生物多样性 ›› 2019, Vol. 27 ›› Issue (5): 516-525.doi: 10.17520/biods.2019072

• 综述 • 上一篇    下一篇

洞察景观环境影响蜜蜂之新视角: 肠道微生物

唐敏1, 2, 邹怡3, 苏秦之2, 4, 周欣1, 2, *()   

  1. 1 中国农业大学植物保护学院, 北京 100193
    2 中国农业大学北京食品营养与人类健康高精尖创新中心, 北京 100193
    3 西交利物浦大学健康与环境科学系, 江苏苏州 215123
    4 中国农业大学食品科学与营养工程学院, 北京 100083
  • 收稿日期:2019-03-12 接受日期:2019-05-27 出版日期:2019-05-20
  • 通讯作者: 周欣 E-mail:xinzhoucaddis@icloud.com
  • 基金项目:
    国家自然科学基金(31772493);科技基础资源调查专项(2018FY100403)

A new perspective on landscape impact in bee populations: Considering the bee gut microbiome

Tang Min1, 2, Zou Yi3, Su Qinzhi2, 4, Zhou Xin1, 2, *()   

  1. 1 College of Plant Protection, China Agricultural University, Beijing 100193
    2 Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193
    3 Department of Health Environmental Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123;
    4 College of Food Science and Nutrtional Engineering, China Agricultural University, Beijing 100083
  • Received:2019-03-12 Accepted:2019-05-27 Online:2019-05-20
  • Contact: Zhou Xin E-mail:xinzhoucaddis@icloud.com

作为生态服务提供者的传粉蜜蜂与景观生态息息相关, 而以农田为主的景观组成显著降低了传粉蜜蜂的多样性。目前调查研究显示, 农田的扩张与蜜蜂多样性下降相关, 且农药残留对蜜蜂损害严重。景观中的开花植物决定了蜜蜂的食物(营养)组成, 其中花粉蛋白含量与蜜蜂的生长发育紧密相关。尽管研究已证实景观环境会显著影响蜜蜂蜂群的发展和个体的生长繁殖能力, 但未来还需要加强景观组成变化直接作用于蜜蜂的机制研究。另一方面, 大量研究表明蜜蜂肠道共生菌是影响宿主健康的重要因素: 可促进宿主吸收营养和抵抗病原菌。作为传粉者, 蜜蜂接触到的主要外部环境——花粉和花蜜都含有特殊的微生物, 很多研究暗示花源微生物是蜜蜂肠道菌来源之一。研究表明景观环境相关的食物(营养)、农药残留以及环境微生物都会显著影响肠道微生物。现有少量的研究证明不同景观的蜜蜂肠道微生物有差异, 景观环境可能通过作用于蜜蜂肠道微生物进而影响蜜蜂健康。然而不同景观环境中的微生物, 尤其是花源微生物和蜜蜂肠道菌之间的关联有待证明。景观对蜜蜂肠道微生物的影响值得研究, 希望可以从肠道菌的视角鉴别对蜜蜂友好的景观环境, 进而指导土地合理利用和蜜蜂保护。

关键词: 景观, 蜜蜂, 肠道微生物, 农药, 花粉营养, 环境微生物

Pollinator bees are providers of an important ecosystem service, and their survival relies completely on the landscape. Now with the landscape dominated by agriculture, bee diversity has been significantly reduced. Studies suggest that bee populations decline as agricultural land-use increases due to increased exposure to detrimental pesticides. Further, the protein content of pollen is highly important for the growth and development of a bee, and different landscapes provide distinct sources of nutrition. Although many studies have demonstrated the apparent impacts of landscape change on the population dynamics and individual survival of the bees, the underpinning mechanisms remain largely unknown. On the other hand, an increasing body of literature has shown that bee gut symbionts are of great importance to the health of the host bees in absorbing nutrients and resisting pathogens. When foraging, pollinator bees are exposed to particular microbes from pollen and nectar which have been suggested to be a source of some bee gut symbionts and could be either probiotics or pathogens. Together with landscape-related nutrition and pesticides, environmental microbes have been reported to affect bee microbiomes significantly. A number of pilot studies suggest that landscape change could affect bee microbiota, thereby influencing host health. An important linkage, however, is missing between environmental microbiota, especially those associated with the flowers, and that of the bee gut in a changing habitat. It is worth exploring how gut microbiomes respond to landscape changes. This will hopefully help us identify landscape types that are friendly to bees, so proper land-use can be implemented to protect the bees.

Key words: landscape, bees, gut microbiome, pesticide, pollen nutrition, environmental microbes

图1

来自4个蜂场的东方蜜蜂肠道菌群16S rRNA V3片段序列的非度量多维尺度分析(nMDS)图(a)及蜂场内和蜂场间的Bray-Curtis距离比较(ANOVA和t检验, b)"

图2

从肠道微生物角度探究景观环境可能影响蜜蜂的主要途径示意图"

[7] Blaauw BR, Isaacs R ( 2014 a) Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. Journal of Applied Ecology, 51, 890-898.
doi: 10.1111/1365-2664.12257
[8] Blaauw BR, Isaacs R ( 2014 b) Larger patches of diverse floral resources increase insect pollinator density, diversity, and their pollination of native wild flowers. Basic and Applied Ecology, 15, 701-711.
doi: 10.1016/j.baae.2014.10.001
[9] Blitzer EJ, Gibbs J, Park MG, Danforth BN ( 2016) Pollination services for apple are dependent on diverse wild bee communities. Agriculture, Ecosystems and Environment, 221, 1-7.
doi: 10.1016/j.agee.2016.01.004
[10] Botías C, David A, Horwood J, Abdul-Sada A, Nicholls E, Hill E, Goulson D ( 2015) Neonicotinoid residues in wildflowers, a potential route of chronic exposure for bees. Environmental Science Technology, 49, 12731-12740.
doi: 10.1021/acs.est.5b03459
[11] Brittain C, Williams N, Kremen C, Klein AM ( 2012) Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 280, 20122767.
[12] Burkle LA, Marlin JC, Knight TM ( 2013) Plant-pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science, 339, 1611-1616.
doi: 10.1126/science.1232728
[13] Chen C, Wang H, Liu Z, Chen X, Tang J, Meng F, Shi W ( 2018) Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana). Molecular Biology and Evolution, 35, 2260-2271.
doi: 10.1093/molbev/msy130
[14] Colwell MJ, Williams GR, Evans RC, Shutler D ( 2017) Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecology and Evolution, 7, 7243-7253.
doi: 10.1002/ece3.2017.7.issue-18
[15] Connelly H, Poveda K, Loeb G ( 2015) Landscape simplification decreases wild bee pollination services to strawberry. Agriculture, Ecosystems and Environment, 211, 51-56.
doi: 10.1016/j.agee.2015.05.004
[16] Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Horning M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI ( 2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318, 283-288.
doi: 10.1126/science.1146498
[17] Crall JD, Switzer CM, Oppenheimer RL, Ford Versypt AN, Dey B, Brown A, Eyster M, Guerin C, Pierce NE, Combes SA, de Bivort BL ( 2018) Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science, 362, 683-686.
doi: 10.1126/science.aat1598
[18] Crotti E, Sansonno L, Prosdocimi EM, Vacchini V, Hamdi C, Cherif A, Conella E, Marzorati M, Balloi A ( 2013) Microbial symbionts of honeybees: A promising tool to improve honeybee health. New Biotechnology, 30, 716-722.
doi: 10.1016/j.nbt.2013.05.004
[19] Danner N, Keller A, Härtel S, Steffan-Dewenter I ( 2017) Honey bee foraging ecology: Season but not landscape diversity shapes the amount and diversity of collected pollen. PLoS ONE, 12, e0183716.
doi: 10.1371/journal.pone.0183716
[20] David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ ( 2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505, 559-563.
doi: 10.1038/nature12820
[21] DeGrandi-Hoffman G, Chen Y, Rivera R, Carroll M, Chambers M, Hidalgo G, de Jong EW ( 2016) Honey bee colonies provided with natural forage have lower pathogen loads and higher overwinter survival than those fed protein supplements. Apidologie, 47, 186-196.
doi: 10.1007/s13592-015-0386-6
[22] Di Pasquale G, Alaux C, Le Conte Y, Odoux JF, Pioz M, Vaissière BE, Belzunces LP, Decourtye A ( 2016) Variations in the availability of pollen resources affect honey bee health. PLoS ONE, 11, e0162818.
doi: 10.1371/journal.pone.0162818
[23] Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, Suchail S, Brunet JL, Alaux C ( 2013) Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter? PLoS ONE, 8, e72016.
doi: 10.1371/journal.pone.0072016
[24] Donkersley P, Rhodes G, Pickup RW, Jones KC ( 2018) Bacterial communities associated with honeybee food stores are correlated with land use. Ecology and Evolution, 8, 4743-4756.
doi: 10.1002/ece3.2018.8.issue-10
[25] Donkersley P, Rhodes G, Pickup RW, Jones KC, Wilson K ( 2014) Honeybee nutrition is linked to landscape composition. Ecology and Evolution, 4, 4195-4206.
doi: 10.1002/ece3.2014.4.issue-21
[26] dos Santos CF, Acosta AL, Dorneles AL, dos Santos PDS, Blochtein B ( 2016) Queens become workers: Pesticides alter caste differentiation in bees. Scientific Reports, 6, 31605.
doi: 10.1038/srep31605
[27] Engel P, Bonilla-Rosso G ( 2018) Functional roles and metabolic niches in the honey bee gut microbiota. Current Opinion in Microbiology, 43, 69-76.
doi: 10.1016/j.mib.2017.12.009
[28] Engel P, Kwong WK, McFrederick Q, Anderson KE, Barribeau SM, Chandler JA, Cornman RS, Dainat J, de Miranda JR, Doublet V, Emery O, Evans JD, Farinelli L, Flenniken ML, Granberg F, Grasis JA, Gauthier L, Hayer J, Koch H, Kocher S, Martinson VG, Moran N, Munoz-Torres M, Newton I, Paxton RJ, Powell E, Sadd BM, Schmid-Hempel P, Schmid-Hempel R, Song SJ, Schwarz RS, vanEngelsdorp D, Dainat B ( 2016) The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. mBio, 7, e02164-15.
[29] Frias BED, Barbosa CD, Lourenço AP ( 2016) Pollen nutrition in honey bees (Apis mellifera): Impact on adult health. Apidologie, 47, 15-25.
doi: 10.1007/s13592-015-0373-y
[30] Fridman S, Izhaki I, Gerchman Y, Halpern M ( 2012) Bacterial communities in floral nectar. Environmental Microbiology Reports, 4, 97-104.
doi: 10.1111/j.1758-2229.2011.00309.x
[31] Garibaldi LA, Steffan-dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, Kremen C, Carvalheiro LG, Harder LD, Afik O, Bartomeus I, Benjamin F, Boreux V, Cariveau D, Chacoff NP, Dudenhöffer JH, Freitas BM, Ghazoul J, Greenleaf S, Hipólito J, Holzschuh A, Howlett B, Isaacs R, Javorek SK, Kennedy CM, Krewenka KM, Krishnan S, Mandelik Y, Mayfield MM, Motzke I, Munyuli T, Nault BA, Otieno M, Petersen J, Pisanty G, Potts SG, Rader R, Ricketts TH, Rundlöf M, Seymour CL, Schüepp C, Szentgyörgyi H, Taki H, Tscharntke T, Vergara CH, Viana BF, Wanger TC, Westphal C, Williams N, Klein AM ( 2014) Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science, 339, 1608-1611.
[32] Geldmann J, Gonzalez-Varo JP ( 2018) Conserving honey bees does not help wildlife: High densities of managed honey bees can harm populations of wild pollinators. Science, 359, 392-393.
doi: 10.1126/science.aar2269
[33] Gill RJ, Baldock KCR, Brown MJF, Cresswell JE, Dicks LV, Fountain MT, Garratt MPD, Gough LA, Heard MS, Holland JM, Ollerton J, Stone GN, Tang CQ, Vanbergen AJ, Vogler A, Woodward G, Arce AN, Boatman ND, Brand-Hardy R, Breeze TD, Green M, Hartfield CM, O’Connor RS, Osborne JL, Phillips J, Sutton PB, Potts SG ( 2016) Protecting an ecosystem service: Approaches to understanding and mitigating threats to wild insect pollinators. Advances in Ecological Research, 54, 135-206.
doi: 10.1016/bs.aecr.2015.10.007
[34] Gill RJ, Ramos-Rodriguez O, Raine NE ( 2012) Combined pesticide exposure severely affects individual- and colony- level traits in bees. Nature, 491, 105-108.
doi: 10.1038/nature11585
[35] Glavinic U, Stankovic B, Draskovic V, Stevanovic J, Petrovic T, Lakic N, Stanimirovic Z ( 2017) Dietary amino acid and vitamin complex protects honey bee from immunosuppression caused by Nosema ceranae. PLoS ONE, 12, e0187726.
doi: 10.1371/journal.pone.0187726
[36] Goulson D, Nicholls E, Botías C, Rotheray EL ( 2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.
doi: 10.1126/science.1255957
[37] Grass I, Jauker B, Steffan-Dewenter I, Tscharntke T, Jauker F ( 2018) Past and potential future effects of habitat fragmentation on structure and stability of plant-pollinator and host-parasitoid networks. Nature Ecology & Evolution, 2, 1408-1417.
[38] Graystock P, Goulson D, Hughes WOH ( 2015) Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 282,. 2015. 1371.
[39] Graystock P, Rehan SM, McFrederick QS ( 2017) Hunting for healthy microbiomes: Determining the core microbiomes of Ceratina, Megalopta, and Apis bees and how they associate with microbes in bee collected pollen. Conservation Genetics, 18, 701-711.
doi: 10.1007/s10592-017-0937-7
[40] Henry M, Béguin M, Requier F, Rollin O, Odoux J, Aupinel P, Tchamitchian S, Decourtye A ( 2012) A common pesticide decreases foraging success and survival in honey bees. Science, 336, 348-350.
doi: 10.1126/science.1215039
[41] Herbertsson L, Lindström SAM, Rundlöf M, Bommarco R, Smith HG ( 2016) Competition between managed honeybees and wild bumblebees depends on landscape context. Basic and Applied Ecology, 17, 609-616.
doi: 10.1016/j.baae.2016.05.001
[42] Holzschuh A, Dudenhöffer J, Tscharntke T ( 2012) Landscapes with wild bee habitats enhance pollination, fruit set and yield of sweet cherry. Biological Conservation, 153, 101-107.
doi: 10.1016/j.biocon.2012.04.032
[43] Hung KLJ, Kingston JM, Albretch M, Holway DA, Kohn JR ( 2018) The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285, 20172140.
doi: 10.1098/rspb.2017.2140
[44] Jones JC, Fruciano C, Hildebrand F, Al Toufalilia H, Balfour NJ, Bork P, Engel P, Ratnieks FL, Hughes WO ( 2018) Gut microbiota composition is associated with environmental landscape in honey bees. Ecology and Evolution, 8, 441-451.
doi: 10.1002/ece3.3597
[45] Kakumanu ML, Reeves AM, Anderson TD, Rodrigues RR, Williams MA ( 2016) Honey bee gut microbiome is altered by in-hive pesticide exposures. Frontiers in Microbiology, 7, 1-11.
[46] Keller A, Brandel A, Becker MC, Balles R, Abdelmohsen UR, Ankenbrand MJ, Sickel W ( 2018) Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome, 6, 1-10.
doi: 10.1186/s40168-017-0383-2
[1] Aizen MA, Gleiser G, Sabatino M, Gilarranz LJ, Bascompte J, Verdú M ( 2016) The phylogenetic structure of plant- pollinator networks increases with habitat size and isolation. Ecology Letters, 19, 29-36.
doi: 10.1111/ele.12539
[2] Anderson KE, Ricigliano VA ( 2017) Honey bee gut dysbiosis: A novel context of disease ecology. Current Opinion in Insect Science, 22, 125-132.
doi: 10.1016/j.cois.2017.05.020
[47] Kešnerová L, Mars RAT, Ellegaard KM, Troilo M, Sauer U, Engel P ( 2017) Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biology, 15, e2003467.
doi: 10.1371/journal.pbio.2003467
[48] Kessler SC, Tiedeken EJ, Simcock KL, Derveau S, Mitchell J, Softley S, Radcliffe A, Stout JC, Wright GA ( 2015) Bees prefer foods containing neonicotinoid pesticides. Nature, 521, 74-76.
doi: 10.1038/nature14414
[3] Anderson KE, Carroll MJ, Sheehan T, Mott BM, Maes P, Corby-Harris V ( 2014) Hive-stored pollen of honey bees: Many lines of evidence are consistent with pollen preservation, not nutrient conversion. Molecular Ecology, 23, 5904-5917.
doi: 10.1111/mec.2014.23.issue-23
[4] Anderson KE, Sheehan TH, Mott BM, Maes P, Snyder L, Schwan MR, Walton A, Jones BM, Corby-Harris V ( 2013) Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE, 8, e83125.
doi: 10.1371/journal.pone.0083125
[49] Kleijn D, Bommarco R, Fijen TPM, Garibaldi LA, Potts SG, van der Putten WH ( 2018) Ecological intensification: Bridging the gap between science and practice. Trends in Ecology and Evolution, 34, 154-166.
[50] Klein A, Vaissie BE, Steffan-dewenter I, Cunningham SA, Kremen C, Cedex A ( 2007) Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303-313.
doi: 10.1098/rspb.2006.3721
[51] Koch H, Schmid-Hempel P ( 2011) Socially transmitted gut microbiota protect bumble bees against an intestinal parasite. Proceedings of the National Academy of Sciences, USA, 108, 19288-19292.
doi: 10.1073/pnas.1110474108
[52] Kovács-Hostyánszki A, Espíndola A, Vanbergen AJ, Settele J, Kremen C, Dicks LV ( 2017) Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecology Letters, 20, 673-689.
doi: 10.1111/ele.12762
[5] Baude M, Kunin WE, Boatman ND, Conyers S, Davies N, Gillespie MAK, Morton RD, Smart SM, Memmott J ( 2016) Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 530, 85-88.
doi: 10.1038/nature16532
[6] Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE ( 2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science, 313, 351-355.
doi: 10.1126/science.1127863
[53] Kremen C ( 2018) The value of pollinator species diversity. Science, 359, 741-742.
doi: 10.1126/science.aar7614
[54] Kremen C, Williams NM, Aizen MA, Gemmill-Herren B, Lebuhn G, Minckley R, Packer L, Potts SG, Roulston T, Steffan-Dewenter I, Vázquez DP, Winfree R, Adams L, Crone EE, Greenleaf SS, Keitt TH, Klein AM, Regetz J, Ricketts TH ( 2007) Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecology Letters, 10, 299-314.
doi: 10.1111/ele.2007.10.issue-4
[55] Kwong WK, Medina LA, Koch H, Sing KW, Soh EJY, Ascher JS, Jaffe R, Moran NA ( 2017) Dynamic microbiome evolution in social bees. Science Advances, 3, e1600513.
doi: 10.1126/sciadv.1600513
[56] Li JH, Evans JD, Li WF, Zhao YZ, Degrandi-hoffman G, Huang SK, Li ZG, Hamilton M, Chen YP ( 2017 a) New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PLoS ONE, 12, e0187505.
doi: 10.1371/journal.pone.0187505
[57] Li Q, Lauber CL, Czarnecki-Maulden G, Pan Y ( 2017 b) Effects of the dietary protein and carbohydrate ratio on gut microbiomes in dogs of different body conditions. mBio, 8, e01703-16.
[58] Lim HC, Chu CC, Seufferheld MJ, Cameron SA ( 2015) Deep sequencing and ecological characterization of gut microbial communities of diverse bumble bee species. PLoS ONE, 10, e0118566.
doi: 10.1371/journal.pone.0118566
[59] Maes PW, Rodrigues PAP, Oliver R, Mott BM, Anderson KE ( 2016) Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Molecular Ecology, 25, 5439-5450.
doi: 10.1111/mec.2016.25.issue-21
[60] Magrach A, González-Varo JP, Boiffier M, Vilà M, Bartomeus I ( 2017) Honeybee spillover reshuffles pollinator diets and affects plant reproductive success. Nature Ecology & Evolution, 1, 1299-1307.
[61] Martinson VG, Danforth BN, Minckley RL, Rueppell O, Tingek S, Moran NA ( 2011) A simple and distinctive microbiota associated with honey bees and bumble bees. Molecular Ecology, 20, 619-628.
doi: 10.1111/mec.2011.20.issue-3
[62] McFrederick QS, Rehan SM ( 2016) Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Molecular Ecology, 25, 2302-2311.
doi: 10.1111/mec.2016.25.issue-10
[63] McFrederick QS, Thomas JM, Neff JL, Vuong HQ, Russell KA, Hale AR, Mueller UG ( 2017) Flowers and wild megachilid bees share microbes. Microbial Ecology, 73, 188-200.
doi: 10.1007/s00248-016-0838-1
[64] McFrederick QS, Wcislo WT, Taylor DR, Ishak HD, Dowd SE, Mueller UG ( 2012) Environment or kin: Whence do bees obtain acidophilic bacteria? Molecular Ecology, 21, 1754-1768.
doi: 10.1111/mec.2012.21.issue-7
[65] McFrederick QS, Wcislo WT, Hout MC, Mueller UG ( 2014) Host species and developmental stage, but not host social structure, affects bacterial community structure in socially polymorphic bees. FEMS Microbiology Ecology, 88, 398-406.
doi: 10.1111/fem.2014.88.issue-2
[66] Motta EVS, Raymann K, Moran NA ( 2018) Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences, USA, 115, 10305-10310.
doi: 10.1073/pnas.1803880115
[67] Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L, Henrissat B, Knight R, Gordon JI ( 2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 332, 970-974.
doi: 10.1126/science.1198719
[68] Murphy GEP, Romanuk TN ( 2014) A meta-analysis of declines in local species richness from human disturbances. Ecology and Evolution, 4, 91-103.
doi: 10.1002/ece3.2014.4.issue-1
[69] Naug D ( 2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biological Conservation, 142, 2369-2372.
doi: 10.1016/j.biocon.2009.04.007
[70] Neokosmidis L, Tscheulin T, Devalez J, Petanidou T ( 2018) Landscape spatial configuration is a key driver of wild bee demographics. Insect Science, 25, 172-182.
doi: 10.1111/ins.2018.25.issue-1
[71] Oldroyd BP ( 2007) What’s killing American honey bees? PLoS Biology, 5, e168.
doi: 10.1371/journal.pbio.0050168
[72] Ollerton J, Erenler H, Edwards M, Crockett R ( 2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360-1362.
doi: 10.1126/science.1257259
[73] Ollerton J, Winfree R, Tarrant S ( 2011) How many flowering plants are pollinated by animals? Oikos, 120, 321-326.
doi: 10.1111/more.2010.120.issue-3
[74] Park MG, Blitzer EJ, Gibbs J, Losey JE, Danforth BN ( 2015) Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proceedings of the Royal Society B: Biological Sciences, 282, 20150299.
doi: 10.1098/rspb.2015.0299
[75] Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, vanEngelsdorp D ( 2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS ONE, 8, e70182.
doi: 10.1371/journal.pone.0070182
[76] Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE ( 2010) Global pollinator declines: Trends, impacts and drivers. Trends in Ecology and Evolution, 25, 345-353.
doi: 10.1016/j.tree.2010.01.007
[77] Powell JE, Martinson VG, Urban-Mead K, Moran NA ( 2014) Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and Environmental Microbiology, 80, 7378-7387.
doi: 10.1128/AEM.01861-14
[78] Praet J, Parmentier A, Schmid-Hempel R, Meeus I, Smagghe G, Vandamme P ( 2018) Large-scale cultivation of the bumblebee gut microbiota reveals an underestimated bacterial species diversity capable of pathogen inhibition. Environmental Microbiology, 20, 214-227.
doi: 10.1111/1462-2920.13973
[79] Ramankutty N, Mehrabi Z, Waha K, Jarvis L, Kremen C, Herrero M, Rieseberg LH ( 2018) Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69, 789-815.
doi: 10.1146/annurev-arplant-042817-040256
[80] Raymann K, Moran NA ( 2018) The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26, 97-104.
doi: 10.1016/j.cois.2018.02.012
[81] Ribière C, Hegarty C, Stephenson H, Whelan P, O’Toole PW ( 2018) Gut and whole-body microbiota of the honey bee separate thriving and non-thriving hives. Microbial Ecology, 78, 195-205.
[82] Rollin O, Bretagnolle V, Decourtye A, Aptel J, Michel N, Vaissière BE, Henry M ( 2013) Differences of floral resource use between honey bees and wild bees in an intensive farming system. Agriculture, Ecosystems and Environment, 179, 78-86.
doi: 10.1016/j.agee.2013.07.007
[83] Rothman JA, Andrikopoulos C, Cox-Foster D, McFrederick QS ( 2018) Floral and foliar source affect the bee nest microbial community. Microbial Ecology, https://doi.org/10.
1007/s00248-018-1300-3.
[84] Rundlöf M, Andersson GKS, Bommarco R, Fries I, Hederström V, Herbertsson L, Jonsson O, Klatt BK, Pedersen TR, Yourstone J, Smith HG ( 2015) Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature, 521, 77-80.
doi: 10.1038/nature14420
[85] Saraiva MA, Zemolin APP, Franco JL, Boldo JT, Stefenon VM, Triplett EW, de Oliveira Camargo FA, Roesch LFW ( 2015) Relationship between honeybee nutrition and their microbial communities. Antonie van Leeuwenhoek, 107, 921-933.
doi: 10.1007/s10482-015-0384-8
[86] Saunders ME, Smith TJ, Rader R ( 2018) Bee conservation: Key role of managed bees. Science, 360, 389.
[87] Schwarz RS, Moran NA, Evans JD ( 2016) Early gut colonizers shape parasite susceptibility and microbiota composition in honey bee workers. Proceedings of the National Academy of Sciences, USA, 113, 9345-9350.
doi: 10.1073/pnas.1606631113
[88] Siviter H, Brown MJF, Leadbeater E ( 2018) Sulfoxaflor exposure reduces bumblebee reproductive success. Nature, 561, 109-112.
doi: 10.1038/s41586-018-0430-6
[89] Steinhauer N, Kulhanek K, Antúnez K, Human H, Chantawannakul P, Chauzat MP, vanEngelsdorp D ( 2018) Drivers of colony losses. Current Opinion in Insect Science, 26, 142-148.
doi: 10.1016/j.cois.2018.02.004
[90] Torné-noguera A, Rodrigo A, Osorio S, Bosch J ( 2016) Collateral effects of beekeeping: Impacts on pollen-nectar resources and wild bee communities. Basic and Applied Ecology, 17, 199-209.
doi: 10.1016/j.baae.2015.11.004
[91] Tsvetkov N, Samson-Robert O, Sood K, Patel HS, Malena DA, Gajiwala PH, Maciukiewicz P, Fournier V, Zayed A ( 2017) Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356, 1395-1397.
doi: 10.1126/science.aam7470
[92] Vaudo AD, Tooker JF, Grozinger CM, Patch HM ( 2015) Bee nutrition and floral resource restoration. Current Opinion in Insect Science, 10, 133-141.
doi: 10.1016/j.cois.2015.05.008
[93] Whitehorn PR, O’Connor S, Wackers FL, Goulson D ( 2012) Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 336, 351-352.
doi: 10.1126/science.1215025
[94] Winfree R, Fox JW, Williams NM, Reilly JR, Cariveau DP ( 2015) Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecology Letters, 18, 626-635.
doi: 10.1111/ele.2015.18.issue-7
[95] Winfree R, Griswold T, Kremen C ( 2007) Effect of human disturbance on bee communities in a forested ecosystem. Conservation Biology, 21, 213-223.
doi: 10.1111/cbi.2007.21.issue-1
[96] Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG, Redhead J, Ridding L, Dean H, Sleep D, Henrys P, Peyton J, Hulmes S, Hulmes L, Sárospataki M, Saure C, Edwards M, Genersch E, Knäbe S, Pywell RF ( 2017) Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science, 356, 1393-1395.
doi: 10.1126/science.aaa1190
[97] Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD ( 2011) Linking long-term dietary patterns with gut microbial enterotypes. Science, 334, 105-108.
doi: 10.1126/science.1208344
[98] Wu P, Axmacher JC, Song X, Zhang X, Xu H, Chen C, Yu Z, Liu Y ( 2018) Effects of plant diversity, vegetation composition, and habitat type on different functional trait groups of wild bees in rural Beijing. Journal of Insect Science, 18, .
[99] Xun EN, Zhao JM, Guo JX, Zhang YW ( 2017) Nectar-dwelling microorganisms and their ecological functions. Acta Ecologica Sinica, 37, 1757-1768.
(in Chinese with English abstract) [ 荀二娜, 赵骥民, 郭继勋, 张彦文 ( 2017) 花蜜微生物及其生态功能研究进展.生态学报, 37, 1757-1768.]
[100] Yang Y, Ma S, Yan Z, Liu F, Diao Q, Dai P ( 2019) Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera. Environmental Pollution, 249, 860-867.
doi: 10.1016/j.envpol.2019.03.077
[101] Zheng H, Nishida A, Kwong WK, Koch H, Engel P, Steele MI, Moran NA ( 2016) Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. mBio, 7, e01326-16.
[102] Zou Y, Bianchi FJJA, Jauker F, Xiao H, Chen J, Cresswell J, Luo A, Huang J, van der Werf W ( 2017) Landscape effects on pollinator communities and pollination services in small-holder agroecosystems. Agriculture, Ecosystems and Environment, 246, 109-116.
doi: 10.1016/j.agee.2017.05.035
[1] 肖雅倩, 刘传, 肖亮. 模式动物在共生微生物研究中的作用[J]. 生物多样性, 2019, 27(5): 505-515.
[2] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[3] 李强, 王彬, 邓云, 林露湘, 达佤扎喜, 张志明. 西双版纳热带雨林林窗空间分布格局及其特征数与林窗下植物多样性的相关性[J]. 生物多样性, 2019, 27(3): 273-285.
[4] 刘秀嶶, Douglas Chesters, 武春生, 周青松, 朱朝东. 环境变化对中国野生蜜蜂多样性的影响[J]. 生物多样性, 2018, 26(7): 760-765.
[5] 杨培, 彭艳琼, 赵荣华, 杨大荣. 大蜜蜂的生物学特性、面临威胁与保护策略[J]. 生物多样性, 2018, 26(5): 476-485.
[6] 陈洁, 周年兴, 陶卓民. 景观生态安全格局的算法改进与应用[J]. 生物多样性, 2018, 26(1): 36-43.
[7] 黄宏文. “艺术的外貌、科学的内涵、使命的担当”——植物园500年来的科研与社会功能变迁(一): 艺术的外貌[J]. 生物多样性, 2017, 25(9): 924-933.
[8] 陈龙, 李月辉, 胡远满, 熊在平, 吴文, 李悦, 问青春. 小兴安岭铁力林业局冬季西伯利亚狍(Capreolus pygargus)的生境选择[J]. 生物多样性, 2017, 25(4): 401-408.
[9] 戴漂漂, 张旭珠, 刘云慧. 传粉动物多样性的保护与农业景观传粉服务的提升[J]. 生物多样性, 2015, 23(3): 408-418.
[10] 穆少杰, 周可新, 方颖, 朱超. 构建大尺度绿色廊道, 保护区域生物多样性[J]. 生物多样性, 2014, 22(2): 242-249.
[11] 刘云珠, 史林鹭, 朵海瑞, 彭波涌, 吕偲, 朱轶, 雷光春. 人为干扰下西洞庭湖湿地景观格局变化及冬季水鸟的响应[J]. 生物多样性, 2013, 21(6): 666-676.
[12] 蔡元锋, 贾仲君. 基于新一代高通量测序的环境微生物转录组学研究进展[J]. 生物多样性, 2013, 21(4): 401-410.
[13] 赵紫华, 王颖, 贺达汉, 张蓉, 朱猛蒙, 董风林. 苜蓿草地生境丧失与破碎化对昆虫物种丧失与群落重建的影响[J]. 生物多样性, 2011, 19(4): 453-462.
[14] 王峥峰, 葛学军. 不仅仅是遗传多样性: 植物保护遗传学进展[J]. 生物多样性, 2009, 17(4): 330-339.
[15] 田瑜, 邬建国, 寇晓军, 李钟汶, 王天明, 牟溥, 葛剑平. 东北虎种群的时空动态及其原因分析[J]. 生物多样性, 2009, 17(3): 211-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed