生物多样性 ›› 2018, Vol. 26 ›› Issue (11): 1158-1167.doi: 10.17520/biods.2018213

• 研究报告 • 上一篇    下一篇

降雨年型变化及竞争对反枝苋和大豆生长的影响

姜佰文1, 李静1, 陈睿1, 鲁萍1, *(), 李琦1, 肖同玉1, 白雅梅1, 张险峰2, 李亦奇1   

  1. 1 东北农业大学资源与环境学院, 哈尔滨 150030
    2 东北农业大学实验实习与示范中心, 哈尔滨 150030
  • 收稿日期:2018-08-03 接受日期:2018-10-27 出版日期:2018-11-20
  • 通讯作者: 鲁萍 E-mail:lping1977@126.com
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(31770582)、黑龙江省自然科学基金(C2017018)和东北农业大学学术骨干项目(17XG08)

Effects of annual precipitation pattern variation and different cultivation modes on the growth of Amaranthus retroflexus and Glycine max

Baiwen Jiang1, Jing Li1, Rui Chen1, Ping Lu1, *(), Qi Li1, Tongyu Xiao1, Yamei Bai1, Xianfeng Zhang2, Yiqi Li1   

  1. 1 College of Resources and Environment, Northeast Agricultural University, Harbin 150030
    2 Experiment Practice and Demonstration Center, Northeast Agricultural University, Harbin 150030
  • Received:2018-08-03 Accepted:2018-10-27 Online:2018-11-20
  • Contact: Lu Ping E-mail:lping1977@126.com
  • About author:

    # Co-first authors

为探索不同降雨年型及栽培方式下外来杂草与本地作物的竞争机制, 为未来全球变化背景下控制外来杂草提供理论依据, 本研究以广泛入侵东北农田生态系统的外来杂草反枝苋(Amaranthus retroflexus)和本地作物大豆(Glycine max)为研究对象, 在遮雨棚内人工模拟正常、欠缺、丰沛三种降雨年型, 采用盆栽实验的方法, 研究两种植物在单种和混种条件下的生长季节动态。结果表明, 降雨丰沛年两种植物的株高和总生物量均大于降雨正常年, 降雨欠缺年则均小于降雨正常年。生长季初期两种植物的根冠比均在降雨欠缺年最高, 说明两种植物均可通过增大根系的生物量分配, 减少地上生物量的分配来适应干旱环境。在三种降雨年型下, 混种时大豆的株高、相对生长速率及总生物量均显著小于单种大豆, 而反枝苋则相反, 尽管有时不显著, 说明种间竞争抑制大豆生长而促进反枝苋的生长, 两种植物之间的竞争是不对称竞争。总的来看, 降雨增加有利于提高大豆的竞争能力, 降雨减少有利于提高反枝苋的竞争能力, 随着生长发育的推移, 这种现象更明显。反枝苋可以在较广的降雨变化范围内保持较高的株高、相对生长速率及生物量, 这很可能是其成为全球范围成功入侵的外来杂草的重要原因之一; 干旱更有利于反枝苋入侵大豆田。

关键词: 外来杂草, 本地作物, 降雨年型, 栽培方式, 生长

Global climate change will alter temporal and spatial distributions of precipitation patterns. The effects of precipitation changes on crop seed germination and growth have been previously investigated, however, there has been limited research on effects of precipitation changes on how invasive weeds compete with crops. Exploring competition between exotic weeds and native crops under different annual precipitation patterns and cultivation modes will provide a theoretical basis to control alien weeds with impending changes to the global climate. In this study, we assessed how precipitation alters competitive dynamics between two plants, Amaranthus retroflexus, a widespread invasive weed in agricultural ecosystem in Northeastern China, and Glycine max, one of the most important native crops in China. We conducted pot experiments under three patterns of annual precipitation: the average annual precipitation pattern (the average total precipitation amount of growing season of the recent 30 years), the deficient annual precipitation pattern (20% lower than the average value), and the plentiful annual precipitation pattern (20% higher than the average value). The pots were placed underneath a rainout shelter, and the two plants were seeded as two plants of the same species per pot (sole species) or two plants of different species per pot (mixed species). We found that the plant height and total biomass of A. retroflexus and G. max in the average precipitation annual pattern were higher than those of deficient precipitation annual pattern, but lower than those of the abundance precipitation annual pattern. The root to shoot ratio of the two plants at the early growing season were all highest in the deficient precipitation annual pattern, indicating that both plants could adapt to the arid environment by increasing the root biomass allocation and decreasing the shoot biomass allocation. Under all the annual precipitation patterns, plant height, relative growth rate and total biomass of mixture G. max were significantly less than sole planted G. max, while A. retroflexus showed the opposite trend. These results indicate that interspecific competition significantly inhibited the growth of G. max, but promoted the growth of A. retroflexus, suggesting asymmetric competition between the species. In general, the competitive ability of G. max increased with higher precipitation, while that of A. retroflexus increased when precipitation declined. The results indicated that A. retroflexus can successfully invade G. max cropland under all three precipitation scenarios, and maintain a high plant height, relative growth rate, and biomass over a wide range of annual precipitation variation. These biological characters of A. retroflexus may allow it to become a successfully globally invasive weed, and drought may favor its invasion of G. max cropland.

Key words: exotic weed, native crop, annual precipitation pattern, cultivation mode, growth

图1

不同降雨年型的模拟降雨量分布。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。"

表1

降雨年型、栽培方式、采样时间及其交互作用对反枝苋和大豆的株高、相对生长速率、根冠比和总生物量的影响(F值, RMANOVA)"

株高 Height 相对生长速率 RGR 根冠比 R/S 总生物量 Total biomass
反枝苋 Amaranthus retroflexus
栽培方式 Cultivation mode (Cult.) 10.13** 227.91*** 3.99 ns 2,862.44***
降雨年型 Precipitation pattern (Prec.) 56.76*** 41.66*** 88.75*** 388.53***
采样时间 Sampling time (Samp.) 1,023.21*** 15,173.44*** 332.55*** 3,435.53***
栽培方式 × 降雨年型 Cult. × Prec. 14.23*** 37.79*** 4.32* 29.16***
栽培方式 × 采样时间 Cult. × Samp. 5.82** 14.74*** 1.92 ns 366.46***
采样时间 × 降雨年型 Samp. × Prec. 17.56*** 10.31*** 30.41*** 73.84***
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. 5.44*** 4.81** 13.21*** 40.47***
大豆 Glycine max
栽培方式 Cultivation mode (Cult.) 1,314.58*** 32.78*** 64.97*** 2,043.58***
降雨年型 Precipitation pattern (Prec.) 532.56*** 7.53** 153.70*** 527.47***
采样时间 Sampling time (Samp.) 560.08*** 638.95*** 337.36*** 884.17***
栽培方式 × 降雨年型 Cult. × Prec. 3.30ns 5.41* 36.27** 0.83 ns
栽培方式 × 采样时间 Cult. × Samp. 131.53*** 28.96*** 5.95** 219.98***
采样时间 × 降雨年型 Samp. × Prec. 31.31*** 24.19*** 18.22*** 102.11***
栽培方式 × 降雨年型 × 采样时间 Cult. × Prec. × Samp. 3.78** 12.87*** 16.86*** 37.72***

图2

不同降雨年型及栽培方式对反枝苋和大豆株高的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05, ** P < 0.01, *** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。"

图3

不同降雨年型及栽培方式对反枝苋和大豆总生物量的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05,** P < 0.01,*** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。"

图4

不同降雨年型及栽培方式对反枝苋和大豆根冠比的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05, ** P < 0.01, *** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。"

图5

不同降雨年型及栽培方式对反枝苋和大豆相对生长速率的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 星号表示相同降雨年型同一生长时期混种植株显著高于或低于单种植株(* P < 0.05,** P < 0.01,*** P < 0.001)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年。"

表2

降雨年型、采样时间及其交互作用对反枝苋和大豆的植株相对生物量(RB)的影响(F值)"

降雨年型
Precipitation pattern (Prec.)
采样时间
Sampling time (Samp.)
采样时间 × 降雨年型
Samp. × Prec.
反枝苋植株相对生物量
Relative biomass of the plant (RB) of Amaranthus retroflexus
167.06*** 707.34*** 135.35***
大豆植株相对生物量
Relative biomass of the plant (RB) of Glycine max
73.55*** 375.41*** 72.50***

图6

不同降雨年型及栽培方式对反枝苋和大豆植株相对生物量的影响。图中数值为平均值 ± 标准误, n = 4。大写字母表示同一降雨年型不同生长时期之间的差异, 小写字母表示同一生长时期不同降雨年型间的差异(P < 0.05), 各物种各降雨处理各时期相对生物量与1.0的差异均显著(降雨正常年6月除外)。AP: 降雨正常年; DP: 降雨欠缺年; PP: 降雨丰沛年; RBA.r: 反枝苋单株相对生物量; RBG.m: 大豆单株相对生物量。"

[1] Bai X, Ta L, Zhao MW, Liu CC, Wei GY, Cui LT, Zeng GJ, Qin J (2016) New research progress on alien invasive plant Amaranthus retroflexus L. from 2010 to 2015. Crops, 173(4), 12-19. (in Chinese with English abstract)
[柏祥, 塔莉, 赵美微, 刘传才, 魏国印, 崔力拓, 曾广娟, 秦津 (2016) 外来入侵植物反枝苋的最新研究进展. 作物杂志, 173(4), 12-19.]
[2] Bazzaz FA, Garbutt K, Reekie EG, Williams WE (1989) Using growth analysis to interpret competition between a C3 and a C4 annual under ambient and elevated CO2. Oecologia, 79, 223-235.
[3] Blumenthal D, Chimner RA, Welker JM, Morgan JA (2008) Increased snow facilitates plant invasion in mixed grass prairie. New Phytologist, 179, 440-448.
[4] Bonifas KD, Lindqiust JL (2009) Effects of nitrogen supply on the root morphology of corn and velvetleaf. Journal of Plant Nutrition, 32, 1371-1382.
[5] Bradley BA, Blumenthal DM, Wilcove DS, Ziska DS (2010) Predicting plant invasions in an era of global change. Trends in Ecology & Evolution, 25, 310-318.
[6] Caplan JS, Yeakley JA (2010) Water relations advantages for invasive Rubus armeniacus over two native ruderal congeners. Plant Ecology, 210, 169-179.
[7] Cong X, Wu Y, Lu P, Xu NT, Liang H, Tian QY, Wang P, Zhang DX (2013) The effects of nitrogen fluctuation on the maximum net photosynthetic rate and photosynthetic nitrogen use efficiency of redroot pigweed (Amaranthus retroflexus) and soybean (Glycine max). Crops, 152(1), 81-85. (in Chinese with English abstract)
[丛雪, 吴岩, 鲁萍, 徐宁彤, 梁慧, 田秋阳, 王鹏, 张东旭 (2013) 氮素波动对反枝苋和大豆最大净光合速率和光合氮利用效率的影响. 作物杂志, 152(1), 81-85.]
[8] Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology and Systematics, 34, 183-211.
[9] Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88, 528-534.
[10] Dawson W, Rohr RP, Kleunen MV, Fischer M (2012) Alien plant species with a wider global distribution are better able to capitalize on increased resource availability. New Phytologist, 194, 859-867.
[11] Dong QZ, Yang XY, Zhang Y, Xue H, Liu LL (2006) Effect of inadequate rainfall on yield and relative traits in soybean. Soybean Science & Technology, (3), 5-8. (in Chinese with English abstract)
[董全中, 杨兴勇, 张勇, 薛红, 刘玲玲 (2006) 降雨量不足对大豆产量及农艺性状影响的研究. 大豆科技, (3), 5-8.]
[12] Dukes J, Mooney H (1999) Does global change increase the success of biological invaders? Trends in Ecology & Evolution, 14, 135-139.
[13] Dunbar KR, Facelli JM (1999) The impact of a novel invasive species, Orbea variegata (African carrion flower), on the chenopod shrublands of South Australia. Journal of Arid Environments, 41, 37-48.
[14] Ewe SM, Sternberg LDSL (2002) Seasonal water-use by the invasive exotic, Schinus terebinthifolius, in native and disturbed communities. Oecologia, 133, 441-448.
[15] Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature, 446, 1079-1081.
[16] Hao CY, Zhao W, Zhao TQ (2011) Comparative research on regional respond to global climate change in China. Area Research and Development, 30(3), 56-61. (in Chinese with English abstract)
[郝成元, 赵伟, 赵同谦 (2011) 全球气候变化背景下中国敏感区区域响应比较. 地域研究与开发, 30(3), 56-61.]
[17] Harrington R, Brown B, Reich P (1989) Ecophysiology of exotic and native shrubs in southern Wisconsin. Oecologia, 80, 356-367.
[18] Huntington TG (2006) Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology, 319, 83-95.
[19] Intergovernmental Panel on Climate Change (IPCC) (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Report of a Special Report of Working Groups I and II of the IPCC. Summary for Policymakers. . (accessed on 2018-01-01
[20] Knezevic SZ, Weise SF, Swanton CJ (2017) Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Science, 42, 568-573.
[21] Lovelli S, Perniola M, Ferrara A, Amato M, Tommaso TD (2010) Photosynthetic response to water stress of pigweed (Amaranthus retroflexus) in a southern-mediterranean area. Weed Science, 58, 126-131.
[22] Lu P, Jin CG, Zhang X, Jiang BW, Yan NN, Xiao TY, Bai YM, Li JX, Chen R, Li J (2017) The responses of the ecophysiological characteristics of Amaranthus retroflexus and Glycine max to seasonal rainfall fluctuations. Crops, 177(2), 119-125. (in Chinese with English abstract)
[鲁萍, 金成功, 张茜, 姜佰文, 闫南南, 肖同玉, 白雅梅, 李景欣, 陈睿, 李静 (2017) 反枝苋和大豆对降雨季节波动的生理生态响应. 作物杂志, 177(2), 119-125.]
[23] Lu P, Li JX, Jin CG, Jiang BW, Bai YM (2016) Different growth responses of an invasive weed and a native crop to nitrogen pulse and competition. PLoS ONE, 11, e0156285.
[24] Lu P, Liang H, Wang HY, Bai YM, Gao FJ, Song G, Wu Y, Tian QY (2010) Research progress on exotic invasive weed Amaranthus retroflexus. Chinese Journal of Ecology, 29, 1662-1670. (in Chinese with English abstract)
[鲁萍, 梁慧, 王宏燕, 白雅梅, 高凤杰, 宋戈, 吴岩, 田秋阳 (2010) 外来入侵杂草反枝苋的研究进展. 生态学杂志, 29, 1662-1670.]
[25] McConnaughay KDM, Coleman JS (1999) Biomass allocation in plants: Ontogeny or optimality? A test along three resource gradients. Ecology, 80, 2581-2593.
[26] Poorter L (1999) Growth response of 15 rain forest tree species to a light gradient: The relative importance of morphological and physiological traits. Functional Ecology, 13, 396-410.
[27] Vaughn LG, Bernards ML, Arkebauer TJ, Lindqiust JL (2016) Corn and velvetleaf (Abutilon theophrasti) growth and transpiration efficiency under varying water supply. Weed Science, 64, 596-604.
[28] Xu GH, Wang HY, Liu J (2009) Effects of RRS on the amount and diversity of bacteria in rhizospheric soil. Acta Ecologica Sinica, 29, 4535-4541. (in Chinese with English abstract)
[徐广惠, 王宏燕, 刘佳 (2009) 抗草甘膦转基因大豆(RRS)对根际土壤细菌数量和多样性的影响. 生态学报, 29, 4535-4541.]
[29] Yang LH, Bastow JL, Spence KO, Wright AN (2008) What can we learn from resource pulse. Ecology, 89, 621-634.
[30] Zheng YL, Feng YL, Liu WX, Liao ZY (2009) Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology, 203, 263-271.
[31] Zou WX, Han XZ, Jiang H, Yang CB (2009) Characteristics of precipitation in black soil region and response of soil moisture dynamics in Northeast China. Transactions of the Chinese Society of Agricultural Engineering, 27(9), 196-202. (in Chinese with English abstract)
[邹文秀, 韩晓增, 江恒, 杨春葆 (2009) 东北黑土区降水特征及其对土壤水分的影响. 农业工程学报, 27(9), 196-202.]
[1] 张扬,刘华杰,薛瑞丽,李海霞,李华. (2020) 小麦TaLCD基因的克隆及其对渗透胁迫的调节作用. 植物学报, 55(2): 137-146.
[2] 王劲东,周豫,余佳雯,范晓磊,张昌泉,李钱峰,刘巧泉. (2020) miR172-AP2模块调控植物生长发育及逆境响应的研究进展. 植物学报, 55(2): 205-215.
[3] 姚玉婷,马家琦,冯晓莉,潘建伟,王超. (2020) 磷酸肌醇激酶FAB1调控拟南芥根毛伸长. 植物学报, 55(2): 126-136.
[4] 李萍,董亚辉,李成龙,何雨龙,李明军. (2020) 怀牛膝细胞悬浮培养条件的优化. 植物学报, 55(1): 90-95.
[5] 王梦龙,彭小群,陈竹锋,唐晓艳. (2020) 植物凝集素类受体蛋白激酶研究进展. 植物学报, 55(1): 96-105.
[6] 邹安龙,李修平,倪晓凤,吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 43(9): 783-792.
[7] 贺祯媚,李东明,齐艳华. (2019) 植物ABCB亚家族生物学功能研究进展. 植物学报, 54(6): 688-698.
[8] 张淑辉,王红,王文茹,吴雪莲,肖元松,彭福田. (2019) 蔗糖对桃幼苗生长发育及其SnRK1酶活性的影响. 植物学报, 54(6): 744-752.
[9] 郭倩倩, 周文彬. (2019) 植物响应联合胁迫机制的研究进展. 植物学报, 54(5): 662-673.
[10] 胡孔琴, 丁兆军. (2019) 非TIR1受体依赖型激活生长素信号的新机制. 植物学报, 54(3): 293-295.
[11] 刘校铭, 杨晓芳, 王璇, 张守仁. (2019) 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应. 植物生态学报, 43(3): 197-207.
[12] 马宏秀,王开勇,张开祥,孟春梅,安梦洁. (2019) 棉粕对盐碱胁迫下棉花生理及生长补偿效应. 植物学报, 54(2): 208-216.
[13] 王兆国, 王传宽. (2019) 碳供给与碳利用对树木生长的限制机制. 植物生态学报, 43(12): 1036-1047.
[14] 赵鑫, 王文娟, 王普昶, 黄莉娟, 赵丽丽. (2019) 不同钙浓度对宽叶雀稗幼苗的生长和抗性生理的影响. 植物生态学报, 43(10): 909-920.
[15] 咸洋, 董昕, 解孝满, 吴丹, 韩彪, 王艳. (2019) 光照和温度对红花槭限制生长保存的影响. 植物学报, 54(1): 64-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed