生物多样性 ›› 2016, Vol. 24 ›› Issue (2): 195-204. DOI: 10.17520/biods.2015149
所属专题: 土壤生物与土壤健康
收稿日期:
2015-06-03
接受日期:
2015-12-23
出版日期:
2016-02-20
发布日期:
2016-03-03
通讯作者:
王正文
基金资助:
Shanshan Li1,2, Zhengwen Wang1,*(), Junjie Yang1
Received:
2015-06-03
Accepted:
2015-12-23
Online:
2016-02-20
Published:
2016-03-03
Contact:
Wang Zhengwen
摘要:
凋落物分解是生态系统碳循环和营养物质循环的关键过程, 受多种因素共同影响。土壤微生物是影响凋落物分解的重要因素, 其群落组成在一定程度上依赖于所处植物群落的特征。因此, 研究分解过程中微生物群落组成的变化及其对植物多样性的响应, 有利于对凋落物分解机制的理解。本文采用分解袋野外原位分解的方法, 对凋落物分解过程中微生物群落的变化及其对所处森林环境中树木的种类和遗传多样性的响应进行了研究。结果表明: (1)凋落物分解183天后, 土壤中微生物群落的多样性降低, 并且森林群落的物种多样性与微生物群落多样性呈负相关关系; (2)凋落物分解前后, 土壤中真菌和细菌群落的磷脂脂肪酸(PLFA)量均有所增加, 说明凋落物分解为微生物生存和繁殖提供了养分; (3)地形因素是影响微生物群落变化最显著的因素, 可解释微生物群落变化的29.55%; 其次是凋落物的基质质量, 可以解释15.39%; 最后是森林群落的多样性, 可以解释8.45%; 这3种因素共同解释率为2.97%。综上所述, 与森林群落的植物多样性相比, 样地的地形因素与凋落物的基质质量对微生物群落的影响更显著。
李姗姗, 王正文, 杨俊杰 (2016) 凋落物分解过程中土壤微生物群落的变化. 生物多样性, 24, 195-204. DOI: 10.17520/biods.2015149.
Shanshan Li, Zhengwen Wang, Junjie Yang (2016) Changes in soil microbial communities during litter decomposition. Biodiversity Science, 24, 195-204. DOI: 10.17520/biods.2015149.
物种多样性 Species diversity | 遗传多样性 Genetic diversity | |
---|---|---|
单家系 One seed family | 4家系 Four seed families | |
单物种 One species | 单物种单家系 Mono-species & mono-family (S1G1) 32重复32 replicates | 单物种4家系 Mono-species & tetra-family (S1G4) 8重复 Eight replicates |
4物种 Four species | 4物种单家系Tetra-species & mono-family (S4G1) 8重复 Eight replicates | 4物种4家系Tetra-species & tetra-family (S4G4) 6重复Six replicates |
表1 遗传多样性样地设计
Table 1 Design of the genetic diversity plots
物种多样性 Species diversity | 遗传多样性 Genetic diversity | |
---|---|---|
单家系 One seed family | 4家系 Four seed families | |
单物种 One species | 单物种单家系 Mono-species & mono-family (S1G1) 32重复32 replicates | 单物种4家系 Mono-species & tetra-family (S1G4) 8重复 Eight replicates |
4物种 Four species | 4物种单家系Tetra-species & mono-family (S4G1) 8重复 Eight replicates | 4物种4家系Tetra-species & tetra-family (S4G4) 6重复Six replicates |
物种 Species | 家系 Seed family | 总碳 Total carbon (mg/g) | 总氮 Total nitrogen (mg/g) | 总磷 Total phosphorus (mg/g) | 碳/氮比 C/N | 氮/磷比 N/P |
---|---|---|---|---|---|---|
香樟 C. camphora | C3 | 492.25 ± 27.01a | 12.36 ± 1.78ab | 0.97 ± 0.02a | 40.59 ± 8.16ab | 12.79 ± 2.07b |
C4 | 505.41 ± 33.39a | 13.24 ± 0.21a | 0.70 ± 0.06b | 38.19 ± 2.91b | 19.11 ± 1.80a | |
C7 | 510.94 ± 23.82a | 11.09 ± 0.27ab | 0.76 ± 0.02b | 46.05 ± 1.12ab | 14.68 ± 0.13b | |
C9 | 477.45 ± 63.22a | 9.86 ± 0.19b | 0.70 ± 0.01b | 48.44 ± 6.44a | 13.99 ± 0.23b | |
虎皮楠 D. oldhamii | D6 | 522.14 ± 17.30a | 10.83 ± 0.89b | 0.86 ± 0.12a | 48.52 ± 5.33a | 12.77 ± 1.60b |
D12 | 533.19 ± 1.66a | 11.46 ± 2.80ab | 0.87 ± 0.03a | 48.25 ± 10.6a | 13.19 ± 2.97b | |
D13 | 527.37 ± 31.32a | 13.89 ± 0.65a | 0.80 ± 0.02a | 38.06 ± 3.36a | 17.37 ± 0.36a | |
D17 | 510.40 ± 23.74a | 12.74 ± 0.95a | 0.71 ± 0.01b | 40.27 ± 4.55a | 18.02 ± 1.06a |
表2 香樟和虎皮楠各家系凋落物的初始化学物质含量(平均值±标准差, n = 3)
Table 2 The initial chemical properties of seed families of Cinnamomum camphora and Daphniphyllum oldhamii (mean ± SD, n = 3)
物种 Species | 家系 Seed family | 总碳 Total carbon (mg/g) | 总氮 Total nitrogen (mg/g) | 总磷 Total phosphorus (mg/g) | 碳/氮比 C/N | 氮/磷比 N/P |
---|---|---|---|---|---|---|
香樟 C. camphora | C3 | 492.25 ± 27.01a | 12.36 ± 1.78ab | 0.97 ± 0.02a | 40.59 ± 8.16ab | 12.79 ± 2.07b |
C4 | 505.41 ± 33.39a | 13.24 ± 0.21a | 0.70 ± 0.06b | 38.19 ± 2.91b | 19.11 ± 1.80a | |
C7 | 510.94 ± 23.82a | 11.09 ± 0.27ab | 0.76 ± 0.02b | 46.05 ± 1.12ab | 14.68 ± 0.13b | |
C9 | 477.45 ± 63.22a | 9.86 ± 0.19b | 0.70 ± 0.01b | 48.44 ± 6.44a | 13.99 ± 0.23b | |
虎皮楠 D. oldhamii | D6 | 522.14 ± 17.30a | 10.83 ± 0.89b | 0.86 ± 0.12a | 48.52 ± 5.33a | 12.77 ± 1.60b |
D12 | 533.19 ± 1.66a | 11.46 ± 2.80ab | 0.87 ± 0.03a | 48.25 ± 10.6a | 13.19 ± 2.97b | |
D13 | 527.37 ± 31.32a | 13.89 ± 0.65a | 0.80 ± 0.02a | 38.06 ± 3.36a | 17.37 ± 0.36a | |
D17 | 510.40 ± 23.74a | 12.74 ± 0.95a | 0.71 ± 0.01b | 40.27 ± 4.55a | 18.02 ± 1.06a |
图1 各处理微生物群落的Shannon指数和Pielou均匀度指数(平均值±标准误, n = 8)。4种不同处理的代号见表1, 相同字母表示多重比较差异不显著(P > 0.05)。
Fig. 1 The Shannon diversity index and Pielou evenness index of microbial communities among treatments (mean ± SE, n = 8). The code of four treatments see Table 1. The same superscripts indicate no significant difference between treatments after multiplicative comparison (P > 0.05).
图2 凋落物分解前后不同处理中磷脂脂肪酸含量的比较(平均值±标准误, n = 8, * P < 0.05)。4种不同处理的代号见表1。
Fig. 2 All phospholipid fatty acids (PLFAs) identified in this experiment among all the diversity level (mean ±SE, n = 8, * P < 0.05). The code of four treatments see Table 1.
图3 凋落物分解前后土壤中微生物群落的变化率(PLFAs变化率) (平均值±标准误, n = 8)。4种不同处理的代号见表1, *代表PLFAs变化率偏离0值的显著程度(* P < 0.05)
Fig. 3 The relative variation rate of PLFAs of microbial community during decomposition (mean ±SE, n = 8). The code of four treatments see Table 1. Asterisks indicate a significant rate of PLFAs, i.e. a significant deviation from 0 (* P < 0.05)
凋落物的基质质量 Litter quality | 总脂肪酸含量 Total PLFAs | ||
---|---|---|---|
d.f. | F | P | |
初始碳含量(总碳) Initial carbon (IC) | 1 | 0.039 | |
初始氮含量(总氮) Initial nitrogen (IN) | 1 | 10.232 | < 0.01 |
初始磷含量(总磷) Initial phosphorus (IP) | 1 | 14.669 | < 0.01 |
IC/IN | 1 | 0.572 | |
IC/IP | 1 | 0.434 | |
IN/IP | 1 | 1.362 | |
IC/IN/IP | 1 | 4.489 | < 0.05 |
表3 总磷脂脂肪酸与凋落物的基质质量的方差分析结果
Table 3 Result of ANOVAs between total phospholipid fatty acids (PLFAs) and litter quality
凋落物的基质质量 Litter quality | 总脂肪酸含量 Total PLFAs | ||
---|---|---|---|
d.f. | F | P | |
初始碳含量(总碳) Initial carbon (IC) | 1 | 0.039 | |
初始氮含量(总氮) Initial nitrogen (IN) | 1 | 10.232 | < 0.01 |
初始磷含量(总磷) Initial phosphorus (IP) | 1 | 14.669 | < 0.01 |
IC/IN | 1 | 0.572 | |
IC/IP | 1 | 0.434 | |
IN/IP | 1 | 1.362 | |
IC/IN/IP | 1 | 4.489 | < 0.05 |
1 | Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439-449. |
2 | Bailey JK, Genung MA, Ware I, Gorman C, Nuland MEV, Long HN, Schweitzer JA (2014) Indirect genetic effects: an evolutionary mechanism linking feedbacks, genotypic diversity and coadaptation in a climate change context. Functional Ecology, 28, 87-95. |
3 | Barnes BV, Zak DR, Denton SR, Spurr SH (1998) Forest Ecology, 4th edn. John Wiley and Sons, New York. |
4 | Boerner RE (1984) Nutrient fluxes in litter fall and decomposition in four forests along a gradient of soil fertility in southern Ohio. Canadian Journal of Forest Research, 14, 794-802. |
5 | Bosco T, Bertiller MB, Carrera AL (2015) Micro-environ- mental conditions affect grass and shrub seedling emergence in denuded areas of the arid Patagonian Monte, Argentina. Flora, 210, 66-71. |
6 | Boyero L, Pearson RG, Gessner MO, Barmuta LA, Ferreira V, Graca MAS, Dudgeon D, Boulton AJ, Callisto M, Chauvet E, Helson JE, Bruder A, Albarino RJ, Yule CM, Arunachalam M, Davies JN, Figueroa R, Flecker AS, Rarnirez A, Death RG, Iwata T, Mathooko JM, Mathuriau C, Goncalves JF, Moretti MS, Jinggut T, Lamothe S, M’Erimba C, Ratnarajah L, Schindler MH, Castela J, Buria LM, Cornejo A, Villanueva VD, West DC (2011) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters, 14, 289-294. |
7 | Bruelheide H, Nadrowski K, Assmann T, Bauhus J, Both S, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Gutknecht JLM, Guo DL, Guo LD, Hardtle W, He JS, Klein AM, Kuhn P, Liang Y, Liu XJ, Michalski S, Niklaus PA, Pei KQ, Scherer-Lorenzen M, Scholten T, Schuldt A, Seidler G, Trogisch S, von Oheimb G, Welk E, Wirth C, Wubet T, Yang XF, Yu MJ, Zhang SR, Zhou HZ, Fischer M, Ma KP, Schmid B (2014) Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution, 5, 74-89. |
8 | Cebrian J (1999) Patterns in the fate of production in plant communities. The American Naturalist, 154, 449-468. |
9 | Chen FL, Zheng H, Ouyang ZY, Zhang K, Tu NM (2011) Responses of microbial community structure to the leaf litter composition. Acta Pedologica Sinica, 48, 603-611. (in Chinese with English abstract) |
[陈法霖, 郑华, 欧阳志云, 张凯, 屠乃美 (2011) 土壤微生物群落结构对凋落物组成变化的响应. 土壤学报, 48, 603-611.] | |
10 | Chapman SK, Koch GW (2007) What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem? Plant Soil, 299, 153-162. |
11 | Chapman SK, Newman GS, Hart SC, Schweitzer JA, Koch GW (2013) Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE, 8, e62671. |
12 | Couteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63-66. |
13 | Dong M (1997) Survey, Observation and Analysis of Terrestrial biocommunities.Standards Press of China, Beijing. (in Chinese) |
[董鸣 (1997) 陆地生物群落调查观测与分析. 中国标准出版社, 北京.] | |
14 | Frostegård A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
15 | Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos, 104, 230-246. |
16 | Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends in Ecology and Evolution, 25, 372-380. |
17 | Guo PP, Jiang H, Yu SQ, Ma YD, Dou RP, Song XZ (2009) Comparison of litter decomposition of six species of coniferous and broad-leaved trees in subtropical China. Chinese Journal of Applied and Environmental Biology, 15, 655-659. (in Chinese with English abstract) |
[郭培培, 江洪, 余树全, 马元丹, 窦荣鹏, 宋新章 (2009) 亚热带6种针叶和阔叶树种凋落叶分解比较. 应用与环境生物学报, 15, 655-659.] | |
18 | Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences, USA, 102, 1519-1524. |
19 | Hines J, Reyes M, Mozder TJ, Gessner MO (2014) Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration. Global Change Biology, 20, 3780-3789. |
20 | Jia YY, Lü YN, Kong XS, Jia XQ, Tian K, Du JJ, Tian XJ (2015) Insight into the indirect function of isopods in litter decomposition in mixed subtropical forests in China. Applied Soil Ecology, 86, 174-181. |
21 | Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. Society for Applied Bacteriology. Technical Series, 20, 173-199. |
22 | Lai JS, Mi XC (2012) Ordination Analysis of Ecological Data Using Vegan Package in R. China Meteorological Press, Beijing. (in Chinese with English abstract) |
[赖江山, 米湘成 (2012) 基于Vegan软件包的生态学数据的排序分析. 气象出版社, 北京.] | |
23 | Lechevalier MP (1977) Lipids in bacterial taxonomy- taxonomists view. Critical Reviews in Microbiology, 5, 109-210. |
24 | Lin N, Bartsch N, Heinrichs S, Vor T (2015) Long-term effects of canopy opening and liming on leaf litter production, and on leaf litter and fine-root decomposition in a European beech (Fagus sylvatica L.) forest. Forest Ecology and Management, 33, 183-190. |
25 | Liu P (2006) Characteristics and responses to changes in environmental conditions of litter decomposition in plant species of Stipa krylovii Roshev. steppe. PhD dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[刘苹 (2006) 克氏针茅(Stipa krylovii Roshev.)草原植物凋落物分解特性及其对环境变化的响应. 博士学位论文, 中国科学院植物研究所, 北京.] | |
26 | Ma KP, Liu YM (1994) Measurement of biotic community diversity I. α diversity (Part 2). Chinese Biodiversity, 2, 231-239. (in Chinese) |
[马克平, 刘玉明 (1994)生物群落多样性的测度方法I. α多样性(下). 生物多样性, 2, 231-239.] | |
27 | McNab WH (1993) A topographic index to quantify the effect of mesoscale land form on site productivity. Canadian Journal of Forest Research, 23, 1100-1107. |
28 | Meentemeyer V (1978) Macroclimate and lignin control of litter decomposition rates. Ecology, 59, 465-472. |
29 | Muscolo A, Bagnato S, Sidari M, Mercurio R (2014) A review of the roles of forest canopy gaps. Journal of Forestry Research, 25, 725-736. |
30 | Nordby HE, Nemec, S, Nagy S (1981) Fatty-acids and sterols associated with citrus root mycorrhizae. Journal of Agricultural and Food Chemistry, 29, 396-401. |
31 | O’Leary WM, Wilkinson SG(1988) Gram-positive bacteria. In: Microbial Lipids (eds Ratledge C, Wilkinson SG), pp. 117-201. Academic Press, London. |
32 | Olsson PA (1999) Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiology Ecology, 29, 303-310. |
33 | Qi HY, Xue K, Zhang HX (2003) Phospholipid fatty acid analysis and its applications in microbial ecology.Acta Ecologica Sinica, 23, 1576-1582. (in Chinese with English abstract) |
[齐鸿雁, 薛凯, 张洪勋 (2003) 磷脂脂肪酸谱图分析方法及其在微生物生态学领域的应用. 生态学报, 23, 1576-1582.] | |
34 | Qin Y, Nan CY, Lu Z, Sun JJ, Liang J (2014) Effects of leaf litter at Ziwuling Mountain on soil bacterial community structure. Journal of Shaanxi Normal University, 42, 76-80. (in Chinese with English abstract) |
[秦源, 南春燕, 路哲, 孙建军, 梁健 (2014) 子午岭森林凋落叶对土壤细菌群落结构的影响. 陕西师范大学学报, 42, 76-80.] | |
35 | Reigosa MJ, Pedrol N, González L (2006) Allelopathy: A Physiological Process with Ecological Implications. Springer, Dordrecht. |
36 | Sariyildiz T (2015) Effects of tree species and topography on fine and small root decomposition rates of three common tree species (Alnus glutinosa, Picea orientalis and Pinus sylvestris) in Turkey. Forest Ecology and Management, 335, 71-86. |
37 | Sariyildiz T, Anderson JM, Kucuk M (2005) Effects of tree species and topography on soil chemistry, litter quality and decomposition in Northeast Turkey. Soil Biology and Biochemistry, 37, 1695-1706. |
38 | Sariyildiz T, Kucuk M (2008) Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast turkey: relationships with litter quality, microclimate, and soil characteristics. Turkish Journal of Agriculture and Forestry, 32, 547-559. |
39 | Scheibe A, Steffens C, Seven J, Jacob A, Hertel C, Leuschner C, Gleixner G (2015) Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology and Biochemistry, 81, 219-227. |
40 | Tornberg K, Baath E, Olsson S (2003) Fungal growth and effects of different wood decomposing fungi on the indigenous bacterial community of polluted and unpolluted soils. Biology and Fertility of Soils, 37, 190-197. |
41 | Wang R, Peng S, Zeng R, Ding LW, Xu ZF (2009) Cloning, expression and wounding induction of β-caryophyllene synthase gene from Mikania micrantha H. B. K. and allelopathic potential of β-caryophyllene. Allelopathy Journal, 24, 35-44. |
42 | Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004) Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity. Ecological Applications, 14, 1172-1177. |
43 | Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633. |
44 | Waring BG (2013) Exploring relationships between enzyme activities and leaf litter decomposition in a wet tropical forest. Soil Biology and Biochemistry, 64, 89-95. |
45 | Wilkinson SG (1988) Gram-negative Bacteria.. pp. 299-488. Academic Press, London. |
46 | Wu ZY, Lin WX, Chen ZF, Fang CX, Zhang ZX, Wu LK, Zhou MM, Chen T (2013) Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest. Chinese Journal of Plant Ecology, 37, 397-406. (in Chinese with English abstract) |
[吴则焰, 林文雄, 陈志芳, 方长旬, 张志兴, 吴林坤, 周明明, 陈婷 (2013) 中亚热带森林土壤微生物群落多样性随海拔梯度的变化. 植物生态学报, 37, 397-406.] | |
47 | Zhang D, Zhang YX, Qu LY, Ma KM, Dai SD (2012) Effects of slope position on soil microbial biomass of Quercus liaotungensis forest in Dongling Mountain. Acta Ecologica Sinica, 32, 6412-6421. (in Chinese with English abstract) |
[张地, 张育新, 曲来叶, 马克明, 戴斯迪 (2012) 坡位对东灵山辽东栎林土壤微生物量的影响.生态学报, 32, 6412-6421.] |
[1] | 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 2018, 26(9): 962-971. |
[2] | 李靖宇, 刘建利, 张琇, 王猛, 杨洲, 靳新影, 苟琪, 张翼飞. 腾格里沙漠东南缘藓结皮微生物组基因多样性及功能[J]. 生物多样性, 2018, 26(7): 727-737. |
[3] | 李香真, 郭良栋, 李家宝, 姚敏杰. 中国土壤微生物多样性监测的现状和思考[J]. 生物多样性, 2016, 24(11): 1240-1248. |
[4] | 徐华勤, 肖润林, 宋同清, 罗文, 任全, 黄瑶. 稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J]. 生物多样性, 2008, 16(2): 166-174. |
[5] | 周丽霞, 丁明懋. 土壤微生物学特性对土壤健康的指示作用[J]. 生物多样性, 2007, 15(2): 162-171. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn