体胸苷酸激酶及tRNA-异戊烯基焦磷酸转移酶基因研究. 博士学位论文, 中国林业科学研究院森林生态环境与保护研究所, 北京.]
66 Song CS, Lin CL, Tian GZ, Zhao WJ, Zhu SF, Mou HQ, Hu JX, Wang XZ, Guo MW (2011) Complete sequence of a full-length DNA and molecular characterization of one plasmid from chinaberry (Melia azedarach L.) witches’-broom phytoplasma. Acta Microbiologica Sinica, 51, 1158-1167. (in Chinese with English abstract)
[宋传生, 林彩丽, 田国忠, 赵文军, 朱水芳, 牟海青, 胡佳续, 王曦茁, 郭民伟 (2011) 苦楝丛枝植原体质粒的测定与分子特征. 微生物学报, 51, 1158-1167.]
67 Streten C, Gibb KS (2005) Genetic variation in Candidatus Phytoplasma australiense. Plant Pathology, 54, 8-14.
68 Sugio A, Hogenhout SA (2012) The genome biology of phytoplasma: modulators of plants and insects. Current Opinion in Microbiology, 15, 247-254.
69 Sugio A, Kingdom HN, Maclean AM, Grieve VM, Hogenhout SA (2011a) Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proceedings of the National Academy of Sciences, USA, 108, 1254-1263.
70 Sugio A, Maclean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011b) Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annual Review of Phytopathology, 49, 175-195.
71 Tian GZ, Raychaudhuri SP (1996) Paulownia witches’-broom disease in China: present status. In: Forest Trees and Palms: Diseases and Control (eds Raychaudhuri RS, Moromorosch K), pp. 227-251. Oxford & IBH Publishing Company, New Delhi.
72 Tran-Nguyen LTT, Kube M, Schneider B, Reinhardt R, Gibb KS (2008) Comparative genome analysis of ‘Candidatus Phytoplasma australiense’ (subgroup tuf-Australia I; rp-A) and ‘Ca. Phytoplasma asteris’ strains OY-M and AY-WB. Journal of Bacteriology, 190, 3979-3991.
73 Wang J, Zhu XP, Gao R, Lin CL, Li Y, Xu QC, Piao CG, Li XD, Li HF, Tian GZ (2010) Genetic and serological analyses of elongation factor EF-Tu of paulownia witches’-broom phytoplasma (16SrI-D). Plant Pathology, 59, 972-981.
74 Wang K, Hiruki C (2005) Distinctions between phytoplasmas at the subgroup level detected by heteroduplex mobility assay. Plant Pathology, 54, 625-633.
75 Wei W, Davis RE, Lee IM, Zhao Y (2007) Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. International Journal of Systematic and Evolutionary Microbiology, 57, 1855-1867.
76 Xu QC, Tian GZ, Wang ZL, Kong FH, Li Y, Wang H (2009) Molecular detection and variability of jujube witches’-broom phytoplasmas from different cultivars in various regions of China. Acta Microbiologica Sinica, 49, 1510-1519. (in Chinese with English abstract)
[徐启聪, 田国忠, 王振亮, 孔繁华, 李永, 王合 (2009) 中国各地不同枣树品种上枣疯病植原体的PCR检测及分子变异分析. 微生物学报, 49, 1510-1519.]
77 Yang Y, Yang XG, Lin CL, Tian GZ, Zhao WJ, Li ZH, Zhu SF (2011) The chromosome size and the locations of the two rRNA operons of paulownia witches’-broom phytoplasma. Plant Quarantine, 25(4), 5-10. (in Chinese with English abstract)
[杨毅, 杨旭光, 林彩丽, 田国忠, 赵文军, 李志红, 朱水芳 (2011) 泡桐丛枝植原体染色体全长及两个rRNA操纵子定位研究. 植物检疫, 25(4), 5-10.]
78 Yu SS, Li Y, Ren ZG, Song CS, Lin CL, Piao CG, Liu JM, Yan SP, Lin JX, Tian GZ (2014) Multilocus sequences confirm genetic variation and differentiation among 16SrI group phytoplasma strains infecting environmentally and economically important plants in different regions of China. In: Proceedings of the Annual Meeting of Chinese Society for Plant Pathology (eds Guo ZJ, Wu YH), pp. 366-367. China Agricultural Science and Technology Press,Beijing .
[1] 翁茁先, 黄佳琼, 张仕豪, 余锴纯, 钟福生, 黄勋和, 张彬. (2019) 利用线粒体COI基因揭示中国乌骨鸡遗传多样性和群体遗传结构. 生物多样性, 27(6): 667-676.
[2] 于少帅, 林彩丽, 王圣洁, 张文鑫, 田国忠. (2018) 植原体tuf基因与其上游部分基因结构和相关基因启动子保守区域特征及活性分析. 生物多样性, 26(7): 738-748.
[3] 盛芳, 陈淑英, 田嘉, 李鹏, 秦雪, 罗淑萍, 李疆. (2017) 新疆准噶尔山楂不同居群的遗传多样性. 生物多样性, 25(5): 518-530.
[4] 谢理丽, 徐磊, 林秋奇, 韩博平. (2015) 西藏湖泊长刺溞复合种的系统进化关系. 生物多样性, 23(6): 784-792.
[5] 徐晓婷, 王志恒, DimitarDimitrov. (2015) 批量下载GenBank基因序列数据的新工具——NCBIminer. 生物多样性, 23(4): 550-555.
[6] 向妮, 肖炎农, 段灿星, 王晓鸣, 朱振东. (2012) 利用SSR标记分析茄镰孢豌豆专化型的遗传多样性. 生物多样性, 20(6): 693-702.
[7] 牛红玉, 王峥峰, 练琚愉, 叶万辉, 沈浩. (2011) 群落构建研究的新进展: 进化和生态相结合的群落谱系结构研究. 生物多样性, 19(3): 275-283.
[8] 王红霞, 陆斗定, 黄海燕, 戴鑫烽, 夏平. (2011) 东海剧毒卡尔藻的形态特征及其系统进化分析. 植物学报, 46(2): 179-188.
[9] 陈碧云, 胡琼, Christina Dixelius, 李国庆, 伍晓明. (2010) 利用SRAP分析核盘菌遗传多样性. 生物多样性, 18(5): 509-515.
[10] 王长忠, 李忠, 梁宏伟, 呼光富, 吴勤超, 邹桂伟, 罗相忠. (2009) 长江下游地区4个克氏原螯虾群体的遗传多样性分析. 生物多样性, 17(5): 518-523.
[11] 王峥峰, 葛学军. (2009) 不仅仅是遗传多样性: 植物保护遗传学进展. 生物多样性, 17(4): 330-339.
[12] 凌英会, 成月娇, 王艳萍, 关伟军, 韩建林, 傅宝玲, 赵倩君, 何晓红, 浦亚斌, 马月辉. (2009) 应用微卫星标记分析23个中国地方马种的遗传多样性. 生物多样性, 17(3): 240-247.
[13] 梁宏伟, 李忠, 罗相忠, 王长忠, 呼光富, 邹桂伟, 杨永铨. (2009) 基于微卫星标记的5个尼罗罗非鱼品系的遗传多样性分析. 生物多样性, 17(1): 82-87.
[14] 何艳霞;王子成*. (2009) 拟南芥幼苗超低温保存后DNA甲基化的遗传变异. 植物学报, 44(03): 317-322.
[15] 陆雪莹, 张道远, 马文宝. (2007) 准噶尔无叶豆片断化居群的遗传变异及克隆多样性. 生物多样性, 15(3): 282-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed