生物多样性 ›› 2018, Vol. 26 ›› Issue (1): 14-26.doi: 10.17520/biods.2017255

• 研究报告: 动物多样性 • 上一篇    下一篇

丰林典型阔叶红松林地表鞘翅目成虫空间异质性及其与环境因子的空间关联性

倪娟平1, 2, 程赛赛1, 2, 高梅香1, 2, *(), 卢廷玉1, 2, 金光泽3   

  1. 1 哈尔滨师范大学地理科学学院, 哈尔滨 150025
    2 黑龙江省普通高等学校地理环境遥感监测重点实验室, 哈尔滨 150025
    3 东北林业大学生态研究中心, 哈尔滨 150040
  • 收稿日期:2017-09-25 接受日期:2018-01-15 出版日期:2018-01-27
  • 通讯作者: 高梅香 E-mail:gmx102@hotmail.com
  • 作者简介:

    # 共同第一作者

  • 基金项目:
    国家自然科学基金(41471037, 41371072, 41430857)、黑龙江省普通本科高等学校青年创新人才培养计划(UNPYSCT-2015054)和哈尔滨师范大学优秀青年基金(XKYQ201401)

Spatial heterogeneities of ground-dwelling Coleoptera adults and their spatial correlations with environmental factors in a typical broad-leaved Korean pine forest in the Fenglin Nature Reserve

Juanping Ni1, 2, Saisai Cheng1, 2, Meixiang Gao1, 2, *(), Tingyu Lu1, 2, Guangze Jin3   

  1. 1 College of Geographical Sciences, Harbin Normal University, Harbin 150025
    2 Key Laboratory of Remote Sensing Monitoring of Geographic Environment, College of Heilongjiang Province, Harbin Normal University, Harbin 150025
    3 Center for Ecological Research, Northeast Forestry University, Harbin 150040
  • Received:2017-09-25 Accepted:2018-01-15 Online:2018-01-27
  • Contact: Gao Meixiang E-mail:gmx102@hotmail.com
  • About author:

    # Co-first authors

土壤动物群落空间异质性及其与环境因子的空间作用关系, 是揭示土壤生态系统格局与过程及生物多样性维持机制的重要基础。作者于2015年生长季节(8月)、寒冷季节(10月)在丰林典型阔叶红松林动态监测样地内, 采用陷阱法调查地表鞘翅目成虫群落, 基于地统计空间分析方法, 揭示步甲科和隐翅虫科群落个体数和物种数及优势种的空间格局, 并分析这些空间格局与土壤含水量和地形因子的空间关联性。两次采样共捕获步甲科成虫26种617只, 隐翅虫科19种222只。8月群落个体数和物种数表现为中等变异, 10月为强变异, 群落组成在两个月间具有显著差异。生长季节(8月)和寒冷季节(10月)步甲科和隐翅虫科群落多表现为中等的空间自相关性, 空间分异由随机性因素和结构性因素共同决定。单个物种的个体数多具有中等的空间异质性特征, 且其空间分异主要由随机性因素和结构性因素共同调控。生长季节群落的个体数、物种数和优势种个体数多形成斑块和孔隙镶嵌分布的空间格局。物种之间及物种与环境因子之间多为复杂的空间关联性, 这些关联性主要受到结构性因素或随机性因素的单一调控。典范对应分析(canonical correspondence analysis, CCA)结果表明, 8月土壤含水量对步甲科和隐翅虫科物种分布影响显著, 10月凹凸度对步甲科分布影响显著, 海拔对隐翅虫科分布具有显著影响。本研究表明地表步甲科和隐翅虫科在生长季节形成明显的空间格局而在寒冷季节空间格局不明显, 为不同尺度地表土壤动物空间异质性和生物多样性维持机制研究提供了理论基础。

关键词: 步甲科, 隐翅虫科, 地形因子, 空间异质性, 空间关联性, 阔叶红松林

Spatial heterogeneities of soil animal communities and their associations with environmental factors are important for revealing the patterns and processes of soil ecosystems and maintenance mechanisms of soil biodiversity. This experiment was conducted in a typical mixed broad-leaved Korean pine (Pinus koraiensis) forest plot in the Fenglin Nature Reserve in August and October of 2015. Geostatistics was used to reveal the spatial patterns of species number and individuals of ground-dwelling Carabidae and Staphylinidae adult communities and dominant species, and to explain the associations between these spatial patterns and soil water content and topographic variables. In total, 26 and 19 species of Carabidae and Staphylinidae beetles were caught and 617 and 222 individuals were collected, respectively. Variabilities in individuals and species numbers of communities were moderate in August and strong in October. Community compositions were significantly different between the two months. Carabidae and Staphylinidae communities showed moderate spatial autocorrelations in both growing (August) and relatively cold (October) seasons. Spatial heterogeneities of the Carabidae and Staphylinidae communities were determined by both random and structural factors. However, most species individuals exhibited significant spatial heterogeneities and these heterogeneities were controlled by structural factors. Individuals and species number of communities and dominant species individuals formed mosaic patterns with patches and gaps. Spatial associations between individuals and species numbers of communities and dominant species individuals with environmental factors were complex. Spatial associations were mainly controlled by structural or random factors. CCA analysis showed that soil water content in August had a significant effect on the species distribution of Carabidae and Staphylinidae adults in August. In October, the convexity had a significant impact on the distribution of Carabidae adults, and altitude was significantly related to the distribution of Staphylinidae adults. This experiment suggests that the spatial heterogeneities of Carabidae and Staphylinidae adults were obvious in the growing season, but not obvious in the relatively cold season. The results of this study will help us to understand the spatial variation and biodiversity maintenance mechanisms of soil animal communities at multiple scales.

Key words: Carabidae, Staphylinidae, topographic factors, spatial heterogeneity, spatial association, mixed broad-leaved Korean pine forest

图1

步甲科和隐翅虫科成虫群落个体数半方差函数图。Spherical, Gaussian分别表示球状模型和高斯模型。两条虚线表示数据显示为完全随机时的95%置信区间, 实线为拟合的半方差函数曲线。"

图2

步甲科和隐翅虫科成虫群落物种数半方差函数图。Spherical, Gaussian分别表示球状模型和高斯模型。两条虚线表示数据显示为完全随机时的95%置信区间, 实线为拟合的半方差函数曲线。"

表1

物种的半方差函数理论模型和空间异质性参数"

物种
Species
模型
Model
块金值
Nugget (C0)
基台值
Sill (C0+C)
变程
Range A0 (m)
结构比 Structural
ratio [C/(C0+C)]
8月
August 2015
Pterostichus maoershanensis 高斯模型 Gau 0.005 0.018 140 0.734
Pterostichus adstrictus 指数模型 Exp 0.110 0.210 150 0.476
Carabus billbergi 高斯模型 Gau 0.008 0.020 110 0.597
Megodontus vietinghoffi 指数模型 Exp 0.007 0.325 450 0.800
Aulonocarabus canaliculatus 球状模型 Sph 0.120 0.199 150 0.397
Philonthus wuesthoffi 指数模型 Exp 0.062 0.162 130 0.617
10月
October 2015
Pterostichus adstrictus 指数模型 Exp 0.001 0.003 330 0.805
Platynus ezoanus 球状模型 Sph 0.000 0.001 150 0.812

表2

不同环境因子半方差函数理论模型及相关参数"

模型
Model
块金值
Nugget (C0)
基台值
Sill (C0+C)
变程
Range A0 (m)
结构比
Structural ratio [C/(C0+C)]
8月土壤含水量 SWC in Aug. (%) 高斯模型 Gau 0.070 0.082 52 0.146
10月土壤含水量 SWC in Oct. (%) 高斯模型 Gau 0.089 0.099 120 0.101
海拔 Altitude 球状模型 Sph 0.000 0.000 140 0.855
坡度 Slope 高斯模型 Gau 0.021 0.131 92 0.840
坡向 Aspect 高斯模型 Gau 0.034 0.664 150 0.949
凹凸度 Convex 球状模型 Sph 0.056 0.072 90 0.222

图3

8月步甲科和隐翅虫科群落个体数和物种数的空间分布格局"

图4

8月优势种个体数的空间分布格局"

表3

8月和10月物种之间的空间关联性"

物种
Species
相关关系
Correlativity
结构比
Structural ratio
[C/(C0+C)]
决定系数
Coefficient of determination (R2)
8月
August 2015
Pterostichus maoershanensis - Pterostichus adstrictus + 0.000 0.116
Pterostichus maoershanensis - Carabus billbergi + 0.565 0.325
Pterostichus maoershanensis - Megodontus vietinghoffi - 0.998 0.000
Pterostichus maoershanensis - Aulonocarabus canaliculatus + 0.000 0.131
Pterostichus maoershanensis - Philonthus wuesthoffi + 0.000 0.052
Pterostichus adstrictus - Carabus billbergi + 0.997 0.000
Pterostichus adstrictus - Megodontus vietinghoffi - 0.000 0.005
Pterostichus adstrictus - Aulonocarabus canaliculatus + 0.959 0.383
Pterostichus adstrictus - Philonthus wuesthoffi + 0.998 0.174
Carabus billbergi - Megodontus vietinghoffi + 0.000 0.000
Carabus billbergi - Aulonocarabus canaliculatus + 0.000 0.024
Carabus billbergi - Philonthus wuesthoffi + 0.999 0.226
Megodontus vietinghoffi - Aulonocarabus canaliculatus + 0.999 0.524
Megodontus vietinghoffi - Philonthus wuesthoffi - 0.000 0.247
Aulonocarabus canaliculatus - Philonthus wuesthoffi + 1.000 0.532
10月
October 2015
Pterostichus adstrictus - Platynus ezoanus - 0.999 0.000

表4

步甲科和隐翅虫科群落个体数与环境因子空间关联性"

环境因子
Environmental factor
8月 August 10月 October
步甲科 Carabidae 隐翅虫科 Staphylinidae 步甲科 Carabidae 隐翅虫科 Staphylinidae
土壤含水量 Soil water content - - - -
海拔 Altitude + + - +
坡度 Slope + + - +
坡向 Aspect + + + -
凹凸度 Convex + - - +

图5

步甲科、隐翅虫科物种个体数与环境因素的典范对应分析二维排序图 16, Pterostichus (Metallophilus) heilongjiangensis; 17, Pterostichus maoershanensis; 19, Pterostichus adstrictus; 20, Pterostichus bituberculatus; 22, Pterostichus microcephalus; 23, Pterostichus orientalis; 29, Pterostichus sulcitarsis; 31, Carabus billbergi; 38, 金边步甲(Megodontus vietinghoffi); 39, 沟步甲(Aulonocarabus canaliculatus); 40, Nebria livida; 46, Anthracus horni; 50, Bembidion lissontum; 54, Bembidion pseadducillum; 55, Biphyllidae cryptophilus obliterates; 59, Colpodes elainus; 64, Dicranoncus femoralis; 72, Platynus ezoanus; 73, Platynus gracilis; 74, Platynus ogurae; 75, Platynus thoreyi; 76, Pristosia proxima; 77, Pristosia vigil; 78, Stenolophus difficilis; 79, Syncechus callitheres; 80, Syncechus cycloderus; 86, Acidota chinensis; 87, Acotylus mimulus; 89, Aleochara curtula; 95, Anotylus minulus; 96, Boreaphilus japonicas; 98, Carpelimus vagus; 101, Boreaphilus japonicas; 110, Philonthus aeneipenuis; 111, Philonthus brannicollis; 112, Philonthus cyanipennis; 114, Philonthus gastralis; 115, Philonthus havellkai; 117, Philonthus numata; 121, Philonthus sericans; 124, Philonthus solidus; 126, Philonthus tenuicornis; 128, Philonthus wuesthoffi; 131, Psephidonus sinuatus; 132, Qachyporus celatus; 135, Tachyporus celatus. SWC, Soil water content."

1 Bivand RS, Pebesma EJ, Gómezrubio V (2013) Applied Spatial Data Analysis with R. Springer Science and Business Media, New York.
2 Cambardella CA, Moorman TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501-1511.
3 Chen JX, Ma ZC, Yan HJ, Zhang F (2007) Roles of springtails in soil ecosystem. Biodiversity Science, 15, 154-161.(in Chinese with English abstract)
[陈建秀, 麻智春, 严海娟, 张峰 (2007) 跳虫在土壤生态系统中的作用. 生物多样性, 15, 154-161.]
4 Christiansen K, Bellinger PF (1980) Collembola of North America, North of the Rio Grand. Grinnell College, Grinnell Iowa.
5 Fernandez-Going BM, Adler PB, D’Antonio C (2014) How Does Spatial Heterogeneity Buffer Plant Species Against Climate Change? ESA Convention.
6 Gao MX, Liu D, Zhang XP, Wu DH (2016) Spatial relationships between the abundance of aboveground and belowground soil mite communities, and environmental factors in farmland on the Sanjiang Plain, China. Acta Ecologica Sinica, 36, 1782-1792.(in Chinese with English abstract)
[高梅香, 刘冬, 张雪萍, 吴东辉 (2016) 三江平原农田地表和地下土壤螨类丰富度与环境因子的空间关联性. 生态学报, 36, 1782-1792.]
7 Guo XD, Fu BJ, Ma KM, Chen LD, Yang FL (2000) Spatial variability of soil nutrients based on geostatistics combined with GIS: A case study in Zunhua City of Hebei Province. Chinese Journal of Applied Ecology, 11, 557-563.(in Chinese with English abstract)
[郭旭东, 傅伯杰, 马克明, 陈利顶, 杨福林 (2000) 基于GIS和地统计学的土壤养分空间变异特征研究—以河北省遵化市为例. 应用生态学报, 11, 557-563.]
8 Gutiérrez-López M, Jesús JB, Trigo D, Fernández R, Novo M, Díazi-Cosín DJ (2010) Relationships among spatial distribution of soil microarthropods, earthworm species and soil properties. Pedobiologia, 53, 381-389.
9 Holt RD (1984) Spatial heterogeneity, indirect interactions, and the coexistence of prey species. The American Naturalist, 124, 377-406.
10 Jia YH, Zhao CY, Nan ZR, Wan YX (2008) Spatial heterogeneity of soil salinity in groundwater-fluctuating region of the lower reaches of the Heihe River. Acta Pedologica Sinica, 45, 420-430.(in Chinese with English abstract)
[贾艳红, 赵传燕, 南忠仁, 万研新 (2008) 黑河下游地下水波动带土壤盐分空间变异性研究. 土壤学报, 45, 420-430.]
11 Lei ZD, Yang SX, Xie SZ (1998) Soil Water Dynamics. Tsinghua University Press, Beijing.(in Chinese)
[雷志栋, 杨诗秀, 谢森传 (1988) 土壤水动力学. 清华大学出版社, 北京.]
12 Li HR, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos, 73, 280-284.
13 Li JK, Lin L, Zhang XP (2015a) Primary Colour Illustration of Soil Beetles in Northeastern China (Carabidae). Harbin Map Press, Harbin.(in Chinese)
[李井科, 林琳, 张雪萍 (2015a) 原色中国东北土壤甲虫图鉴(步行虫类). 哈尔滨地图出版社, 哈尔滨.]
14 Li JK, Zhang LM, Zhang XP (2015b) Primary Colour Illustration of Soil Beetles in Northeastern China (Staphylinidae and Tenebrionidae). Harbin Map Press, Harbin.(in Chinese)
[李井科, 张利敏, 张雪萍 (2015b) 原色中国东北土壤甲虫图鉴(隐翅虫类, 拟步甲类). 哈尔滨地图出版社, 哈尔滨.]
15 Li JQ, Li JW (2003) Regeneration and restoration of broad-leaved Korean pine forests in Lesser Xing’an Ridge in mountains of northeast China. Acta Ecologica Sinica, 23, 1268-1277.(in Chinese with English abstract)
[李俊清, 李景文 (2003) 中国东北小兴安岭阔叶红松林更新及其恢复研究. 生态学报, 23, 1268-1277.]
16 Li YS, Wang GX, Ding YJ, Wang YB, Zhao L, Zhang CM (2008) Spatial heterogeneity of soil moisture in alpine meadow area of the Qinghai-Xizang Plateau. Advances in Water Science, 19, 61-67.(in Chinese with English abstract)
[李元寿, 王根绪, 丁永建, 王一博, 赵林, 张春敏 (2008) 青藏高原高寒草甸区土壤水分的空间异质性. 水科学进展, 19, 61-67.]
17 Liu LX, Liu CZ, Mao ZJ (2011) Evaluation of forest ecosystem service functions in Fenglin Biosphere Nature Reserve, Heilongjiang Province. Journal of Beijing Forestry University, 33(3), 38-44.(in Chinese with English abstract)
[刘林馨, 刘传照, 毛子军 (2011) 丰林世界生物圈自然保护区森林生态系统服务功能价值评估. 北京林业大学学报, 33(3), 38-44.]
18 Lövei GL, Sunderland KD (1996) Ecology and behavior of ground beetles (Coleoptera: Carabidae). Annual Review of Entomology, 41, 231-256.
19 Questad EJ, Foster BL (2008) Coexistence through spatio-temporal heterogeneity and species sorting in grassland plant communities. Ecology Letters, 11, 717-726.
20 Rainio J, Niemelä J (2003) Ground beetles (Coleoptera: Carabidae) as bioindicators. Biodiversity and Conservation, 12, 487-506.
21 Rossi JP, Lavelle P, Tondoh JE (1995) Statistical tool for soil biology. X. Geostatistical analysis. European Journal of Soil Biology, 31(4), 173-181.
22 Rusek J (1998) Biodiversity of Collembola and their functional role in the ecosystem. Biodiversity and Conservation, 7, 1207-1219.
23 Shi WJ, Yue TX, Shi XL, Song W (2012) Research progress in soil property interpolators and their accuracy. Journal of Natural Resources, 27, 163-175.(in Chinese with English abstract)
[史文娇, 岳天祥, 石晓丽, 宋伟 (2012) 土壤连续属性空间插值方法及其精度的研究进展. 自然资源学报, 27, 163-175.]
24 Sousa JP, Gama MMD, Ferreira CS (2003) Effects of replacing oak-woods by eucalyptus on edaphic Collembola communities: Does the size and type of plantation matter. Acta Entomologica Ibérica e Macaronésica, 1, 1-10.
25 Wang ZJ, Li DM, Shang HW, Cheng JA (2002) Theories and methods of geostatistics and their application in insect ecology. Entomological Knowledge, 39, 405-411.(in Chinese with English abstract)
[王正军, 李典谟, 商晗武, 程家安 (2002) 地质统计学理论与方法及其在昆虫生态学中的应用. 昆虫知识, 39, 405-411.]
26 Wang ZQ (1999) Geostatistics and Its Application in Ecology. Science Press, Beijing.(in Chinese)
[王政权 (1999) 地统计学及在生态学中的应用. 科学出版社, 北京.]
27 Wu DH, Yin WY, Yan RQ (2008a) Influence of vegetation reclamation type on the characteristics of soil collembola community in seriously alkalinized and degraded grasslands of Songnen Plain. China Environmental Science, 28, 466-470.(in Chinese with English abstract)
[吴东辉, 尹文英, 阎日青 (2008a) 植被恢复方式对重度退化草原土壤跳虫群落的影响. 中国环境科学, 28, 466-470.]
28 Wu DH, Yin WY, Yin XQ (2008b) Comparisons among soil collembola community characteristics in relation to different vegetation restoration treatments in the moderate degraded grasslands in the Songnen Plain of Northeast China. Acta Entomologica Sinica, 51, 509-515.(in Chinese with English abstract)
[吴东辉, 尹文英, 殷秀琴 (2008b) 松嫩草原中度退化草地不同植被恢复方式下土壤跳虫群落特征比较. 昆虫学报, 51, 509-515.]
29 Wu QB, Shen YP, Shi B (2003) Relationship between frozen soil together with its water-heat process and ecological environment in the Tibetan Plateau. Journal of Glaciology and Geocryology, 25, 250-255.(in Chinese with English abstract)
[吴青柏, 沈永平, 施斌 (2003) 青藏高原冻土及水热过程与寒区生态环境的关系. 冰川冻土, 25, 250-255.]
30 Xia SW, Chen J, Schaefer D, Goodale UM (2016) Effect of topography and litterfall input on fine-scale patch consistency of soil chemical properties in a tropical rainforest. Plant and Soil, 404, 385-398.
31 Xu LN, Jin GZ (2012) Species composition and community structure of a typical mixed broad-leaved Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481.(in Chinese with English abstract)
[徐丽娜, 金光泽 (2012) 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构. 生物多样性, 20, 470-481.]
32 Yin WY (1997) Ten-year progress in the study of soil zoology in China. China Science Foundation, 11, 48-51.(in Chinese)
[尹文英 (1997) 中国土壤动物学研究10年进展. 中国科学基金, 11, 48-51.]
33 Zhao X, Xu LN, Jin GZ (2015) Effects of topography on shrub regeneration in typical broad-leaved Korean pine forests. Biodiversity Science, 23, 767-774.(in Chinese with English abstract)
[赵雪, 徐丽娜, 金光泽 (2015) 地形对典型阔叶红松林灌木更新的影响. 生物多样性, 23, 767-774.]
34 Zhou HZ, Yu XD, Luo TH, Li XY, Wang FY, Li DE, Zhou YLZ, Zhao CY (2014) Collection methods and sampling technique of ground dwelling and predating Carabids and Staphylinids beetles. Journal of Applied Entomology, 51, 1367-1375.(in Chinese with English abstract)
[周红章, 于晓东, 罗天宏, 李晓燕, 王凤艳, 李德娥, 周毓灵子, 赵彩云 (2014) 土壤步甲和隐翅虫的采集与田间调查取样技术. 应用昆虫学报, 51, 1367-1375.]
35 Zhu JY, Li JK, Cheng SS, Yan L, Hu YY, Cao Y, Ni JP, Liu J, Wang JF, Gao MX (2016) Community structure of adult Coleoptera on local scale in a mixed broad-leaved Korean pine forest in the Xiao xing’an Mountains. Journal of Northeast Forestry University, 44(12), 57-63.(in Chinese with English abstract)
[朱纪元, 李景科, 程赛赛, 闫龙, 胡媛媛, 曹阳, 倪娟平, 刘俊, 王继富, 高梅香 (2016) 小兴安岭阔叶红松林局地尺度地表鞘翅目成虫群落结构. 东北林业大学学报, 44(12), 57-63.]
36 Zhu XY, Li ZY, Chang L (2012) Changes in composition and the quantity of Bt in rice soil Collembola community. Acta Ecologica Sinica, 32, 3546-3554.(in Chinese with English abstract)
[祝向钰, 李志毅, 常亮 (2012) 转Bt水稻土壤跳虫群落组成及其数量变化. 生态学报, 32, 3546-3554.]
[1] 高梅香, 林琳, 常亮, 孙新, 刘冬, 吴东辉. 土壤动物群落空间格局和构建机制研究进展[J]. 生物多样性, 2018, 26(10): 1034-1050.
[2] 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291.
[3] 张瑜, 金光泽. 腐烂等级、径级对典型阔叶红松林红松倒木物理化学性质的影响[J]. 植物生态学报, 2016, 40(12): 1276-1288.
[4] 郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先琨. 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应[J]. 生物多样性, 2016, 24(1): 30-39.
[5] 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 阎恩荣. 浙江天童木本植物叶片性状空间变异的地统计学分析[J]. 植物生态学报, 2016, 40(1): 48-59.
[6] 赵雪, 徐丽娜, 金光泽. 地形对典型阔叶红松林灌木更新的影响[J]. 生物多样性, 2015, 23(6): 767-774.
[7] 朱良军, 金光泽, 王晓春. 典型阔叶红松林干扰历史重建及干扰形成机制[J]. 植物生态学报, 2015, 39(2): 125-139.
[8] 张俊艳, 成克武, 臧润国. 海南岛热带天然针叶林主要树种的空间格局及关联性[J]. 生物多样性, 2014, 22(2): 129-140.
[9] 黄甫昭, 王斌, 丁涛, 向悟生, 李先琨, 周爱萍. 弄岗北热带喀斯特季节性雨林群丛数量 分类及与环境的关系[J]. 生物多样性, 2014, 22(2): 157-166.
[10] 梁爽, 许涵, 林家怡, 李意德, 林明献. 尖峰岭热带山地雨林优势树种白颜树空间分布格局[J]. 植物生态学报, 2014, 38(12): 1273-1282.
[11] 黄琛, 张宇, 王静, 李元恒, 五十六, 塔娜, 赵萌莉, 韩国栋, 朗巴达拉呼, 赵艳芳. 不同放牧强度下短花针茅荒漠草原植被的空间异质性[J]. 植物生态学报, 2014, 38(11): 1184-1193.
[12] 卢品, 金毅, 陈建华, 李铭红, 于明坚. 地理距离和地形差异对两个大型森林动态样地β多样性的影响[J]. 生物多样性, 2013, 21(5): 554-563.
[13] 王淮亮, 高君亮, 原伟杰, 李玉宝, 高永. 戈壁灌丛堆周边地表土壤颗粒的空间异质特征[J]. 植物生态学报, 2013, 37(5): 464-473.
[14] 郭俊杰, 赵志刚, 欧景莉, 沙二, 林开勤, 曾杰, 徐大平. 广西靖西西南桦天然林种子雨的时空动态[J]. 植物生态学报, 2012, 36(8): 729-738.
[15] 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地: 物种组成与群落结构[J]. 生物多样性, 2012, 20(4): 470-481.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed