生物多样性 ›› 2014, Vol. 22 ›› Issue (6): 758-763.doi: 10.3724/SP.J.1003.2014.14182

所属专题: 野生动物的红外相机监测

• • 上一篇    下一篇

狗獾夜间活动节律是受人类活动影响而形成的吗?基于青海湖地区的研究实例

李峰1, 2, 蒋志刚1, , A;*()   

  1. 1 .中国科学院动物研究所动物生态与保护生物学院重点实验室, 北京 100101
    2 .江苏大学附属第四人民医院, 江苏镇江 212001
  • 收稿日期:2013-08-29 接受日期:2014-11-30 出版日期:2014-11-20
  • 通讯作者: 蒋志刚 E-mail:jiangzg@ioz.ac.cn
  • 基金项目:
    国家自然科学基金(31372175)

Is nocturnal rhythm of Asian badger (Meles leucurus) caused by human activity? A case study in the eastern area of Qinghai Lake

Feng Li1, 2, Zhigang Jiang1()   

  1. 1. Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101
    2. The 4th Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001
  • Received:2013-08-29 Accepted:2014-11-30 Online:2014-11-20

青海湖地区是目前已知的狗獾分布海拔最高点。为了解狗獾在青藏高原严酷生态环境下的生活史特点, 并验证是否人类干扰造成了狗獾夜行性的假说, 我们利用红外相机技术, 结合无线电遥测和野外调查研究了青海湖湖东地区亚洲狗獾(Meles leucurus)的种群密度、洞穴口的行为及活动节律。结果表明: (1)研究地区狗獾的平均种群密度为1.2 ± 0.6只/km2, 其分布受食物丰富度的影响; (2)狗獾基本在夜间活动, 出洞时间集中在20:00-23:00之间, 而回洞时间则集中在清晨4:00-7:00之间, 23:00-4:00之间是狗獾的活动高峰; (3)狗獾离洞前行为主要是警戒行为, 回洞穴时的行为主要是嬉戏行为, 其他行为较少见, 表达具有特定的时间性; (4)人类活动对于狗獾活动没有显著性影响(P < 0.05)。

关键词: 行为, 青藏高原, 警戒行为, 活动节律, Meles leucurus

The Qinghai Lake area is the known highest place with Asian badger (Meles leucurus) distribution in the world. In order to test the hypothesis that human interference caused the nocturnal activity rhythm of badgers, we used infrared cameras in complementary of telemetry of radio collared two badgers to record activity rhythm of badgers at the entrances of their setts in the eastern shore of Qinghai Lake. We also estimated the population density and recorded the behaviors expressed by the badgers with infrared cameras and other conventional field investigations. The results showed: (1) through infrared camera records and sett density estimation, the average badger densities in this area were 1.2 ± 0.6 badgers/km2 and being influenced by food abundance. (2) the most common behavior expressed by badgers at sett entrances was vigilance behavior when badger emerged from the setts, followed by the play behavior when badgers returned to setts. (3) badgers mainly emerged from the setts between 20:00-23:00 and returned to the sett between 4:00-7:00 in the following morning. Their activity peak focused between 23:00-4:00. Human activity had no influence on the nocturnal activity rhythm of badgers.

Key words: infrared camera, Tibetan Plateau, vigilance, activity rhythm, badger

图1

青海湖地区狗獾研究地点"

图2

青海湖湖东地区狗獾在洞穴前行为频次分析"

图3

狗獾进出洞穴时间的分布"

[1] Do Linh San E, Ferrari N, Weber JM (2003) The badger (Meles meles L.) in the Swiss Jura: trapping success, demographic parameters and ectoparasites.Revue suisse de Zoologie, 110, 565-580.
[2] Feng ZJ (冯祚建) (1986) Mammals in Tibet (西藏哺乳动物). Science Press. Beijing. (in Chinese)
[3] Goszczynski J, Jedrzejewska B, Jedrzejewski W (2000) Diet composition of badgers (Meles meles) in a pristine forest and rural habitats of Poland compared to other European populations.Journal of Zoology, 250, 495-505.
[4] Harris S (1982) Activity patterns and habitat utilization of badgers (Meles meles) in suburban Bristol: a radio tracking study.Symposia of the Zoological Society of London. 49, 301-323.
[5] Henner CM, Chamberlain MJ, Leopold BD, Burger LW (2004) A multi-resolution assessment of raccoon den selection.Journal of Wildlife Management, 68, 179-187.
[6] Jiang ZG (蒋志刚) (2004) Przewalski’s Gazelle (中国普氏原羚). China Forestry Publishing House. Beijing. (in Chinese)
[7] Kowalczyk R, Bunevich AN, Jedrzejewska B (2000) Badger density and distribution of setts in Bialowieza Primeval Forest (Poland and Belarus) compared to other Eurasian populations.Acta Theriologica, 46, 395-408.
[8] Kowalczyk R, Zalewski A, Jedrzejewska B, Jedrzejewski W (2003) Spatial organization and demography of badgers (Meles meles) in Bialowieza Primeval Forest, Poland, and the influence of earthworms on badger densities in Europe. Canadian Journal of Zoology (Revue Canadienne De Zoologie), 81, 74-87.
[9] Kruuk H, Parish T (1981) Feeding specialization of the European badger (Meles meles) in Scotland.Journal of Animal Ecology, 50, 773-788.
[10] Lara-Romero C, Virgóes E, Revilla E (2011) Sett density as an estimator of population density in the European badger Meles meles.Mammal Review, 42, 78-84.
[11] Li CW, Jiang ZG, Ping XG, Cai J, You ZQ, Li CQ, Wu YL (2012) Current status and conservation of the endangered Przewalski’s gazelle (Procapra przewalskii), endemic to the Qinghai-Tibetan Plateau, China.Oryx, 46, 145-153.
[12] Li F, Luo Z, Li C, Li C, Jiang Z (2013) Biogeographical patterns of the diet of Palearctic badger: is badger an earthworm specialist predator?Chinese Science Bulletin, 58, 2255-2261.
[13] Martin R, Rodriguez A, Delibes M (1995) Local feeding specialization by badgers (Meles meles) in a Mediterranean environment.Oecologia, 101, 45-50.
[14] Neal EG (1986) The Natural History of Badgers. Croom Helm, London.
[15] Ni SX (倪绍祥) (2002) Monitoring and Prediction of Grass- hopper Around Qinghai Lake District (环青海湖地区草地蝗虫遥感监测与预测). Shanghai Science and Technology Press, Shanghai. (in Chinese)
[16] Pan QH (潘清华),Wang YX (王应祥), Yan K (岩崑) (2007) A Field Guide to the Mammals of China (中国哺乳动物彩色图鉴). China Forestry Publishing House, Beijing. (in Chinese)
[17] Remonti L, Balestrieri A, Prigioni C (2006) Factors determining badger Meles meles sett location in agricultural ecosystems of NW Italy.Folia Zoologica, 55, 19-28.
[18] Revilla E, Palomares F, Delibes M (2001) Edge-core effects and the effectiveness of traditional reserves in conservation: Eurasian badgers in Donana National Park.Conservation Biology, 15, 148-158.
[19] Rodriguez A, Delibes M (1992) Food-habits of badgers (Meles meles) in an arid habitat.Journal of Zoology, 227, 347-350.
[20] Rodriguez A, Martin R, Delibes M (1996) Space use and activity in a mediterranean population of badgers Meles Meles.Acta Theriologica 41, 59-72.
[21] Roper TJ. (1994) The European badger Meles meles—food specialist or generalist.Journal of Zoology, 234, 437-452.
[22] Rowcliffe JM, Field J. Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition.Journal of Applied Ecology 45, 1228-1236.
[23] State Forestry Administration, PRC (2000) Checklist of State Protected Beneficial Wild Animals or Wild Animals of Important Economic and Scientific Values (国家保护的有益的或者有重要经济, 科学研究价值的陆生野生动物名录). Decree No.7.(in Chinese)
[24] Stewart P, Ellwood DSA, MacDonald DW (1997) Remote video-surveillance of wildlife—an introduction from experience with the European badger (Meles meles).Mammal Review, 27, 185-204.
[25] Virgos E, Casanovas JG (1999) Environmental constraints at the edge of a species distribution, the Eurasian badger (Meles meles L.): a biogeographic approach.Journal of Biogeography, 26, 559-564.
[26] Wilson DE, Reeder DM (2005) Mammal Species of the World: A Taxonomic and Geographic Reference. 3rd edn. Smithsonian Institution Press, Washington D.C. and London.
[27] Xie ZG (谢志刚) (2011) Ecological Studies of Badger (Meles meles) in Shanghai (上海地区狗獾生态学研究). East China Normal University, Shanghai. (in Chinese)
[28] Zhang RZ (张荣祖) (1997) Distribution of Mammalian Species in China (中国哺乳动物分布). China Forestry Publishing House, Beijing. (in Chinese)
[1] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析[J]. 生物多样性, 2019, 27(6): 683-688.
[2] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律[J]. 生物多样性, 2019, 27(6): 638-647.
[3] 陈立军,束祖飞,肖治术. 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例[J]. 生物多样性, 2019, 27(3): 266-272.
[4] 土艳丽,王力平,王喜龙,王林林,段元文. 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位[J]. 生物多样性, 2019, 27(3): 306-313.
[5] 牟静, 宾振钧, 李秋霞, 卜海燕, 张仁懿, 徐当会. 氮硅添加对青藏高原高寒草甸土壤氮矿化的影响[J]. 植物生态学报, 2019, 43(1): 77-84.
[6] 张贇, 尹定财, 田昆, 张卫国, 和荣华, 和文清, 孙江梅, 刘振亚. 玉龙雪山不同海拔丽江云杉径向生长对气候变异的响应[J]. 植物生态学报, 2018, 42(6): 629-639.
[7] 周彤,曹入尹,王少鹏,陈晋,唐艳鸿. 中国草地和欧洲木本植物返青期对气温和降水变化的响应: 基于生存分析的研究[J]. 植物生态学报, 2018, 42(5): 526-538.
[8] 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475.
[9] 耿晓东, 旭日, 刘永稳. 青藏高原纳木错高寒草甸生态系统碳交换对多梯度增水的响应[J]. 植物生态学报, 2018, 42(3): 397-405.
[10] 于海彬, 张镱锂, 刘林山, 陈朝, 祁威. 青藏高原特有种子植物区系特征及多样性分布格局[J]. 生物多样性, 2018, 26(2): 130-137.
[11] 蒋志刚, 李立立, 胡一鸣, 胡慧建, 李春旺, 平晓鸽, 罗振华. 青藏高原有蹄类动物多样性和特有性: 演化与保护[J]. 生物多样性, 2018, 26(2): 158-170.
[12] 崔绍朋, 罗晓, 李春旺, 胡慧建, 蒋志刚. 基于MaxEnt模型预测白唇鹿的潜在分布区[J]. 生物多样性, 2018, 26(2): 171-176.
[13] 胡一鸣, 李玮琪, 蒋志刚, 刘务林, 梁健超, 林宜舟, 黄志文, 覃海华, 金崑, 胡慧建. 羌塘、可可西里无人区野牦牛种群数量和分布现状[J]. 生物多样性, 2018, 26(2): 185-190.
[14] 乔慧捷, 汪晓意, 王伟, 罗振华, 唐科, 黄燕, 杨胜男, 曹伟伟, 赵新全, 江建平, 胡军华. 从自然保护区到国家公园体制试点: 三江源国家公园环境覆盖的变化及其对两栖爬行类保护的启示[J]. 生物多样性, 2018, 26(2): 202-209.
[15] 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响[J]. 植物生态学报, 2018, 42(1): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed