生物多样性 ›› 2014, Vol. 22 ›› Issue (6): 764-772.doi: 10.3724/SP.J.1003.2014.14176

所属专题: 野生动物的红外相机监测

• • 上一篇    下一篇

千岛湖片段化栖息地地栖哺乳动物的红外相机监测及最小监测时长

徐爱春1, 2, 斯幸峰1, 王彦平1, 丁平1, , A;*()   

  1. 1 .浙江大学生命科学学院, 杭州 310058
    2.中国计量学院生命科学学院, 杭州 310018
  • 收稿日期:2014-08-25 接受日期:2014-11-24 出版日期:2014-11-20
  • 通讯作者: 丁平 E-mail:dingping@zju.edu.cn
  • 基金项目:
    国家自然科学基金(31272325、31210103908)、中国博士后科学基金(2012M511354)和浙江省科技厅公益技术应用研究计划项目(2012C32012)

Camera traps and the minimum trapping effort for ground-dwelling mammals in fragmented habitats in the Thousand Island Lake, Zhejiang Province

Aichun Xu1, 2, Xingfeng Si1, Yanping Wang1, Ping Ding1, *()   

  1. 1. College of Life Sciences, Zhejiang University, Hangzhou 310058
    2. College of Life Sciences, China Jiliang University, Hangzhou 310018
  • Received:2014-08-25 Accepted:2014-11-24 Online:2014-11-20
  • Contact: Ding Ping E-mail:dingping@zju.edu.cn

作为典型的陆桥岛屿, 千岛湖成为检验栖息地片段化理论的自然研究平台。2011年5月1日至2014年3月31日, 我们在千岛湖32个岛屿和1个大陆对照样点布设了60台红外相机, 对千岛湖体型较大的地栖兽类及其最小监测时长进行了监测和研究。在27,798个相机日的监测中, 共获得动物影像照片23,639张, 照片清晰、可进行物种鉴定的有2,414张, 占照片总数的10.2%; 其中体型较大的地栖兽类独立照片988张, 识别为9个物种: 穿山甲(Manis pentadactyla)、黄麂(Muntiacus reevesi)、野猪(Sus scrofa)、华南兔(Lepus sinensis)、马来豪猪(Hystrix brachyuran)、猪獾(Arctonyx collaris)、鼬獾(Melogale moschata)、花面狸(Paguma larvata)和豹猫(Prionailurus bengalensis), 平均独立照片拍摄率为40.9%。种-面积曲线研究表明, 岛屿上的地栖兽类物种丰富度随着岛屿面积的增大而增大, 曲线的z值为0.27。大岛(>10 ha)中, 最小监测时长随面积增加而增加, 而小岛没有明显趋势; 最小监测时长随隔离度增加而减小, 但关系不显著(d.f. = 20, F = 3.067, P = 0.095), 表明建湖后栖息地的片段化与岛屿化导致了一些对面积或栖息地较为敏感的大型兽类在小岛屿上的局部灭绝。因此, 我们建议对于面积较大的片段化栖息地, 红外相机应保证较长的最小监测时长, 而面积较小的片段化栖息地在监测中应根据隔离度、基质性质、物种种类适时调整调查强度, 以完整反映当地物种实际情况。

关键词: 片段化栖息地, 岛屿生物地理学, 陆桥岛屿, 地栖兽类, 监测

Sixty camera traps were set on 32 islands and one terrestrial plot in the Thousand Island Lake region from May 1, 2011 to March 31, 2014. In total, we recorded 23,639 photos that included nine species of large ground-dwelling mammals with a rate of independent photographs of 2.62%. The species-area relationship showed that species richness increased with island area (ha) with a slope, z value, of 0.27. On large islands (> 10 ha), the minimum trapping effort increased with island area. On small islands (< 10 ha), however, there was no clear pattern. The minimum trapping effort was not correlated with island isolation (d.f. = 20, F = 3.067, P = 0.095). Our results suggested that large ground-dwelling mammal populations have disappeared on smaller islands since the lake was formed. Based on these findings, we suggest that large MTE’s are required in islands with large areas when using camera traps in a fragmented landscape. On small islands, researchers should vary trapping efforts according to the island’s attributes, including species resources.

Key words: fragmented habitat, island biogeography, land-bridge islands, ground-dwelling mammals, monitoring

图1

千岛湖湖区以及调查样点(样点按照面积大小排序, 8号样点在近邻大陆)"

表1

千岛湖湖区33个调查样点的基本参数以及各自的红外相机置放数目。其中8号样点在邻近的大陆, 其余均在岛屿上。样点按照面积从大到小排列, 编号对应于图1。"

样点
Site
相机数*
No. of cameras
(n)
调查强度
Trapping efforts
(Camera day/month)
大型兽类物种数
No. of mammals
面积
Area
(ha)
隔离度
Isolation
(m)
最小监测时长
Minimum trapping effort
(Camera day)
Observed (n) Estimated±se(n)
1 20 4,880/160 9 9.5±1.32 1,153.88 861.00 81
2 10 2,450/80 8 8±0 128.32 1,417.81 28
3 10 1,220/40 6 6±0 47.98 1,066.10 21
4 10 1,210/40 3 3±0 27.49 1,158.87 13
5 5 765/25 2 2±0 3.70 2,225.45 27
9 5 608/20 1 1±0 1.44 1,106.53 77
10 3 636/21 3 3±0 1.33 730.95 15
12 3 636/21 2 2±0 1.31 868.22 108
13 3 610/20 1 1±0 0.86 3,609.61 3
15 3 728/24 2 2±0 0.84 690.03 15
16 3 608/20 1 1±0 0.84 1,026.58 21
17 5 615/20 2 2±0 0.79 2,657.77 29
18 5 605/20 2 2±0 0.69 200.31 44
19 3 608/20 3 3±0 0.62 1378.00 175
20 5 605/20 2 2±0 0.62 2,333.60 61
21 5 615/20 2 2±0 0.53 1,939.94 17
22 5 605/20 2 2±0 0.46 1,982.69 5
23 3 642/21 3 3±0 0.42 1,056.16 56
25 5 615/20 1 1±0 0.36 2,227.08 62
28 3 608/20 1 1±0 0.25 3,650.55 5
31 3 547/18 1 1±0 0.14 387.10 275
33 3 636/21 1 1±0 0.08 947.67 11
8 5 615/20 6 7±0 1.50 0 27
6 5 615/20 0 2.56 2,199.38 -
11 5 615/20 0 1.32 2,121.37 -
14 5 615/20 0 0.85 2,184.55 -
26 5 615/20 0 0.29 3,073.21 -
27 5 615/20 0 0.25 2,658.07 -
30 5 615/20 0 0.19 2,137.68 -
32 5 615/20 0 0.12 2,073.07 -
7 3 608/20 - 2.17 998.41 -
24 3 610/20 - 0.39 4,075.04 -
29 3 608/20 - 0.19 398.18 -

图2

千岛湖湖区调查岛屿上的大型兽类种-面积曲线。黑色实心点表示大陆样点(仅供对照)。缩写: S: 物种丰富度; A: 岛屿面积。"

图3

千岛湖湖区部分样点(1, 2, 3和8号)的物种稀疏曲线。监测日表示1个样点中所有相机工作1天。"

图4

千岛湖湖区大型兽类群落在不同样点间最小监测时长与岛屿面积和隔离度的关系。圆圈的大小表明该样点的大型兽类物种丰富度。样点编号对应于图1。"

表2

千岛湖湖区红外相机监测地栖兽类的基本结果"

目/科
Order/Family
种名
Species
总照片数
No. of photos
独立照片数
Independent photograph
所占比例*
%
鳞甲目 Pholidota
鲮鲤科 Manidae 1 穿山甲 Manis pentadactyla 5 3 60.0
兔形目 Lagomorpha
兔科 Leporidae 2 华南兔 Lepus sinensis 366 157 42.9
啮齿目 Rodentia
豪猪科 Hystricidae 3 马来豪猪 Hystrix brachyuran 1 1 100
食肉目 Carnivora
鼬科 Mustelidae 4 猪獾 Arctonyx collaris 268 132 49.3
5 鼬獾 Melogale moschata 922 365 39.6
灵猫科 Viverridae 6 花面狸 Paguma larvata 55 34 61.8
猫科 Felidae 7 豹猫 Prionailurus bengalensis 20 10 50
偶蹄目 Artiodactyla
猪科 Suidae 8 野猪 Sus scrofa 331 112 33.8
鹿科 Cervidae 9 黄麂 Muntiacus reevesi 446 174 39.0
合计 2,414 988 40.9
[1] Carbone C, Christie S, Conforti K, Coulson T, Franklin N, Ginsberg JR, Griffiths M, Holden J, Kawanishi K, Kinnaird M, Laidlaw R, Lynam A, Macdonald DW, Martyr D, McDougal C, Nath L, O’Brien T, Seidensticker J, Smith DJL, Sunquist M, Tilson R, Wan Shahruddin WN (2001) The use of photographic rates to estimate densities of tigers and other cryptic mammals.Animal Conservation, 4, 75-79.
[2] Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability.Biometrics, 43, 783-791.
[3] Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation.Philosophical Transactions of the Royal Society B: Biological Sciences, 345, 101-118.
[4] Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review.Wildlife Society Bulletin, 27, 571-581.
[5] Ding Z, Feeley KJ, Wang Y, Pakeman RJ, Ding P (2013) Patterns of bird functional diversity on land-bridge island fragments. Journal of Animal Ecology, 82, 781-790.
[6] Ferraz G, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE (2003) Rates of species loss from Amazonian forest fragments.Proceedings of the National Academy of Sciences, USA, 100, 14069-14073.
[7] Gibson L, Lynam AJ, Bradshaw CJA, He F, Bickford DP, Woodruff DS, Bumrungsri S, Laurance WF (2013) Near-complete extinction of native small mammal fauna 25 years after forest fragmentation.Science, 341, 1508-1510.
[8] Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters, 4, 379-391.
[9] Gotelli NJ, Graves GR (1996) Null Models in Ecology. Smithsonian Institution Press, Washington, DC.
[10] Hu G (胡广) (2011) Multi-Scale Effects of Habitat Loss and Fragmentation on Plant Species Diversity: A Case Study in the Thousand Island Lake (生境丧失和片段化对植物物种多样性的多尺度影响: 以千岛湖陆桥岛屿为例). PhD dissertation, Zhejiang University, Hangzhou. (in Chinese with English abstract)
[11] Hu G, Feeley K, Wu J, Xu G, Yu M (2011) Determinants of plant species richness and patterns of nestedness in fragmented landscapes: evidence from land-bridge islands.Landscape Ecology, 26, 1405-1417.
[12] James FC, Rathbun S (1981) Rarefaction, relative abundance, and diversity of avian communities.Auk, 98, 785-800.
[13] Karanth KU, Nichols JD (1998) Estimation of tiger densities in India using photographic captures and recaptures.Ecology, 79, 2852-2862.
[14] Kauffman MJ, Sanjayan M, Lowenstein J, Nelson A, Jeo RM, Crooks KR (2007) Remote camera-trap methods and analy- ses reveal impacts of rangeland management on Namibian carnivore communities.Oryx, 41, 70-78.
[15] MacArthur RH, Wilson EO(1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ.
[16] MacKenzie DI, Nicholas JD, Royle JA, Pollock KH, Bailey LL, Hines JE(2006) Occupancy Estimation and Modeling:Inferring Patterns and Dynamics of Species Occurrence.Academic Press, Amsterdam.
[17] McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects.Ecological Applications, 12, 335-345.
[18] O’Connell AF, Nichols JD, Karanth KU (2011) Camera Traps in Animal Ecology: Methods and Analyses. Springer-Verlag, New York.
[19] O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape.Animal Conservation, 6, 131-139.
[20] R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (Accessed 2014.11.26).
[21] Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge, UK.
[22] Rowcliffe JM, Field J, Turvey ST, Carbone C (2008) Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology, 45, 1228-1236.
[23] Schoereder JH, Galbiati C, Ribas CR, Sobrinho TG, Sperber CF, DeSouza O, Lopes-Andrade C (2004) Should we use proportional sampling for species-area studies?Journal of Biogeography, 31, 1219-1226.
[24] Si X, Kays R, Ding P (2014a) How long is enough to detect terrestrial animals? Estimating the minimum trapping effort on camera traps.PeerJ, 2, e374.
[25] Si X, Pimm SL, Russell GJ, Ding P (2014b) Turnover of breeding bird communities on islands in an inundated lake.Journal of Biogeography, 41, 2283-2292.
[26] Simberloff D (1978) Use of rarefaction and related methods in ecology. In: Biological Data in Water Pollution Assessment: Quantitative and Statistical Analyses (eds Dickson TL, Cairns J Jr, Livingston R), pp. 150-165. American Society for Testing and Materials, Philadelphia, PA.
[27] Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals.Animal Conservation, 11, 169-178.
[28] Wang Y, Zhang M, Wang S, Ding Z, Zhang J, Sun J, Li P, Ding P (2012) No evidence for the small-island effect in avian communities on islands of an inundated lake.Oikos, 121, 1945-1952.
[29] Wu AL (武阿莉), Chen P (陈鹏), Zhang XF (张晓峰) (2014) Shooting rate of Catopuma temminckii by auto-induction infrared camera and estimation of population density in Changqing Nature Reserve.Shaanxi Forest Science and Technology(陕西林业科技), (1), 22-24. (in Chinese with English abstract)
[30] Yasuda M (2004) Monitoring diversity and abundance of mammals with camera traps: a case study on Mount Tsukuba, central Japan.Mammal Study, 29, 37-46.
[31] Zhang SS (章书声) (2013) Infrared-triggered Camera Technology in the Investigation of Mammals in Gutianshan National Nature Reserve (红外触发相机技术在古田山兽类资源监测中的应用). Master dissertation, Zhejiang Normal University, Jinhua, Zhejiang. (in Chinese with English abstract)
[32] Zhao QY (赵庆洋), Bao YX (鲍毅新), Sun B (孙波), Zhang LL (张龙龙), Hu ZY (胡知渊) (2009) Community distribution pattern and the affecting factors of small mammals in Qiandao Lake, Zhejiang.Zoological Research(动物学研究), 30, 671-678. (in Chinese with English abstract)
[1] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析[J]. 生物多样性, 2019, 27(6): 683-688.
[2] 李晗溪, 黄雪娜, 李世国, 战爱斌. 基于环境DNA-宏条形码技术的水生生态系统入侵生物的早期监测与预警[J]. 生物多样性, 2019, 27(5): 491-504.
[3] 钱海源,余建平,申小莉,丁平,李晟. 钱江源国家公园体制试点区鸟类多样性与区系组成[J]. 生物多样性, 2019, 27(1): 76-80.
[4] 史林鹭, 贾亦飞, 左奥杰, 马童慧, 雷佳琳, 雷光春, 文力. 基于MODIS EVI时间序列的鄱阳湖湿地植被覆盖和生产力的动态变化[J]. 生物多样性, 2018, 26(8): 828-837.
[5] 刘雪华, 武鹏峰, 何祥博, 赵翔宇. 红外相机技术在物种监测中的应用及数据挖掘[J]. 生物多样性, 2018, 26(8): 850-861.
[6] 刘方正, 杜金鸿, 周越, 黄志旁, 李延鹏, 王伟, 肖文. 无人机和地面相结合的自然保护地生物多样性监测技术与实践[J]. 生物多样性, 2018, 26(8): 905-917.
[7] 房以好, 任国鹏, 高颖, 张淑霞, 王浩瀚, 李延鹏, 黄志旁, 崔亮伟, 肖文. 红外相机安放于地面和林冠层对野生动物监测结果的影响[J]. 生物多样性, 2018, 26(7): 717-726.
[8] 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444.
[9] 张倩雯, 龚粤宁, 宋相金, 王新财, 杨昌腾, 束祖飞, 邹发生. 红外相机技术与其他几种森林鸟类多样性调查方法的比较[J]. 生物多样性, 2018, 26(3): 229-237.
[10] 高趁光, 郭柯, 乔鲜果, 陆帅志, 刘长成, 侯东杰, 王孜. 草原模式植物群落监测方法应用样例[J]. 生物多样性, 2018, 26(3): 266-273.
[11] 宋瑞玲, 姚锦仙, 吴恺悦, 张晓川, 吕植, 朱争光, 殷丽洁. 海洋保护区管理与保护成效评估的方法与进展[J]. 生物多样性, 2018, 26(3): 286-294.
[12] 乔慧捷, 汪晓意, 王伟, 罗振华, 唐科, 黄燕, 杨胜男, 曹伟伟, 赵新全, 江建平, 胡军华. 从自然保护区到国家公园体制试点: 三江源国家公园环境覆盖的变化及其对两栖爬行类保护的启示[J]. 生物多样性, 2018, 26(2): 202-209.
[13] 胡茜茜, 郑维超, 李佳琦, 李晟, 杨晗, 陈星, 官天培. 四姑娘山国家级自然保护区鸟兽多样性初步调查[J]. 生物多样性, 2018, 26(12): 1325-1331.
[14] 付瑞玉, 苏宏新, 张忠华, 胡刚. 中国森林生物多样性监测网络(CForBio)的研究态势与热点: 基于文献计量分析[J]. 生物多样性, 2018, 26(12): 1255-1267.
[15] 刘润, 张朝晖, 申家琛, 王智慧. 岩溶洞穴苔藓群落特征及其对重金属污染的指示意义: 以贵州织金洞为例[J]. 生物多样性, 2018, 26(12): 1277-1288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed