生物多样性 ›› 2018, Vol. 26 ›› Issue (3): 217-228.doi: 10.17520/biods.2017336

• 研究报告:植物多样性 • 上一篇    下一篇

基于DNA条形码评估西双版纳国家级自然保护区对樟科植物进化历史的保护

侯勤曦1, 2, 慈秀芹1, 2, 刘志芳1, 2, 徐武美3, 李捷1, *()   

  1. 1 (中国科学院西双版纳热带植物园综合保护中心植物系统发育与保护生物学实验室, 昆明 650223)
    2 (中国科学院大学, 北京 100049)
    3 (云南师范大学能源与环境科学学院, 昆明 650500)
  • 收稿日期:2017-12-25 接受日期:2018-02-24 出版日期:2018-03-20
  • 通讯作者: 李捷 E-mail:jieli@xtbg.ac.cn
  • 基金项目:
    国家自然科学基金(31770569, 31500454)和中国科学院战略生物资源服务网络计划生物多样性保护策略(ZSSD-013)

Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding

Hou Qinxi1, 2, Ci Xiuqin1, 2, Liu Zhifang1, 2, Xu Wumei3, Li Jie1, *()   

  1. 1 Laboratory of Plant Phylogenetics and Conservation, Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 School of Energy and Environment Science, Yunnan Normal University, Kunming 650500
  • Received:2017-12-25 Accepted:2018-02-24 Online:2018-03-20
  • Contact: Li Jie E-mail:jieli@xtbg.ac.cn

为评估西双版纳国家级自然保护区对樟科这一重要植物类群进化潜力的保护情况, 揭示将物种进化历史纳入生物多样性保护评估的重要性, 本研究通过对西双版纳地区长期的野外调查并查阅标本记录与文献资料, 整理出该地区樟科13属121种物种的具体分布信息, 以植物条形码ITS序列作为分子标记构建了反映整个西双版纳地区樟科植物系统发育关系的系统发育树。我们以此为基础, 从物种层面分析了各物种的进化特异性(evolutionary distinctiveness, ED), 从区域层面分析了自然保护区内、外以及32个行政乡镇的系统发育多样性(phylogenetic diversity, PD), 并结合物种丰富度(species richness, SR)与物种濒危等级, 综合探讨了西双版纳国家级自然保护区对樟科植物进化历史的保护情况。研究发现, 西双版纳国家级自然保护区仅拥有整个西双版纳地区54.5%的樟科物种数, 却保护了该地区樟科植物约88.8%的进化历史, 没有被列入保护范围但却拥有高系统发育多样性的区域有打洛镇、易武乡等。就物种而言, 进化特异性相对较高的19个物种中, 有5种(26.3%)在自然保护区内没有分布; 濒危等级高的54个物种中, 有20种(37.0%)在自然保护区没有分布, 同时拥有高进化特异性和濒危等级的物种仅有1种不在保护区内分布。结果表明, 虽然西双版纳国家级自然保护区对樟科这一植物类群的系统发育多样性以及高保护价值物种的保护较好, 但仍有部分重要樟科植物的进化历史没有涵盖在现有自然保护区范围内; 按照传统方法设定的自然保护区虽能在一定程度上保护樟科物种的进化历史, 但仍然存在与标准化系统发育多样性保护策略相矛盾的地方。因此, 今后在建立自然保护区时, 应将系统发育多样性考虑在内, 以保护生物多样性应对环境变化的潜力。

关键词: 进化历史, 系统发育多样性, 进化特异性, 自然保护区, DNA条形码, 樟科

Global biodiversity is diminishing at an unprecedented rate due to anthropogenic changes in the environment and establishing nature reserve is one of the most effective strategies for reducing biodiversity loss. Xishuangbanna, located in Southwest China, is a famous biodiversity hotspot and Lauraceae plants play an important role in the composition of its forest vegetation. To assess the role of Xishuangbanna National Nature Reserve (XNNR, established in 1958) in the conservation of evolutionary history of Lauraceae and to demonstrate the importance of combining phylogenetic information with biodiversity conservation, the evolutionary distinctiveness (ED), phylogenetic diversity (PD), species richness (SR), and endangerment categories of Lauraceae plants in Xishuangbanna were investigated. Results show that XNNR conserves only half of Lauraceae species (54.5%) found in Xishuangbanna, while 88.8% of PD was protected. However, there are still some areas (e.g. Daluo Town and Yiwu Town) with high PD that are not listed as conservation areas. A total of 19 species with high ED values (> 0.1) were found in Xishuangbanna, of which five species (26.3%) were not conserved in the XNNR, while 20 (37.0%) of 54 endangered species were not distributed in the nature reserve. Only three species with both high ED and endangerment categories were not found in the nature reserve. Our study shows that the XNNR has protected a large proportion of PD and species with high conservation value, however, some important evolutionary history and endangered species of Lauraceae are still not conserved in the XNNR, indicating that the traditional assessment solely based on species richness could not incorporate phylogenetic information completely. We therefore conclude that PD should be considered in establishing nature reserves to maximize the evolutionary potential in an uncertain future.

Key words: evolutionary history, phylogenetic diversity, evolutionary distinctiveness, nature reserve, DNA barcoding, Lauraceae

图1

利用ITS序列构建西双版纳地区121种樟科物种的系统发育进化树。每个节点支持率数值用星号(≥ 85%, 高度支持)、菱形(70-84%, 中度支持)、圆形(50-69%, 较弱支持)表示。人为插入的23个没有分子信息的物种用灰色条块突出。带颜色的圆形代表了物种在5个子保护区的分布情况, 红色代表在勐养子保护区有分布, 绿色代表在勐仑子保护区有分布, 紫色代表在勐腊子保护区有分布, 黑色代表在尚勇子保护区有分布, 蓝色代表在曼稿子保护区有分布。"

表1

西双版纳国家级自然保护区及各子保护区樟科的系统发育多样性与物种丰富度及各自所占的比例"

区域
Region
物种丰富度
SR (%)
系统发育多样性
PDFaith (%)
标准化系统发育多样性
Standardized effect size of PD (PDSES)
P
西双版纳国家级自然保护区
Xishuangbanna National Nature Reserve
66 (54.5) 5.78 (88.8) - -
勐养子保护区 Mengyang sub-reserve 49 (40.5) 5.41(83.1) 1.15 0.85
勐仑子保护区 Menglun sub-reserve 47 (38.8) 5.49 (84.3) 1.35 0.89
勐腊子保护区 Mengla sub-reserve 53 (43.8) 5.64 (86.6) 1.21 0.88
尚勇子保护区 Shangyong sub-reserve 47 (38.8) 5.49 (84.3) 1.32 0.89
曼稿子保护区 Mangao sub-reserve 36 (29.8) 4.97 (76.3) 1.54 0.92
西双版纳地区(总) Xishuangbanna region (Total) 121 6.51 - -

表2

西双版纳32个行政乡镇的樟科物种丰富度(SR)、系统发育多样性(PDFaith)和标准化系统发育多样性(PDSES)"

西双版纳行政乡镇 Administrative towns in Xishuangbanna SR PDFaith PDSES P
勐海县 Menghai County 勐满镇 Mengman Town 39 4.96 1.16 0.87
勐阿镇 Menga Town 24 3.72 1.00 0.82
勐往乡 Mengwang Town 26 4.63 2.06 0.97
西定布朗族哈尼族乡 Xiding Blang Hani Ethnicity Town 17 2.00 -0.91 0.17
勐遮镇 Mengzhe Town 20 3.13 0.51 0.70
勐海镇 Menghai Town 12 1.24 -1.46 0.06
勐宋乡 Mengsong Town 26 2.27 -1.49 0.04
打洛镇 Daluo Town 30 4.83 1.95 0.96
勐混镇 Menghun Town 31 4.64 1.57 0.93
格朗和哈尼族乡 Gelanghe Hani Ethnicity Town 45 4.10 -0.43 0.35
布朗山布朗族乡 Bulangshan Blang Ethnicity Town 13 2.12 -0.08 0.55
景洪市 Jinghong City 景讷乡 Jingne Town 29 3.64 0.25 0.59
普文镇 Puwen Town 17 4.07 2.59 0.99
勐旺乡 Mengwang Town 21 3.62 1.16 0.87
大渡岗乡 Dadugang Town 22 3.35 0.62 0.74
景洪 Jinghong 14 2.29 0.02 0.58
勐养镇 Mengyang Town 38 4.92 1.20 0.87
基诺山基诺族乡Jinuoshan Jinuo Ethnicity Town 52 4.33 -0.65 0.26
嘎洒镇 Gasa Town 20 2.71 -0.11 0.53
勐罕镇 Menghan Town 16 1.78 -1.13 0.07
景哈哈尼族乡 Jingha Hani Ethnicity Town 15 2.23 -0.20 0.48
勐龙镇 Menglong Town 53 4.39 -0.58 0.30
勐腊县 Mengla County 象明彝族乡 Xiangming Yi Ethnicity Town 43 5.02 0.99 0.83
易武乡 Yiwu Town 26 4.58 2.11 0.97
勐仑镇 Menglun Town 63 5.04 -0.42 0.33
关累镇 Guanlei Town 28 2.74 -0.98 0.17
瑶区瑶族乡 Yaoqu Yao Ethnicity Town 14 2.10 -0.28 0.47
勐伴镇 Mengban Town 38 4.00 -0.03 0.50
勐捧镇 Mengpeng Town 15 2.15 -0.30 0.46
勐腊镇 Mengla Town 66 4.92 -0.76 0.21
勐满镇 Mengman Town 15 1.73 -1.09 0.08
尚勇镇 Shangyong Town 29 4.62 1.77 0.95

图2

西双版纳地区32个乡镇的系统发育多样性与物种丰富度的相关性(r = 0.75, P = 1.61e-11)"

图3

西双版纳地区32个乡镇的标准化系统发育多样性与物种丰富度与的相关性"

图4

西双版纳傣族自治州32个乡镇的标准化系统发育多样性"

表3

西双版纳地区樟科各物种的进化特异性(ED)和珍稀濒危等级(根据《中国物种红色名录》(I)和“西南-云贵渝地区本土植物清查与保护”调查结果(II))以及各物种在保护区内的分布情况"

物种 Species ED 分布
Distribution
物种 Species ED 分布
Distribution
思茅黄肉楠 Actinodaphne henryi 0.11 EN - + 无根藤 Cassytha filiformis 1.08 - VU +
勐海黄肉楠 A. menghaiensis 0.02 - VU - 滇南桂 Cinnamomum austro-yunnanense 0.06 VU VU +
倒卵叶黄肉楠 A. obovata 0.06 - - + 钝叶桂 C. bejolghota 0.06 - - +
马关黄肉楠 A. tsaii 0.05 - CR - 阴香 C. burmannii 0.02 - - -
毛叶油丹 Alseodaphne andersonii 0.07 - - + 肉桂 C. cassia 0.02 - - -
长柄油丹 A. petiolaris 0.19 - VU + 坚叶樟 C. chartophyllum 0.04 EN VU +
山潺 Beilschmiedia appendiculata 0.05 - - - 聚花桂 C. contractum 0.06 - - -
勐仑琼楠 B. brachythyrsa 0.12 EN VU + 云南樟 C. glanduliferum 0.03 - - +
白柴果 B. fasciata 0.03 EN - + 大叶桂 C. iners 0.06 - - +
李榄琼楠 B. linocieroides 0.03 VU - + 爪哇肉桂 C. javanicum 0.02 - - -
少花琼楠 B. pauciflora 0.06 EN VU + 毛叶樟 C. mollifolium 0.02 EN VU +
厚叶琼楠 B. percoriacea 0.03 - - + 黄樟 C. parthenoxylon 0.02 - - +
紫叶琼楠 B. purpurascens 0.03 EN VU + 网脉桂 C. reticulatum 0.03 - - -
粗壮琼楠 B. robusta 0.04 - - + 卵叶桂 C. rigidissimum 0.02 - VU -
椆琼楠 B. roxburghiana 0.03 - - - 香桂 C. subavenium 0.04 - VU +
红毛琼楠 B. rufohirtella 0.09 EN VU - 柴桂 C. tamala 0.04 - - +
滇琼楠 B. yunnanensis 0.17 - - - 细毛樟 C. tenuipilum 0.03 - - +
物种 Species ED 分布
Distribution
物种 Species ED 分布
Distribution
C. camphora 0.06 - - - 假柿木姜子 L. monopetala 0.09 - - +
尖叶厚壳桂 Cryptocarya acutifolia 0.08 - - + 香花木姜子 L. panamonja 0.06 - - -
短序厚壳桂 C. brachythyrsa 0.17 EN - + 红皮木姜子 L. pedunculata 0.01 - - -
岩生厚壳桂 C. calcicola 0.06 - - + 思茅木姜子 L. pierrei var. szemois 0.45 EN VU +
黄果厚壳桂 C. concinna 0.08 - - - 红叶木姜子 L. rubescens 0.02 - - -
丛花厚壳桂 C. densiflora 0.17 - - + 黑木姜子 L. salicifolia 0.05 - - -
贫花厚壳桂 C. depauperata 0.10 - - - 桂北木姜子 L. subcoriacea 0.01 - - -
海南厚壳桂 C. hainanensis 0.04 - EN - 伞花木姜子 L. umbellate 0.02 - - +
斑果厚壳桂 C. maculata 0.17 CR - + 轮叶木姜子 L. verticillata 0.03 - - -
云南厚壳桂 C. yunnanensis 0.23 EN - + 绒叶木姜子 L. wilsonii 0.05 - - -
香面叶 Iteadaphne caudata 0.15 - - + 云南木姜子 L. yunnanensis 0.15 - VU -
乌药 Lindera aggregata 0.02 - - - 长梗润楠 Machilus longipedicellata 0.02 - - -
香叶树 L. communis 0.07 - - + 黄心树 M. bombycina 0.01 - - +
绒毛钓樟 L. floribunda 0.02 - VU - 枇杷叶润楠 M. bonii 0.04 - - -
团香果 L. latifolia 0.02 - - - 簇序润楠 M. fasciculata 0.04 CR - -
山柿子果 L. longipedunculata 0.04 VU - - 秃枝润楠 M. kurzii 0.01 - VU -
滇粤山胡椒 L. metcalfiana 0.06 - - - 暗叶润楠 M. melanophylla 0.04 CR VU +
网叶山胡椒
L. metcalfiana var. dictyophylla
0.04 - - + 小花润楠 M. minutiflora 0.01 EN VU +
勐海山胡椒 L. monghaiensis 0.02 CR VU + 粗壮润楠 M. robusta 0.02 - - +
勐仑山胡椒
L. nacusua var. monglunensis
0.02 - VU + 红梗润楠 M. rufipes 0.02 - - +
无梗假桂钓樟
L. tonkinensis var. subsessilis
0.02 - VU + 柳叶润楠 M. salicina 0.03 - - +
假辣子 Litsea balansae 0.01 VU - - 瑞丽润楠 M. shweliensis 0.03 VU - -
大萼木姜子 L. baviensis 0.07 - VU + 细毛润楠 M. tenuipila 0.02 - VU +
沧原木姜子 L. cangyuanensis 0.01 - - - 柔毛润楠 M. villosa 0.03 - - -
金平木姜子 L. chinpingensis 0.01 - VU + 滇润楠 M. yunnanensis 0.01 - - -
山鸡椒 L. cubeba 0.03 - - + 滇新樟 Neocinnamomum caudatum 0.49 - - +
五桠果叶木姜子 L. dilleniifolia 0.04 EN VU + 海南新樟 N. lecomtei 0.49 - VU +
黄丹木姜子 L. elongata 0.02 - - + 下龙新木姜子 Neolisea alongensis 0.02 - CR -
近轮叶木姜子
L. elongata var. subverticillata
0.16 - - - 团花新木姜子 N. homilantha 0.02 - - -
清香木姜子 L. euosma 0.02 - - + 大叶新木姜子 N. levinei 0.05 - VU -
滇南木姜子 L. garrettii 0.03 - - + 勐腊新木姜子 N. menglaensis 0.02 CR VU +
潺槁木姜子 L. glutinosa 0.03 - - + 多果新木姜子 N. polycarpa 0.02 - - -
白野槁树 L. glutinosa var. bridellifolia 0.12 - - - 绒毛新木姜子 N. tomentosa 0.11 EN - +
华南木姜子 L. greenmaniana 0.01 - - - 沼楠 Phoebe angustifolia 0.03 - CR -
红河木姜子 L. honghoensis 0.06 EN - + 山楠 P. chinensis 0.05 - - -
秃净木姜子 L. kingii 0.05 - - - 披针叶楠 P. lanceolata 0.05 - - +
剑叶木姜子 L. lancifolia 0.08 - - - 大果楠 P. macrocarpa 0.03 EN VU -
椭圆果木姜子
L. lancifoiia var. ellipsoidea
0.01 - - - 大萼楠 P. megacalyx 0.04 EN VU +
有梗木姜子 L. lancifolia var. pedicefata 0.18 - - + 滇楠 P. nanmu 0.03 EN VU +
大果木姜子 L. lancilimba 0.01 - VU - 普文楠 P. puwenensis 0.03 EN - +
圆锥木姜子 L. liyuyingi 0.03 - - + 红梗楠 P. rufescens 0.03 EN VU +
长蕊木姜子 L. longistaminata 0.03 VU - - 紫楠 P. sheareri 0.06 - - +
玉兰叶木姜子 L. magnoliifolia 0.01 - VU - 景东楠 P. yunnanensis 0.03 EN VU -
毛叶木姜子 L. mollis 0.04 - - -
[1] Abellán P, Sánchez-Fernández D, Picazo F, Millán A, Lobo JM, Ribera I (2013) Preserving the evolutionary history of freshwater biota in Iberian National Parks. Biological Conservation, 162, 116-126.
doi: 10.1016/j.biocon.2013.04.001
[2] Chen HF, Yi ZF, Schmidt-Vogt D, Ahrends A, Becksch?fer P, Kleinn C, Ranjitkar S, Xu JC (2016) Pushing the limits: The pattern and dynamics of rubber monoculture expansion in Xishuangbanna, SW China. PLoS ONE, 11, e0150062.
doi: 10.1371/journal.pone.0150062 pmid: 4764337
[3] Chen S, Yao H, Han JP, Liu C, Song JY, Shi LC, Zhu YJ, Ma XY, Gao T, Pang XH, Luo K, Li Y, Li XW, Jia XC, Lin YL, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5, e8613.
doi: 10.1371/journal.pone.0008613 pmid: 20062805
[4] Ci XQ, Li J (2017) Phylogenetic diversity and its application in floristics and biodiversity conservation. Biodiversity Science, 25, 175-181. (in Chinese with English abstract)
doi: 10.17520/biods.2016183
[慈秀芹, 李捷 (2017) 系统发育多样性在植物区系研究与生物多样性保护中的应用. 生物多样性, 25, 175-181.]
doi: 10.17520/biods.2016183
[5] De Vos JM, Joppa LN, Gittleman JL, Stephens PR, Pimm SL (2015) Estimating the normal background rate of species extinction. Conservation Biology, 29, 452-462.
[6] Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
doi: 10.1016/0006-3207(92)91201-3
[7] Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
doi: 10.1038/nature05587
[8] Gao LM, Liu J, Cai J, Yang JB, Zhang T, Li DZ (2012) A synopsis of technical notes on the standards for plant DNA barcoding. Plant Diversity and Resources, 34, 592-606. (in Chinese with English abstract)
[高连明, 刘杰, 蔡杰, 杨俊波, 张挺, 李德铢 (2012) 关于植物DNA条形码研究技术规范. 植物分类与资源学报, 34, 592-606.]
[9] Ge XJ (2015) Application of DNA barcoding in phylofloristics study. Biodiversity Science, 23, 295-296. (in Chinese)
[葛学军 (2015) DNA条形码在植物系统发育区系学研究中的应用. 生物多样性, 23, 295-296.]
[10] Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM (2007) Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE, 2, e296.
doi: 10.1371/journal.pone.0000296
[11] IUCN (2017) The IUCN Red List of Threatened Species. Version 2017-3. . (accessed on 2017 -12-05
[12] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 26, 1463-1464.
doi: 10.1093/bioinformatics/btq166
[13] Klein C, Wilson K, Watts M, Stein J, Berry S, Carwardine J, Smith MS, Mackey B, Possingham H (2009) Incorporating ecological and evolutionary processes into continental-scale conservation planning. Ecological Applications, 19, 206-217.
doi: 10.1890/07-1684.1
[14] Kress WJ, Erickson DL, Jones FA, Swenson NG, Perez R, Sanjur O, Berminghan E (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama. Proceedings of the National Academy of Sciences, USA, 106, 18621-18626.
doi: 10.1073/pnas.0909820106
[15] Laity T, Laffan SW, González-Orozco CE, Faith DP, Rosauer DF, Byrne M, Miller JT, Crayn D, Costion C, Moritz CC, Newport K (2015) Phylodiversity to inform conservation policy: An Australian example. Science of The Total Environment, 534, 131-143.
doi: 10.1016/j.scitotenv.2015.04.113 pmid: 25976346
[16] Larkin MA, Blackshields G, Brown NP, Chenna R, McGetti-gan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.
doi: 10.1093/bioinformatics/btm404
[17] Li HM, Aide TM, Ma YX, Liu WJ, Cao M (2007) Demand for rubber is causing the loss of high diversity rain forest in SW China. Plant Conservation and Biodiversity, 16, 1731-1745.
doi: 10.1007/s10531-006-9052-7
[18] Li HW, Li J, Huang PH, Wei FN, Cui HB, van der Werff H (2008) Lauraceae. In: Flora of China, Vol. 7 (eds Wu ZY, Raven PH, Hong DY), pp. 102-254. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis.
[19] Liu ZF, Ci XQ, Li L, Li HW, Conran JG, Li J (2017) DNA barcoding evaluation and implications for phylogenetic relationships in Lauraceae from China. PLoS ONE, 12, e0175788.
doi: 10.1371/journal.pone.0175788 pmid: 5393608
[20] Lyubetsky V, Piel WH, Quandt D (2014) Current advances in molecular phylogenetics. BioMed Research International, 2014, 596746.
doi: 10.1155/2014/596746 pmid: 24809056
[21] Mace GM, Norris K, Fitter AH (2012) Biodiversity and ecosystem services: A multilayered relationship. Trends in Ecology & Evolution, 27, 19-26.
doi: 10.1016/j.tree.2011.08.006 pmid: 21943703
[22] Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop, 14, 1-8.
[23] Mishler BD, Knerr N, González-Orozco CE, Thornhill AH, Laffan SW, Miller JT (2014) Phylogenetic measures of biodiversity and neo- and paleo-endemism in Australian Acacia. Nature Communications, 5, 4473.
doi: 10.1038/ncomms5473 pmid: 25034856
[24] Mooers A?, Atkins RA (2003) Indonesia’s threatened birds: Over 500 million years of evolutionary heritage at risk. Animal Conservation, 6, 183-188.
doi: 10.1017/S1367943003003226
[25] Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238-254.
doi: 10.1080/10635150252899752
[26] Oliver TH, Heard MS, Isaac NJB, Roy DB, Procter D, Eigenbrod F, Freckleton R, Hector A, Orme CD, Petchey OL, Proen?a V, Raffaelli D, Suttle KB, Mace GM, Martín-López B, Woodcock BA, Bullock JM (2015) Biodiversity and resilience of ecosystem functions. Trends in Ecology & Evolution, 30, 673-684.
doi: 10.1016/j.tree.2015.08.009 pmid: 26437633
[27] Pollock LJ, Rosauer DF, Thornhill AH, Kujala H, Crisp MD, Miller JT, McCarthy MA (2015) Phylogenetic diversity meets conservation policy: Small areas are key to preserving eucalypt lineages. Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140007.
doi: 10.1098/rstb.2014.0007 pmid: 4290421
[28] Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter, 15, 8-15.
doi: 10.1007/BF02772108
[29] Qian H, Jin Y, Ricklefs RE (2017) Phylogenetic diversity anomaly in angiosperms between eastern Asia and eastern North America. Proceedings of the National Academy of Sciences, USA, 114, 11452-11457.
doi: 10.1073/pnas.1703985114 pmid: 29073071
[30] Redding DW, Mooers A? (2006) Incorporating evolutionary measures into conservation prioritization. Conservation Biology, 20, 1670-1678.
doi: 10.1111/j.1523-1739.2006.00555.x pmid: 17181802
[31] R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.. (accessed on 2017-11-30
[32] Rodrigues ASL, Brooks TM, GastonKJ (2005) Integrating phylogenetic diversity in the selection of priority areas for conservation: Does it make a difference? In: Phylogeny and Conservation (eds Purvis A, Gittleman JL, Brooks T), pp. 101-119. Cambridge University Press, London.
[33] Rodrigues ASL, Gaston KJ (2002) Maximising phylogenetic diversity in the selection of networks of conservation areas. Biological Conservation, 105, 103-111.
doi: 10.1016/S0006-3207(01)00208-7
[34] Rolland J, Cadotte MW, Davies J, Devictor V, Lavergne S, Mouquet N, Pavoine S, Rodrigues A, Thuiller W, Turcati L, Winter M, Zupan L, Jabot F, Morlon H (2012) Using phylogenies in conservation: New perspectives. Biology Letters, 8, 692-694.
doi: 10.1098/rsbl.2011.1024 pmid: 3440956
[35] Soutullo A, Dodsworth S, Heard SB, Mooers A? (2005) Distribution and correlates of carnivore phylogenetic diversity across the Americas. Animal Conservation, 8, 249-258.
doi: 10.1017/S136794300500226X
[36] Stamatakis A (2006) RAxML-VI-HPC: Maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.
doi: 10.1093/bioinformatics/btl446 pmid: 16928733
[37] Wang S, Xie Y (2004) China Species Red List, Vol.1: Red List. Higher Education Press, Beijing. (in Chinese)
[汪松, 解焱 (2004) 中国物种红色名录, 第1卷: 红色名录. 高等教育出版社, 北京. ]
[38] Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
doi: 10.1016/j.ejcts.2008.03.025 pmid: 18678590
[39] Winter M, Devictor V, Schweiger O (2013) Phylogenetic diversity and nature conservation: Where are we? Trends in Ecology & Evolution, 28, 199-204.
doi: 10.1016/j.tree.2012.10.015 pmid: 23218499
[40] Xishuangbanna Nature Reserve Comprehensive Investigation Group(1987) Xishuangbanna National Nature Reserve Comprehensive Investigation Reports. Yunnan Science and Technology Press, Kunming. (in Chinese)
[西双版纳自然保护区综合考察团(1987) 西双版纳自然保护区综合考察报告集. 云南科技出版社, 昆明.]
[41] Xishuangbanna National Nature Reserve Management Bureau, Yunnan Institute of Forest Inventory and Planning(2005) Xishuangbanna National Nature Reserve. Yunnan Education Publishing House, Kunming. (in Chinese)
[西双版纳国家级自然保护区管理局, 云南省林业调查规划院(2005) 西双版纳国家级自然保护区. 云南教育出版社, 昆明.]
[42] Yek SH, Willliams SE, Burwell CJ, Robson SKA, Crozier RH (2009) Ground dwelling ants as surrogates for establishing conservation priorities in the Australian wet tropics. Journal of Insect Science, 9, 12.
doi: 10.1673/031.009.1201 pmid: 3011884
[43] Zhu H, Wang H, Li BG, Zhou SS, Zhang JH (2015) Studies on the forest vegetation of Xishuangbanna. Plant Science Journal, 33, 641-726. (in Chinese with English abstract)
[朱华, 王洪, 李保贵, 周仕顺, 张建侯 (2015) 西双版纳森林植被研究. 植物科学学报, 33, 641-726.]
[44] Zhu H, Yan LC (2012) Native seed plants in Xishuangbanna of Yunnan. Science Press, Beijing. (in Chinese)
[朱华, 闫丽春 (2012) 云南西双版纳野生种子植物. 科学出版社, 北京.]
[1] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[2] 穆君, 王娇娇, 张雷, 李云波, 李筑眉, 粟海军. (2019) 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析. 生物多样性, 27(6): 683-688.
[3] 王渊, 李晟, 刘务林, 朱雪林, 李炳章. (2019) 西藏雅鲁藏布大峡谷国家级自然保护区金猫的色型类别与活动节律. 生物多样性, 27(6): 638-647.
[4] 邵昕宁, 宋大昭, 黄巧雯, 李晟, 姚蒙. (2019) 基于粪便DNA及宏条形码技术的食肉动物快速调查及食性分析. 生物多样性, 27(5): 543-556.
[5] 刘山林. (2019) DNA条形码参考数据集构建和序列分析相关的新兴技术. 生物多样性, 27(5): 526-533.
[6] 胡建霖,刘志芳,慈秀芹,李捷. (2019) DNA条形码在热带龙脑香科树种鉴定中的应用. 植物学报, 54(3): 350-359.
[7] 肖治术,陈立军,宋相金,束祖飞,肖荣高,黄小群. (2019) 基于红外相机技术对广东车八岭国家级自然保护区大中型兽类与雉类的编目清查与评估. 生物多样性, 27(3): 237-242.
[8] 陈立军,束祖飞,肖治术. (2019) 应用红外相机数据研究动物活动节律——以广东车八岭保护区鸡形目鸟类为例. 生物多样性, 27(3): 266-272.
[9] 陈强强, 李美玲, 王旭, FaisalMueenQamer, 王鹏, 杨建伟, 汪沐阳, 杨维康. (2019) 新疆塔什库尔干野生动物自然保护区马可波罗盘羊潜在生态廊道识别. 生物多样性, 27(2): 186-199.
[10] 陈惠君, 杜虎, 宋同清, 彭晚霞, 张浩, 苏樑, 曾馥平. (2019) 木论喀斯特常绿落叶阔叶混交林群丛数量分类及稳定性. 生物多样性, 27(10): 1056-1068.
[11] 邹东廷, 王庆刚, 罗奥, 王志恒. (2019) 中国蔷薇科植物多样性格局及其资源植物保护现状. 植物生态学报, 43(1): 1-15.
[12] 孙德鑫, 刘向, 周淑荣. (2018) 停止人为去除植物功能群后的高寒草甸多样性恢复过程与群落构建. 生物多样性, 26(7): 655-666.
[13] 张则瑾, 郭焱培, 贺金生, 唐志尧. (2018) 中国极小种群野生植物的保护现状评估. 生物多样性, 26(6): 572-577.
[14] 洪雪萌, 戈昕宇, 李俊兰. (2018) 赛罕乌拉自然保护区蝶类多样性及其影响因素. 生物多样性, 26(6): 590-600.
[15] 徐开达, 卢衎尔, 卢占晖, 戴乾. (2018) 韭山列岛自然保护区虾类优势种生态位. 生物多样性, 26(6): 601-610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed