生物多样性 ›› 2018, Vol. 26 ›› Issue (8): 862-877.doi: 10.17520/biods.2018143

• • 上一篇    下一篇


雷倩1, 2, 李金亚1, 马克明1, *()   

  1. 1 中国科学院生态环境研究中心城市与区域生态国家重点实验室, 北京 100085
    2 中国科学院大学, 北京 100049
  • 收稿日期:2018-05-15 接受日期:2018-08-14 出版日期:2018-08-20
  • 通讯作者: 马克明 E-mail:mkm@rcees.ac.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    国家重点研发计划项目(2017YFC0505800, 2016YFC0500406)和国家自然科学基金(41601439)

Applications of remote sensing technology in avian ecology

Qian Lei1, 2, Jinya Li1, Keming Ma1, *()   

  1. 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085
    2 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-05-15 Accepted:2018-08-14 Online:2018-08-20
  • Contact: Ma Keming E-mail:mkm@rcees.ac.cn
  • About author:# Co-first authors

获取鸟类活动及生境信息是鸟类生态学研究的基础, 而遥感技术弥补了传统野外调查方法的缺陷, 提供了获取多种信息的新途径。应用遥感技术的鸟类生态学研究热点从最初的种群行为观察, 到栖息地选择, 再到生境适宜性、破碎化及人为干扰探究等, 随着技术的不断发展也在扩展和变化。不同波段或组合下的遥感技术各有所长。光学遥感应用广泛, 尤其是信息量较大的红外波段图像和作为野外鸟巢及物种活动监测常用工具的红外相机; 多光谱图像常用于栖息地制图以及地物识别, 高空间分辨率的数据甚至可对鸟类种群进行直接计数; 高光谱数据则可对光谱特征相似的地物进行更为精确的区分和反演; 激光雷达遥感主要用于栖息地植被结构的三维探测, 为了解鸟类栖息地选择提供更好的依据。微波遥感在飞鸟探测上应用颇多, 近年来多极化数据在复杂栖息地精确制图上也具有优势, 但成本较高、解译复杂且推广度较低。在实际应用中, 遥感数据时空尺度的选择会影响研究结果, 部分遥感反演参数也缺乏生态学意义。多源遥感数据的结合应用能够提升制图分类的精度, 实现数据的时空分辨率互补, 优化鸟类生态研究所需参数。未来的遥感技术在鸟类生态学中的应用应致力于提供更加明确的光谱信息、相对简便的解译方法, 以及更为合理的多源数据组合方式等。

关键词: 微波遥感, 红外, LiDAR, 多光谱, 高光谱, 生境反演, 地物识别

Avian ecological studies tend to center on birds and their habitats. According to the literature, studies in avian ecology have shifted from focusing on behavior and habitat selection to focusing on human disturbance, habitat suitability and habitat structure, which has been made possible partially due to remote sensing (RS) technology. Characteristics and applications of RS data are varied. Here, we assessed various RS methods, considering the current state of avian ecology. Light remote sensing is most commonly used. Infrared trigger cameras and video complement field work to monitor brooding, defensive and other behaviors, while the infrared images contain massive amounts of data. Multi-spectral images are used most frequently for mapping habitat and can directly track species when captured at a high spatial resolution. Hyperspectral data has great potential in classifying objects with similar spectral characteristics. LiDAR data mainly contributes to studies of habitat structure. Researchers have used Radar to monitor flying birds over extended periods of time, where the microwave images with multi-polarization may promote the precision of mapping complex habitats. In practice, we recognize that data scale may affect study results and that some RS inversion model parameters lack ecological significance. Multi-source data could enhance mapping accuracy and provide context for the intersection of spatial and temporal resolutions of images. In the future, RS technology development should pay more attention to provide specific spectral information, more convenient interpretation methods, and more rational multi-source data combinaions, for a better use of them.

Key words: microwave remote sensing, infrared, LiDAR, multi-spectral, hyperspectral, habitat parameter inversion, object identification



Available bands
Spectral range
Available information
相关文献 Reference
Visible light bands
0.4-0.7 μm A, B, C, D, E, H Rodgers et al, 1995; Abd-Elrahman, 2005; Evans et al, 2009; Delord et al, 2015; Chen & Zhang, 2015; Christie et al, 2016
Infrared band
0.7-14 μm A, B, C, D, F, I, K, L, M Avery &Haines-Young, 1990; Hüppop et al, 2006; MartiCardona et al, 2008; Lagos et al, 2008; Mayer et al, 2009; Zhao et al, 2013; Vanhellemont & Ruddick, 2014
0.4-14 μm C, D, E, F, H, I, J, K, L,
M, N, O
Schwaller et al, 1989; Osborne et al, 2010; Tøttrup et al, 2008; Daily et al, 2001; Rodrigues et al, 2012; Tebbs et al, 2013; Dwyer et al, 2013
0.4-14 μm D, F, J, K, L, M, Gong et al, 1997; Martin et al, 1998; Costa et al, 2007; Goodenough et al, 2012; Brydegaard et al, 2013
0.24-1 mm E, G, N Lefsky et al, 2002; Bradbury et al, 2005; Shi & Cao, 2007; Goetz et al, 2010; Guo et al, 2016
Microwave (Radar)
1-100 cm B, D, E, F, I, J, M, N Diehl et al, 2003; Taft et al, 2003; Boerner et al, 2008; Dabrowska-Zielinska et al, 2009; Pistolesi et al, 2015; Ruan et al, 2017




基于Web of Science核心合集数据库的鸟类生态学研究中应用遥感技术的文献关键词热词分析。A: 栖息地研究; B: 鸟类行为相关研究。"


红外波段在鸟类生态学中的应用情况(不包括多光谱)。A: 应用领域; B: 应用波段。"






历年微波遥感(雷达)在鸟类生态中的应用文献数, 以及历年在应用遥感技术的鸟类生态学文献中的历年占比"

[1] Abd-Elrahman A (2005) Development of pattern recognition algorithm for automatic bird detection from unmanned aerial vehicle imagery. Surveying and Land Information Science, 65, 37-45.
[2] Alerstam T, Chapman JW, Backman J, Smith AD, Karlsson H, Nilsson C, Reynolds DR, Klaassen Raymond HG, Hill JK (2011) Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds. Proceedings of the Royal Society B: Biological Sciences, 278, 3074-3080.
[3] Alerstam T, Rosen M, Backman J, Ericson PGP, Hellgren O (2007) Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biology, 5, 1656-1662.
[4] Avery MI, Haines-Young RH (1990) Population estimates for the dunlin Calidris alpina derived from remotely sensed satellite imagery of the Flow Country of northern Scotland. Nature, 344, 860-862.
[5] Boerner WM, Yamaguchi Y (2008) Recent advances in POL-SAR & POL-IN-SAR imaging of natural habitats and wetland remote sensing. In: Geoscience and Remote Sensing Symposium, pp. 293-294. IGARSS 2008, IEEE International.
[6] Bolca M, Özen F, Güneş A (2014) Land use changes in Gediz Delta (Turkey) and their negative impacts on wetland habitats. Journal of Coastal Research, 30, 756-764.
[7] Boren JC, Engle DM, Palmer MW, Masters RE, Criner T (1999) Land use change effects on breeding bird community composition. Journal of Range Management, 52, 420-430.
[8] Bradbury RB, Hill RA, Mason DC, Hinsley SA, Wilson JD, Balzter H, Anderson GQA, Whittingham MJ, Davenport IJ, Bellamy PE (2005) Modelling relationships between birds and vegetation structure using airborne LiDAR data: A review with case studies from agricultural and woodland environments. Ibis, 147, 443-452.
[9] Broughton RK, Hill RA, Freeman SN, Bellamy PE, Hinsley SA (2012) Describing habitat occupation by woodland birds with territory mapping and remotely sensed data: An example using the marsh tit (Poecile palustris). Condor, 114, 812-822.
[10] Bruderer B, Boldt A (2001) Flight characteristics of birds: Radar measurements of speeds. Ibis, 143, 178-204.
[11] Brydegaard M, Samuelsson P, Kudenov MW, Svanberg S (2013) On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds. Applied Spectroscopy, 67, 477-490.
[12] Buermann W, Saatchi S, Smith TB, Zutta BR, Chaves JA, Mila B, Graham CH (2008) Predicting species distributions across the Amazonian and Andean regions using remote sensing data. Journal of Biogeography, 35, 1160-1176.
[13] Buler JJ, Randall LA, Fleskes JP, Barrow WC, Bogart T, Kluver D (2012) Mapping wintering waterfowl distributions using weather surveillance radar. PLoS ONE, 7.
[14] Chen SG, Zhang TL (2015) Evaluation of a QAA-based algorithm using MODIS land bands data for retrieval of IOPs in the eastern China Seas. Optics Express, 23, 13953-13971.
[15] Chen SP (1990) Dictionary of Remote Sensing. Science Press, Beijing.
[陈述彭 (1990) 遥感大词典. 科学出版社, 北京.]
[16] Chen WS, Li J (2011) Review on development and applications of avian radar technology. Modern Radar, 39, 7-17. (in Chinese with English abstract)
[陈唯实, 李敬 (2017) 雷达探鸟技术发展与应用综述. 现代雷达, 39, 7-17.]
[17] Christie KS, Gilbert SL, Brown CL, Hatfield M, Hanson L (2016) Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology. Frontiers in Ecology and the Environment, 14, 241-251.
[18] Clawges R, Vierling K, Vierling L, Rowell E (2008) The use of airborne LiDAR to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment, 112, 2064-2073.
[19] Cornforth WA, Fatoyinbo TE, Freemantle TP, Pettorelli N (2013) Advanced land observing satellite phased array type L-band SAR (ALOS PALSAR) to inform the conservation of mangroves: Sundarbans as a case study. Remote Sensing, 5, 224-237.
[20] Costa M, Araujo LE, Shaw A, Steckler C, Hill P (2007) Hyperspectral imagery for mapping intertidal vegetation at Roberts Bank tidal flats, British Columbia, Canada. Canadian Journal of Remote Sensing, 33, 130-141.
[21] Cui LJ, Fei T, Qi Q, Liu YL, Wu GF (2013) Estimating Carex quality with laboratory-based hyperspectral measurements. International Journal of Remote Sensing, 34, 1866-1878.
[22] Cushman SA, Mcgarigal K (2002) Hierarchical, multi-scale decomposition of species-environment relationships. Landscape Ecology, 17, 637-646.
[23] Dabrowska-Zielinska K, Gruszczynska M, Lewinski S, Hoscilo A, Bojanowski J (2009) Application of remote and in situ information to the management of wetlands in Poland. Journal of Environmental Management, 90, 2261-2269.
[24] Daily GC, Ehrlich PR, Sanchez-Azofeifa GA (2001) Countryside biogeography: Use of human-dominated habitats by the avifauna of southern Costa Rica. Ecological Applications, 11, 1-13.
[25] Delord K, Roudaut G, Guinet C, Barbraud C, Bertrand S, Weimerskirch H (2015) Kite aerial photography: A low-cost method for monitoring seabird colonies. Journal of Field Ornithology, 86, 173-179.
[26] Diehl RH, Larkin RP, Black JE (2003) Radar observations of bird migration over the Great Lakes. Auk, 120, 278-290.
[27] Dodge S, Bohrer G, Bildstein K, Davidson SC, Weinzierl R, Bechard MJ, Barber D, Kays R, Brandes D, Han J (2014) Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philosophical Transactions of the Royal Society of London, 369, 20130195.
[28] Dwyer RG, Bearhop S, Campbell HA, Bryant DM (2013) Shedding light on light: Benefits of anthropogenic illumination to a nocturnally foraging shorebird. Journal of Animal Ecology, 82, 478-485.
[29] Evans KL, Newson SE, Gaston KJ (2009) Habitat influences on urban avian assemblages. Ibis, 151, 19-39.
[30] Farnsworth A, Van-Doren BM, Hochachka WM, Sheldon D, Winner K, Irvine J, Geevarghese J, Kelling S (2016) A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA. Ecological Applications, 26, 752-770.
[31] Ferraz SFD, Capao L, Vettorazzi CA (2006) Temporal scale and spatial resolution effects on Amazon forest fragmentation assessment in Rondonia. International Journal of Remote Sensing, 27, 459-472.
[32] Fensholt R, Rasmussen K, Nielsen TT, Mbow C (2009) Evaluation of earth observation based long term vegetation trends - Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sensing of Environment, 113, 1886-1898.
[33] Fretwell PT, Scofield P, Phillips RA (2017) Using super-high resolution satellite imagery to census threatened albatrosses. Ibis, 159, 481-490.
[34] Fretwell PT, Trathan PN (2009) Penguins from space: Faecal stains reveal the location of Emperor penguin colonies. Global Ecology and Biogeography, 18, 543-552.
[35] Fuller DO (2001) Forest fragmentation in Loudoun County, Virginia, USA evaluated with multitemporal Landsat imagery. Landscape Ecology, 16, 627-642.
[36] Gauthreaux SA, Belser CG (2003) Radar ornithology and biological conservation. Auk, 120, 266-277.
[37] Gilbert M, Newman SH, Takekawa JY, Loth L, Biradar C, Prosser DJ, Balachandran S, Rao MV, Mundkur T, Yan BP, Xing Z, Hou YS, Batbayar N, Natsagdorj T, Hogerwerf L, Slingenbergh J, Xiao XM (2010) Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5V1 risk in south Asia and satellite tracking of wild waterfowl. Ecohealth, 7, 448-458.
[38] Goel NS, Thompson RL (1984) Inversion of vegetation canopy reflectance models for estimating agronomic variables. 5. Estimation of leaf-area index and average leaf angle using measured canopy reflectances. Remote Sensing of Environment, 16, 69-85.
[39] Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) LiDAR remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569-1576.
[40] Goetz SJ, Sun M, Zolkos S, Hansen A, Dubayah R (2014) The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environmental Research Letters, 9, 2033-2053.
[41] Gong P, Pu R, Yu B (1997) Conifer species recognition: An exploratory analysis of in situ hyperspectral data. Remote sensing of Environment, 62, 189-200.
[42] Goodenough DG, Chen H, Gordon P, Niemann KO, Quinn G (2012) Forest applications with hyperspectral imaging. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, pp. 7309-7312. IEEE, Piscataway.
[43] Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Climate Research, 35, 37-58.
[44] Groom G, Stjernholm M, Nielsen RD, Fleetwood A, Petersen IK (2013) Remote sensing image data and automated analysis to describe marine bird distributions and abundances. Ecological Informatics, 14, 2-8.
[45] Guo DF, Zang SY, Na XD (2015) Habitat suitability evaluation of red-crowned crane in Zhalong National Nature Reserve. Geography and Geo-Informaion Science, 31, 54-58. (in Chinese with English abstract)
[郭殿繁, 臧淑英, 那晓东 (2015) 扎龙保护区丹顶鹤栖息地适宜性评价. 地理与地理信息科学, 31, 54-58.]
[46] Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF, Hu TY, Wan HW, Liu HM, Shen WM (2016) Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodiversity Science, 24, 1249-1266. (in Chinese with English abstract)
[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明 (2016) 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24, 1249-1266.]
[47] Haywood A, Stone C (2011) Mapping eucalypt forest susceptible to dieback associated with bell miners (Manorina melanophys) using laser scanning, SPOT 5 and ancillary topographical data. Ecological Modelling, 222, 1174-1184.
[48] Higuchi H, Pierre JP, Krever V, Andronov V, Fujita G, Ozaki K (2004) Using a remote technology in conservation: Satellite tracking white-naped cranes in Russia and Asia. Conservation Biology, 18, 136-147.
[49] Hill RA, Hinsley SA (2015) Airborne ldar for woodland habitat quality monitoring: Exploring the significance of LiDAR data characteristics when modelling organism-habitat relationships. Remote Sensing, 7, 3446-3466.
[50] Hüppop O, Dierschke J, Exo KM, Fredrich E, Hill R (2006) Bird migration studies and potential collision risk with offshore wind turbines. Ibis, 148, 90-109.
[51] Hu YB, Zhao QS, Lou YQ, Chen LJ, Antonio GM, Sun YH (2017) Parental attendance of Chestnut Thrush reduces nest predation during the incubation period: Compensation for low nest concealment? Journal of Ornithology, 158, 1111-1117.
[52] Jiang HX, Liu CY, Hou YQ, Qian FW (2010) Application of RS, GIS and GPS techniques in study of avian habitat. Scientia Silvae Sinicae, 46, 155-163. (in Chinese with English abstract)
[江红星, 刘春悦, 侯韵秋, 钱法文 (2010) 3S技术在鸟类栖息地研究中的应用. 林业科学, 46, 155-163.]
[53] Jones GP, Pearlstine LG, Percival HF (2006) An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin, 34, 750-758.
[54] Jung JF, Combs DL, Sowl KM (2016) Habitat selection by bristle-thighed curlews (Numenius tahitiensis) breeding within the Southern Nulato Hills, Alaska. Wilson Journal of Ornithology, 128, 727-737.
[55] Karaman M, Budakoglu M, Avci DU, Ozelkan E, Bulbul A, Civas M, Tasdelen S (2015) Determination of seasonal changes in wetlands using CHRIS/Proba hyperspectral satellite images: A case study from Acigol (Denizli), Turkey. Journal of Environmental Biology, 36, 73-83.
[56] Kerr JT, Isabelle D (2010) Habitat loss and the limits to endangered species recovery. Ecology Letters, 7, 1163-1169.
[57] Lagos NA, Paolini P, Jaramilo E, Lovengree C, Duarte C, Contreras H (2008) Environmental processes, water quality degradation, and decline of waterbird populations in the Rio Cruces Wetland, Chile. Wetlands, 28, 938-950.
[58] Lefsky MA, Cohen WB, Acker SA, Parker GG, Spies TA, Harding D (1999) LiDAR remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 70, 339-361.
[59] Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) LiDAR remote sensing for ecosystem studies. Bioscience, 52, 19-30.
[60] Legleiter CJ, Roberts DA, Marcus WA, Fonstad MA (2004) Passive optical remote sensing of river channel morphology and in-stream habitat: Physical basis and feasibility. Remote Sensing of Environment, 93, 493-510.
[61] Lesak AA, Radeloff VC, Hawbaker TJ, Pidgeon AM, Gobakken T, Contrucci K (2011) Modeling forest songbird species richness using LiDAR-derived measures of forest structure. Remote Sensing of Environment, 115, 2823-2835.
[62] Li XW, Wang YT (2013) Prospects on future developments of quantitative remote sensing. Acta Geographica Sinica, 68, 1163-1169. (in Chinese with English abstract)
[李小文, 王祎婷(2013) 定量遥感尺度效应刍议. 地理学报, 68, 1163-1169.]
[63] Liu CY, Jiang HX, Zhang SQ, Hou YQ, Lu J (2012) Breeding habitat characteristics of red-crowned crane at Zhalong of Northeast China: A multi-scale approach based on TM and ASAR image data. Chinese Journal of Applied Ecology, 23, 491-498. ( in Chinese with English abstract)
[刘春悦, 江红星, 张树清, 侯韵秋, 陆军 (2012) 基于TM与ASAR遥感数据的扎龙丹顶鹤繁殖栖息地多尺度特征. 应用生态学报, 23, 491-498.]
[64] Lynch HJ, Schwaller MR (2014) Mapping the abundance and distribution of Adelie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE,9, 11, e113301.
[65] Lyzenga DR (1978) Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics, 17, 379-383.
[66] Marticardona B, Steissberg TE, Schladow SG, Hook SJ (2008) Relating fish kills to upwellings and wind patterns in the Salton Sea. Hydrobiologia, 604, 85-95.
[67] Martin ME, Newman SD, Aber JD, Congalton RG (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65, 249-254.
[68] Martinuzzi S, Vierling LA, Gould WA, Falkowski MJ, Evans JS, Hudak AT, Vierling KT (2009) Mapping snags and understory shrubs for a LiDAR-based assessment of wildlife habitat suitability. Remote Sensing of Environment, 113, 2533-2546.
[69] Mayer PM, Smith LM, Ford RG, Watterson DC, McCutchen MD, Ryan MR (2009) Nest construction by a ground- nesting bird represents a potential trade-off between egg crypticity and thermoregulation. Oecologia, 159, 893-901.
[70] Mexicano L, Nagler PL, Zamora-Arrroyo F, Glenn EP (2013) Vegetation dynamics in response to water inflow rates and fire in a brackish Typha domingensis Pers. marsh in the delta of the Colorado River, Mexico. Ecological Engineering, 59, 167-175.
[71] Mei AX (2001) Remote Sensing Introduction. Higher Education Press, Beijing. (in Chinese)
[梅安新 (2001) 遥感导论. 高等教育出版社, 北京.]
[72] Meng B, Wang JF (2005) A Review on the methodology of scaling with geo-data. Acta Geographica Sinica, 60, 277-288. (in Chinese with English abstract)
[孟斌, 王劲峰 (2005) 地理数据尺度转换方法研究进展. 地理学报, 60, 277-288.]
[73] Mirzaei G, Jamali MM, Ross J, Gorsevski PV, Bingman VP (2015) Data fusion of acoustics, infrared, and marine radar for avian study. IEEE Sensors Journal, 15, 6625-6632.
[74] O’Connell AF, Nichols JD, Karanth KU (2010) Camera Traps in Animal Ecology: Methods and Analyses. Springer Science and Business Media, New York.
[75] Osborne PE, Alonso JC, Bryant RG (2010) Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. Journal of Applied Ecology, 38, 458-471.
[76] Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, Raven PH, Roberts CM, Sexton JO (2014) The biodiversity of species and their rates of extinction, distribution, and protection. Science, 344, 1246752.
[77] Pistolesi LI, Ni-Meister W, McDonald KC (2015) Mapping wetlands in the Hudson Highlands ecoregion with ALOS PALSAR: An effort to identify potential swamp forest habitat for golden-winged warblers. Wetlands Ecology and Management, 23, 95-112.
[78] Pradervand JN, Dubuis A, Pellissier L, Guisan A, Randin C (2014) Very high resolution environmental predictors in species distribution models: Moving beyond topography? Progress in Physical Geography, 38, 79-96.
[79] Robinson WD, Bowlin MS, Bisson I, Shamounbaranes J, Thorup K, Diehl RH (2010) Integrating concepts and technologies to advance the study of bird migration. Frontiers in Ecology and the Environment, 8, 354-361.
[80] Rodgers JA, Linda SB, Nesbitt SA (1995) Comparing aerial estimates with ground counts of nests in wood stork colonies. Journal of Wildlife Management, 59, 656-666.
[81] Rodrigues P, Aubrecht C, Gil A, Longcore T, Elvidge C (2012) Remote sensing to map influence of light pollution on Cory’s shearwater São Miguel Island, Azores Archipelago. European Journal of Wildlife Research, 58, 147-155.
[82] Ruan RZ, Feng XZ, She YJ (2007) Fusion of Radarsat SAR and ETM plus imagery for identification of fresh water wetland. In: Geoinformatics 2007: Remotely Sensed Data and Information (eds Ju W, Zhao S), 6752(5), 74. International Society for Optics and Photonics, Nanjing.
[83] Santos MJ, Greenberg JA, Ustin SL (2010) Using hyperspectral remote sensing to detect and quantify southeastern pine senescence effects in red-cockaded woodpecker (Picoides borealis) habitat. Remote Sensing of Environment, 114, 1242-1250.
[84] Sasamal SK, Chaudhury SB, Samal RN, Pattanaik AK (2008) QuickBird spots flamingos off Nalabana Island, Chilika Lake, India. International Journal of Remote Sensing, 29, 4865-4870.
[85] Schwaller MR, Olson J, Charles E, Ma ZQ, Zhu ZL, Dahmer P (1989) A remote sensing analysis of Adelie penguin rookeries. Remote Sensing of Environment, 28, 199-206.
[86] Schwaller MR, Southwell CJ, Emmerson LM (2013) Continental-scale mapping of Adélie penguin colonies from Landsat imagery. Remote Sensing of Environment, 139, 353-364.
[87] She XY, Ke CQ, Miao X, Zhang X, Zhang J (2017) An automated method for the detection of emperor penguin colonies from Landsat 8 imagery. Remote Sensing Letters, 8, 596-605.
[88] Shirley SM, Yang Z, Hutchinson RA, Alexander JD, Mcgarigal K, Betts MG (2013) Species distribution modelling for the people: Unclassified landsat TM imagery predicts bird occurrence at fine resolutions. Diversity and Distributions, 19, 855-866.
[89] Shi ZL, Cao M (2007) A study of surveying and mapping of island and tidal flat based on LiDAR. Bulletin of Surveying and Mapping, (5), 49-53. (in Chinese)
[史照良, 曹敏 (2007) 基于LiDAR技术的海岛礁、滩涂测绘研究. 测绘通报, (5), 49-53.]
[90] Singh M, Tokola T, Hou Z, Notarnicola C (2017) Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest. Ecology and Evolution, 7, 4552.
[91] Su LH, Li XW, Huang YX (2001) An review on scale in remote sensing. Advanced in Earth Science, 16, 544-548. (in Chinese with English abstract)
[苏理宏, 李小文, 黄裕霞 (2001) 遥感尺度问题研究进展. 地球科学进展, 16, 544-548.]
[92] Suryan R, Santora J, Sydeman W (2012) New approach for using remotely sensed chlorophyll a to identify seabird hotspots. Marine Ecology Progress, 451, 213-225.
[93] Taft OW, Haig SM, Kiilsgaard C (2003) Use of radar remote sensing (RADARSAT) to map winter wetland habitat for shorebirds in an agricultural landscape. Environmental Management, 32, 268-281.
[94] Tebbs EJ, Remedios JJ, Avery ST, Harper DM (2013) Remote sensing the hydrological variability of Tanzania’s Lake Natron, a vital Lesser Flamingo breeding site under threat. Ecohydrology and Hydrobiology, 13, 148-158.
[95] Tøttrup AP, Thorup K, Rainio K, Yosef R, Lehikoinen E, Rahbek C (2008) Avian migrants adjust migration in response to environmental conditions en route. Biology Letters, 4, 685.
[96] Tran A, Goutard F, Chamaillé L, Baghdadi N, Seen DL (2010) Remote sensing and avian influenza: A review of image processing methods for extracting key variables affecting avian influenza virus survival in water from Earth Observation satellites. International Journal of Applied Earth Observation and Geoinformation, 12, 1-8.
[97] Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 18, 306-314.
[98] Tuttle EM, Jensen RR, Formica VA, Gonser RA (2006) Using remote sensing image texture to study habitat use patterns: A case study using the polymorphic white-throated sparrow (Zonotrichia albicollis). Global Ecology and Biogeography, 15, 349-357.
[99] Vanhellemont Q, Ruddick K (2014) Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105-115.
[100] Vas E, Lescroel A, Duriez O, Boguszewski G, Gremillet D (2015) Approaching birds with drones: First experiments and ethical guidelines. Biology Letters, 11, 20140754.
[101] Wang XQ, Wang MM, Wang SQ, Wu YD (2015) Extraction of vegetation information from visible unmanned aerialvehicle images. Transactions of the Chinese Society of Agricultural Engineering, 31,152-159. (in Chinese with English abstract)
[汪小钦, 王苗苗, 王绍强, 吴云东 (2015) 基于可见光波段无人机遥感的植被信息提取. 农业工程学报, 31, 152-159.]
[102] Wang Y, Zhang ZW, Zheng GM, Li JQ, Xu JL, Ma ZJ, Biancucci AL (2012) Ornithological research: Past twenty years and future perspectives in China. Biodiversity Science, 20, 119-137. (in Chinese with English abstract)
[王勇, 张正旺, 郑光美, 李建强, 徐基良, 马志军, Biancucci AL (2012) 鸟类学研究: 过去二十年的回顾和对中国未来发展的建议. 生物多样性, 20, 119-137.]
[103] Weber PT, Nohara TJ (2011) Device and method for 3D height-finding avian radar. US. Patent No. 7, 864, 103. US Patent and Trademark Office, Washington, DC.
[104] Weissensteiner MH, Poelstra JW, Wolf JBW (2015) Low- budget ready-to-fly unmanned aerial vehicles: An effective tool for evaluating the nesting status of canopy-breeding bird species. Journal of Avian Biology, 46, 425-430.
[105] Wilson AM, Jetz W (2016) Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biology, 14, e1002415.
[106] Wilson JW, Weckwerth TM, Vivekanandan J, Wakimoto RM, Russell RW (1994) Boundary-layer clear-air radar echoes: Origin of echoes and accuracy of derived winds. Journal of Atmospheric and Oceanic Technology, 11, 1184-1206.
[107] Wood EM, Pidgeon AM, Radeloff VC, Keuler NS (2012) Image texture as a remotely sensed measure of vegetation structure. Remote Sensing of Environment, 121, 516-526.
[108] Wu BF, Zhang M (2017) Remote sensing: Oberservations to data products. Acta Geographica Sinica, 72, 2093-2111. (in Chinese with English abstract)
[吴炳方, 张淼 (2017) 从遥感观测数据到数据产品. 地理学报, 72, 2093-2111.]
[109] Wu J, Jones KB, Li H, Loucks OL (2006) Scaling and uncertainty Analysis in Ecology. Springer, Dordrecht.
[110] Zellweger F, Braunisch V, Baltensweiler A, Bollmann K (2013) Remotely sensed forest structural complexity predicts multi species occurrence at the landscape scale. Forest Ecology and Management, 307, 303-312.
[111] Zhang N (2006) Scale issues in ecology: Concepts of scale and scale analysis. Acta Ecologica Sinica, 26, 2340-2355. (in Chinese with English abstract)
[张娜 (2006) 生态学中的尺度问题: 内涵与分析方法. 生态学报, 26, 2340-2355.]
[112] Zhao YM, Li YH, Shang YN, Li J, Yu Y, Li LH (2014) Application and development direction of LiDAR. Journal of Telemetry,Tracking and Command, 35, 4-22. (in Chinese with English abstract)
[赵一鸣, 李艳华, 商雅楠, 李静, 于勇, 李凉海 (2014) 激光雷达的应用及发展趋势. 遥测遥控, 35, 4-22.]
[113] Zhao YS (2013)Principle and Method of Remote Sensing Application Analysis. Science Press, Beijing. (in Chinese)
[赵英时 (2013) 遥感应用分析原理与方法. 科学出版社, 北京.]
[114] Zhao YZ, Wang ZC, Xu JL, Luo X, An LD (2013) Activity rhythm and behavioral time budgets of wild reeves's pheasant (Syrmaticus reevesii) using infrared camera. Acta Ecologica Sinica, 33, 6021-6027. (in Chinese with English abstract)
[赵玉泽, 王志臣, 徐基良, 罗旭, 安丽丹 (2013) 利用红外照相技术分析野生白冠长尾雉活动节律及时间分配. 生态学报, 33, 6021-6027.]
[115] Zohmann M, Pennerstorfer J, Nopp-Mayr U (2013) Modelling habitat suitability for alpine rock ptarmigan (Lagopus muta helvetica) combining object-based classification of IKONOS imagery and Habitat Suitability Index modelling. Ecological Modelling, 254, 22-32.
[1] 郭庆华 胡天宇 马勤 徐可心 杨秋丽 孙千惠 李玉美 苏艳军. (2020) 新一代遥感技术助力生态系统生态学研究. 植物生态学报, 44(生态技术与方法专辑): 0-0.
[2] 肖文宏 周青松 朱朝东 吴东辉 肖治术. (2020) 野生动物监测技术和方法应用进展与展望. 植物生态学报, 44(生态技术与方法专辑): 0-0.
[3] 杨雄威,吴安康,邹启先,李光容,张明明,胡灿实,粟海军. (2020) 贵州麻阳河国家级自然保护区红外相机鸟兽监测. 生物多样性, 28(2): 219-225.
[4] 马亦生,马青青,何念军,朱大鹏,赵凯辉,刘红彩,李帅,孙亮,唐流斌. (2020) 基于红外相机技术调查佛坪国家级自然保护区兽类和鸟类多样性. 生物多样性, 28(2): 226-230.
[5] 史晓昀,施小刚,胡强,官天培,付强,张剑,姚蒙,李晟. (2019) 四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估. 生物多样性, 27(9): 951-959.
[6] 杨纬和,陈月龙,邓玥,王兴哲,陈立军,胡大明,罗秀海,宋大昭,肖治术. (2019) 利用红外相机对四川白水河国家级自然保护区鸟兽资源的初步调查. 生物多样性, 27(9): 1012-1015.
[7] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[8] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. (2019) 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析. 生物多样性, 27(6): 683-688.
[9] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. (2019) 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律. 生物多样性, 27(6): 638-647.
[10] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. (2019) 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估. 生物多样性, 27(3): 237-242.
[11] 陈立军,肖文宏,肖治术. (2019) 物种相对多度指数在红外相机数据分析中的应用及局限. 生物多样性, 27(3): 243-248.
[12] 肖文宏,束祖飞,陈立军,姚武韬,马勇,张应明,肖治术. (2019) 占域模型的原理及在野生动物红外相机研究中的应用案例. 生物多样性, 27(3): 249-256.
[13] 肖文宏,胡力,黄小群,肖治术. (2019) 基于标记-重捕模型开展野生动物红外相机种群监测的方法及案例. 生物多样性, 27(3): 257-265.
[14] 陈立军,束祖飞,肖治术. (2019) 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3): 266-272.
[15] 余建平,王江月,肖慧芸,陈小南,陈声文,李晟,申小莉. (2019) 利用红外相机公里网格调查钱江源国家公园的兽类及鸟类多样性. 生物多样性, 27(12): 1339-1344.
Full text