生物多样性 ›› 2020, Vol. 28 ›› Issue (5): 587-595.doi: 10.17520/biods.2020156

• 综述 • 上一篇    下一篇

基因组学技术在病毒鉴定与宿主溯源中的应用

韩本凤, 周欣, 张雪()   

  1. 中国农业大学植物保护学院昆虫学系, 北京 100193
  • 收稿日期:2020-04-16 接受日期:2020-06-09 出版日期:2020-05-20
  • 通讯作者: 张雪 E-mail:zhangxue0215@gmail.com
  • 基金项目:
    国家自然科学基金(31772493);科技部科技基础资源调查专项(2018FY100403);中国农业大学北京食品营养与人类健康高精尖创新中心基金

Verification of virus identity and host association using genomics technology

Benfeng Han, Xin Zhou, Xue Zhang()   

  1. Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193
  • Received:2020-04-16 Accepted:2020-06-09 Online:2020-05-20
  • Contact: Xue Zhang E-mail:zhangxue0215@gmail.com

基因组学技术, 特别是宏基因组测序在未知病毒的鉴定与溯源中起到了重要作用。相较于传统的病毒分离培养方法, 宏基因组技术可以从混合样本中获得病毒的核酸序列, 极大加速了未知病毒的鉴定与溯源, 在针对高流行性、高致病性的病毒研究中发挥了重要作用。基于宏基因组技术对未知病毒进行鉴定和溯源, 其准确性很大程度上依赖于取样及已知宿主的病毒库的完整性。然而, 当前病毒多样性的基础研究相对薄弱, 病毒的宿主信息则更加匮乏。野生动物和畜禽是人畜共患病致病病毒的重要中间宿主, 构建广泛的动物-病毒关联数据库对于准确、快速地鉴定和预防致病性病毒具有重要意义。本综述以SARS-CoV-2为例, 总结了基因组学技术在病毒的鉴定与溯源上的应用, 并针对当前动物病毒库完整性低的现状, 对构建野生和家养动物携带病毒的关联数据库的可行性提出依据与建议。

关键词: 新冠病毒, 高通量测序, 病毒多样性, 宿主溯源, 病毒进化

Genomics technology, especially metagenomic sequencing, has played an important role in identifying and tracing unknown viruses. While classical methods in virus taxonomy rely on phenotypic traits, the metagenomics pipeline assembles new virus genomes from short nucleotide fragments without the need for any a priori reference sequences. This new technology increases the efficiency in identifying viruses and hosts associated with those viruses. This is particularly useful in identifying viruses that can cause epidemics. One current challenge in accomplishing this, is the ability to trace the original and intermediate viral hosts. To do this, a comprehensive virus sequence library characterized by definite host information is needed. Unfortunately, such information is still limited. As wild and stock animals are main sources for pathogenic viruses, an extensive survey of the global virome is vitally important to help identify and prevent zoonotic epidemics. This review summarizes the application of genomics technologies in the identification of viruses and the hosts associated with those viruses, using the outbreak of SARS-CoV-2 as an example. We also address intrinsic drawbacks of current methodologies as well as the incompleteness of available virus libraries. We propose the necessity and feasibility in constructing a comprehensive virus database with host association that emphasizes the diversity of viruses and their interactions with other organisms.

Key words: SARS-CoV-2, high-throughput sequencing, virus diversity, host association, virus evolution

表1

用于病毒系统发育分析的常用方法"

分析方法 Method 作用 Application 常用软件 Software 参考文献 Reference
系统发育树
Phylogenetic trees
分析不同生物间相关性, 通过树状分支可视化生物之间的亲缘关系并推测进化历史
Analyzing the correlation between different organisms, visualizing the relationship between organisms through tree branches and speculating on the evolutionary history
RAxML,
phyML,
IQ-TREE
Zhou et al, 2020
Wu et al, 2020
Frias-De-Diego et al, 2019
Yuen et al, 2019
重建系统发育中的祖先状态
Reconstructing ancestral state
in phylogenies (RASP)
重建祖先在系统发生树上的地理分布, 推断历史生物地理学信息
Inferring historical biogeography through reconstructing ancestral geographic distributions on phylogenetic trees
RASP Luo et al, 2015
Frias-De-Diego et al, 2019
Yuen et al, 2019
系统发育网络分析
Phylogenetic network
analysis
综合一系列系统发育树的可视化结果, 较直观地展示重组等性状冲突事件
Enabling the visualization of a multitude of optimal trees, displaying reorganization and other trait conflict events
Network,
SplitsTree
Yu et al, 2020
单倍型网络分析
Haplotype network
analysis
用于在群体水平上显示个体基因型之间的关系
An intuitive method used in visualizing relationships between individual genotypes in a population level
PopART Tang et al, 2020
Leigh & Bryant, 2015
贝叶斯进化分析
Bayesian evolutionary
analyses
根据时间进化树建模推断种群发生分歧的时间
Inferring the time when the population diverged based on time evolutionary tree modeling by BEAST
BEAST Luo et al, 2015
Bouckaert et al, 2014
Suchard et al, 2018
重组分析
Recombination analysis
检验可能存在的重组信号, 揭示重组在基因进化中的作用
Identifying possible recombination signals and revealing the role of recombination in gene evolution
RDP4
Simplot
phyML
Wu et al, 2020
Lam et al, 2020

表2

ViPR数据库已收录的病毒信息(数据来源于https://www.viprbrc.org/brc/home.spg?decorator=vipr)"


Families

Species
基因组
Genomes
病毒株
Strains
蛋白
Proteins
缺乏宿主信息比例
Percent without host identification
Arenaviridae 177 4,532 3,012 6,949 23.23%
Caliciviridae 225 52,189 49,073 96,673 28.16%
Coronaviridae 1,043 34,864 28,823 119,573 22.80%
Filoviridae 16 3,577 3,390 22,038 22.53%
Flaviviridae 367 345,546 261,780 877,286 39.36%
Hantaviridae 304 10,189 6,867 10,603 14.02%
Hepeviridae 33 17,838 15,022 19,203 17.95%
Herpesviridae 782 58,371 45,281 300,180 60.18%
Nairoviridae 38 3,669 1,931 3,553 9.92%
Paramyxoviridae 574 50,355 44,898 67,728 24.22%
Peribunyaviridae 183 5,031 2,434 6,367 22.80%
Phasmaviridae 16 1,106 340 1,114 0.27%
Phenuiviridae 215 5,189 2,934 7,133 13.37%
Picornaviridae 1,038 127,336 116,298 346,846 26.91%
Pneumoviridae 17 37,289 33,516 60,235 30.36%
Poxviridae 283 10,444 7,487 125,948 40.87%
Reoviridae 363 107,566 39,985 108,677 15.93%
Rhabdoviridae 530 33,347 26,510 46,761 22.12%
Togaviridae 60 12,800 10,854 46,764 36.25%
总计 Total 6,264 921,238 700,435 2273,631
[1] Adams IP, Glover RH, Monger WA, Mumford R, Jackeviciene E, Navalinskiene M, Samuitiene M, Boonham N (2009) Next-generation sequencing and metagenomic analysis: A universal diagnostic tool in plant virology. Molecular Plant Pathology, 10, 537-545.
doi: 10.1111/j.1364-3703.2009.00545.x pmid: 19523106
[2] Almazan F, Sola I, Zuniga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes L (2014) Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 189, 262-270.
pmid: 24930446
[3] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF (2020) The proximal origin of SARS-CoV-2. Nature Medicine, 26, 450-452.
doi: 10.1038/s41591-020-0820-9 pmid: 32284615
[4] Babayan SA, Orton RJ, Streicker DG (2018) Predicting reservoir hosts and arthropod vectors from evolutionary signatures in RNA virus genomes. Science, 362, 577-580.
doi: 10.1126/science.aap9072 pmid: 30385576
[5] Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 10, e1003537.
doi: 10.1371/journal.pcbi.1003537 pmid: 24722319
[6] Briese T, Paweska JT, Mcmullan LK, Hutchison SK, Street C, Palacios G, Khristova ML, Weyer J, Swanepoel R, Egholm M, Nichol ST, Lipkin WI (2009) Genetic detection and characterization of Lujo virus, a new hemorrhagic fever-associated arenavirus from southern Africa. PLoS Pathogens, 5, e1000455.
doi: 10.1371/journal.ppat.1000455 pmid: 19478873
[7] Cui J, Li F, Shi ZL (2019) Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181-192.
doi: 10.1038/s41579-018-0118-9 pmid: 30531947
[8] Dong R, Zheng H, Tian K, Yau SC, Mao WG, Yu WP, Yin CC, Yu CL, He RL, Yang J, Yau SS (2017) Virus database and online inquiry system based on natural vectors. Evolutionary Bioinformatics, 13, 1-7.
[9] Forster P, Forster L, Renfrew C, Forster M (2020) Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences,. USA, 117, 9241-9243.
[10] Frias-De-Diego A, Jara M, Escobar LE (2019) Papillomavirus in wildlife. Frontiers in Ecology and Evolution, 7, 406.
doi: 10.3389/fevo.2019.00406
[11] Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, Zhang YJ, Luo CM, Tan B, Wang N, Zhu Y, Crameri G, Zhang SY, Wang LF, Daszak P, Shi ZL (2013) Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503, 535-538.
doi: 10.1038/nature12711
[12] Gorbalenya AE, Gulyaeva AA, Lauber C, Sidorov IA, Leontovich AM, Penzar D, Samborskiy DV, Baker SC, Baric RS, de Groot RJ, Drosten C, Haagmans BL, Neuman BW, Perlman S, Poon LLM, Sola I, Ziebuhr J (2020) The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 5, 536-544.
pmid: 32123347
[13] Gusfield D, Eddhu S, Langley C (2004) Optimal efficient reconstruction of phylogenetic networks with constrained recombination. Journal of Bioinformatics and Computational Biology, 2, 173-213.
doi: 10.1142/s0219720004000521 pmid: 15272438
[14] Hadidi A, Flores R, Candresse T, Barba M (2016) Next-generation sequencing and genome editing in plant virology. Frontiers in Microbiology, 7, 1325.
doi: 10.3389/fmicb.2016.01325 pmid: 27617007
[15] Hemida MG, Chu DK, Poon LL, Perera RA, Alhammadi MA, Ng HY, Siu LY, Guan Y, Alnaeem A, Peiris M (2014) MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerging Infectious Diseases, 20, 1231-1234.
pmid: 24964193
[16] Holmes EC, Zhang YZ (2015) The evolution and emergence of hantaviruses. Current Opinion in Virology, 10, 27-33.
doi: 10.1016/j.coviro.2014.12.007 pmid: 25562117
[17] Hon CC, Lam TY, Shi ZL, Drummond AJ, Yip CW, Zeng F, Lam PY, Leung FC (2008) Evidence of the recombinant origin of a bat severe acute respiratory syndrome (SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. Journal of Virology, 82, 1819-1826.
pmid: 18057240
[18] Hu B, Zeng LP, Yang XL, Ge XY, Zhang W, Li B, Xie JZ, Shen XR, Zhang YZ, Wang N, Luo DS, Zheng XS, Wang MN, Daszak P, Wang LF, Cui J, Shi ZL (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathogens, 13, e1006698.
doi: 10.1371/journal.ppat.1006698 pmid: 29190287
[19] Hu YF, Yang F, Dong J, Yang J, Zhang T, Sun LL, Jin Q (2011) Direct pathogen detection from swab samples using a new high-throughput sequencing technology. Clinical Microbiology and Infection, 17, 241-244.
doi: 10.1111/j.1469-0691.2010.03246.x pmid: 20412188
[20] Huson DH, Kloepper TH (2005) Computing recombination networks from binary sequences. Bioinformatics, 21(Suppl. 2) , 159-165.
[21] Kafer S, Paraskevopoulou S, Zirkel F, Wieseke N, Donath A, Petersen M, Jones TC, Liu S, Zhou X, Middendorf M, Junglen S, Misof B, Drosten C (2019) Re-assessing the diversity of negative strand RNA viruses in insects. PLoS Pathogens, 15, e1008224.
doi: 10.1371/journal.ppat.1008224 pmid: 31830128
[22] Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: Reconstructing the microbial phylogenetic network. Genome Research, 15, 954-959.
doi: 10.1101/gr.3666505 pmid: 15965028
[23] Lam TT, Shum MH, Zhu HC, Tong YG, Ni XB, Liao YS, Wei W, Cheung WY, Li WJ, Li LF, Leung GM, Holmes EC, Hu YL, Guan Y (2020) Identification of 2019-nCoV related coronaviruses in Malayan pangolins in southern China. bioRxiv, doi: https://doi.org/10.1101/2020.02.13.945485.
doi: 10.1101/2020.07.05.187344 pmid: 32676595
[24] Legendre M, Lartigue A, Bertaux L, Jeudy S, Bartoli J, Lescot M, Alempic JM, Ramus C, Bruley C, Labadie K, Shmakova L, Rivkina E, Coute Y, Abergel C, Claverie JM (2015) In-depth study of Mollivirus sibericum, a new 30,000-y-old giant virus infecting Acanthamoeba. Proceedings of the National Academy of Sciences, USA, 112, e5327-e5335.
[25] Leigh J, Bryant D (2015) PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110-1116.
[26] Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nature Microbiology, 5, 562-569.
doi: 10.1038/s41564-020-0688-y pmid: 32094589
[27] Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 395, 565-574.
doi: 10.1016/S0140-6736(20)30251-8 pmid: 32007145
[28] Luo T, Comas I, Luo D, Lu B, Wu J, Wei L, Yang C, Liu Q, Gan M, Sun G, Shen X, Liu F, Gagneux S, Mei J, Lan R, Wan K, Gao Q (2015) Southern East Asian origin and coexpansion of Mycobacterium tuberculosis Beijing family with Han Chinese. Proceedings of the National Academy of Sciences, USA, 112, 8136-8141.
[29] Mavarez J, Salazar CA, Bermingham E, Salcedo C, Jiggins CD, Linares M (2006) Speciation by hybridization in Heliconius butterflies. Nature, 441, 868-871.
doi: 10.1038/nature04738 pmid: 16778888
[30] McBreen K, Lockhart PJ (2006) Reconstructing reticulate evolutionary histories of plants. Trends in Plant Science, 11, 398-404.
doi: 10.1016/j.tplants.2006.06.004 pmid: 16839803
[31] Mock F, Viehweger A, Barth E, Marz M (2020) VIDHOP, viral host prediction with deep learning. bioRxiv, doi: https://doi.org/10.1101/575571.
doi: 10.1101/2020.07.05.187344 pmid: 32676595
[32] Nie FY, Lin XD, Hao ZY, Chen XN, Wang ZX, Wang MR, Wu J, Wang HW, Zhao G, Ma RZ, Holmes EC, Zhang YZ (2018) Extensive diversity and evolution of hepadnaviruses in bats in China. Virology, 514, 88-97.
doi: 10.1016/j.virol.2017.11.005 pmid: 29153861
[33] Palacios G, Druce J, Du L, Tran T, Birch C, Briese T, Conlan S, Quan PL, Hui J, Marshall J, Simons JF, Egholm M, Paddock CD, Shieh WJ, Goldsmith CS, Zaki SR, Catton M, Lipkin WI (2008) A new Arenavirus in a cluster of fatal transplant-associated diseases. New England Journal of Medicine, 358, 991-998.
doi: 10.1056/NEJMoa073785 pmid: 18256387
[34] Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, Bore JA, Koundouno R, Dudas G, Mikhail A, Ouedraogo N, Afrough B, Bah A, Baum JH, Becker-Ziaja B, Boettcher JP, Cabeza-Cabrerizo M, Camino-Sanchez A, Carter LL, Doerrbecker J, Enkirch T, Dorival IGG, Hetzelt N, Hinzmann J, Holm T, Kafetzopoulou LE, Koropogui M, Kosgey A, Kuisma E, Logue CH, Mazzarelli A, Meisel S, Mertens M, Michel J, Ngabo D, Nitzsche K, Pallash E, Patrono LV, Portmann J, Repits JG, Rickett NY, Sachse A, Singethan K, Vitoriano I, Yemanaberhan RL, Zekeng EG, Trina R, Bello A, Sall AA, Faye O, Faye O, Magassouba N, Williams CV, Amburgey V, Winona L, Davis E, Gerlach J, Washington F, Monteil V, Jourdain M, Bererd M, Camara A, Somlare H, Camara A, Gerard M, Bado G, Baillet B, Delaune D, Nebie KY, Diarra A, Savane Y, Pallawo RB, Gutierrez GJ, Milhano N, Roger I, Williams CJ, Yattara F, Lewandowski K, Taylor J, Rachwal P, Turner D, Pollakis G, Hiscox JA, Matthews DA, O’Shea MK, Johnston AM, Wilson D, Hutley E, Smit E, Di Caro A, Woelfel R, Stoecker K, Fleischmann E, Gabriel M, Weller SA, Koivogui L, Diallo B, Keita S, Rambaut A, Formenty P, Gunther S, Carroll MW (2016) Real-time, portable genome sequencing for Ebola surveillance. Nature, 530, 228-232.
doi: 10.1038/nature16996 pmid: 26840485
[35] Roossinck MJ (2015) Move over, bacteria! Viruses make their mark as mutualistic microbial symbionts. Journal of Virology, 89, 6532-6535.
doi: 10.1128/JVI.02974-14 pmid: 25903335
[36] Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L, Holmes EC, Zhang YZ (2018) The evolutionary history of vertebrate RNA viruses. Nature, 556, 197-202.
doi: 10.1038/s41586-018-0012-7 pmid: 29618816
[37] Shi M, Lin XD, Vasilakis N, Tian JH, Li CX, Chen LJ, Eastwood G, Diao XN, Chen MH, Chen X, Qin XC, Widen SG, Wood TG, Tesh RB, Xu J, Holmes EC, Zhang YZ (2016) Divergent viruses discovered in arthropods and vertebrates revise the evolutionary history of the Flaviviridae and related viruses. Journal of Virology, 90, 659-669.
doi: 10.1128/JVI.02036-15 pmid: 26491167
[38] Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AM, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, Van Der Vlugt RA, Varsani A, Zerbini FM (2017) Consensus statement: Virus taxonomy in the age of metagenomics. Nature Reviews Microbiology, 15, 161-168.
doi: 10.1038/nrmicro.2016.177 pmid: 28134265
[39] Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4, vey016.
[40] Tang P, Chiu C (2010) Metagenomics for the discovery of novel human viruses. Future Microbiology, 5, 177-189.
doi: 10.2217/fmb.09.120 pmid: 20143943
[41] Tang XL, Wu CC, Li X, Song YH, Yao XM, Wu XK, Duan YZ, Zhang H, Wang YR, Qian ZH, Cui J, Lu J (2020) On the origin and continuing evolution of SARS-CoV-2. National Science Review, 7, 1012-1023.
doi: 10.1093/nsr/nwaa036
[42] Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ (2020) A new coronavirus associated with human respiratory disease in China. Nature, 579, 265-269.
doi: 10.1038/s41586-020-2008-3 pmid: 32015508
[43] Yu WB, Tang GD, Zhang L, Corlett RT (2020) Decoding the evolution and transmissions of the novel pneumonia coronavirus (SARS-CoV-2/HCoV-19) using whole genomic data. Zoological Research, 41, 247-257.
doi: 10.24272/j.issn.2095-8137.2020.022 pmid: 32351056
[44] Yu Y, Harris AJ, Blair C, He X (2015) RASP (reconstruct ancestral state in phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46-49.
doi: 10.1016/j.ympev.2015.03.008 pmid: 25819445
[45] Yuen LKW, Littlejohn M, Duchêne S, Edwards R, Bukulatjpi S, Binks P, Jackson K, Davies J, Davis JS, Tong SYC, Locarnini S, Townsend J (2019) Tracing ancient human migrations into Sahul using hepatitis B virus genomes. Molecular Biology and Evolution, 36, 942-954.
doi: 10.1093/molbev/msz021 pmid: 30856252
[46] Zhong ZP, Solonenko NE, Li YF, Gazitua MC, Roux S, Davis ME, Van Etten JL, Mosley-Thompson E, Rich VI, Sullivan MB, Thompson LG (2020) Glacier ice archives fifteen-thousand-year-old viruses. bioRxiv, doi: https://doi.org/10.1101/2020.01.03.894675.
doi: 10.1101/2020.07.05.187344 pmid: 32676595
[47] Zhou P, Fan H, Lan T, Yang XL, Shi WF, Zhang W, Zhu Y, Zhang YW, Xie QM, Mani S, Zheng XS, Li B, Li JM, Guo H, Pei GQ, An XP, Chen JW, Zhou L, Mai KJ, Wu ZX, Li D, Anderson DE, Zhang LB, Li SY, Mi ZQ, He TT, Cong F, Guo PJ, Huang R, Luo Y, Liu XL, Chen J, Huang Y, Sun Q, Zhang XL, Wang YY, Xing SZ, Chen YS, Sun Y, Li J, Daszak P, Wang LF, Shi ZL, Tong YG, Ma JY (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature, 556, 255-258.
doi: 10.1038/s41586-018-0010-9 pmid: 29618817
[48] Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270-273.
doi: 10.1038/s41586-020-2012-7 pmid: 32015507
[1] 靳新影 张肖冲 金 多 陈 韵 李靖宇, . (2020) 腾格里沙漠东南缘不同生物土壤结皮细菌多样性及其季节动态特征. 生物多样性, 28(6): 0-0.
[2] 陆琪,胡强,施小刚,金森龙,李晟,姚蒙. (2019) 基于分子宏条形码分析四川卧龙国家级自然保护区雪豹的食性. 生物多样性, 27(9): 960-969.
[3] 刘君, 王宁, 崔岱宗, 卢磊, 赵敏. (2019) 小兴安岭大亮子河国家森林公园不同生境下土壤细菌多样性和群落结构. 生物多样性, 27(8): 911-918.
[4] 刘山林. (2019) DNA条形码参考数据集构建和序列分析相关的新兴技术. 生物多样性, 27(5): 526-533.
[5] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. (2019) 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化. 生物多样性, 27(5): 557-566.
[6] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. (2019) 直刺变豆菜叶绿体全基因组及其特征. 生物多样性, 27(4): 366-372.
[7] 邓晓娟, 刘建利, 闫兴富, 刘培贵. (2018) 用传统分离培养法和高通量测序技术分析印度块菌子囊果内细菌的群落结构. 生物多样性, 26(12): 1318-1324.
[8] 曹云, 沈文静, 陈炼, 胡飞龙, 周蕾, 徐海根. (2016) Metabarcoding技术在真菌多样性研究中的应用. 生物多样性, 24(8): 932-939.
[9] 朱珣之, 李强, 李扬苹, 韩洪波, 马克平. (2015) 紫茎泽兰入侵对土壤细菌的群落组成和多样性的影响. 生物多样性, 23(5): 665-672.
[10] 赵爱花, 杜晓军, 臧婧, 张守仁, 焦志华. (2015) 宝天曼落叶阔叶林土壤细菌多样性. 生物多样性, 23(5): 649-657.
[11] 周伟, 王红. (2014) 基于DNA分子标记的花粉流动态分析. 生物多样性, 22(1): 97-108.
[12] 孙欣, 高莹, 杨云锋. (2013) 环境微生物的宏基因组学研究新进展. 生物多样性, 21(4): 393-400.
[13] 蔡元锋, 贾仲君. (2013) 基于新一代高通量测序的环境微生物转录组学研究进展. 生物多样性, 21(4): 401-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed