生物多样性 ›› 2018, Vol. 26 ›› Issue (1): 27-35.doi: 10.17520/biods.2017240

所属专题: 生物多样性与生态系统功能

• 研究报告: 生态系统多样性 • 上一篇    下一篇

基于森林碳库动态评估神农架国家级自然保护区的保护成效

邓舒雨1, 2, 董向忠3, 马明哲1, 2, 臧振华1, 4, 徐文婷1, 赵常明1, 谢宗强1, 申国珍1, *()   

  1. 1 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2 中国科学院大学, 北京 100049
    3 北京丹青园林绿化有限责任公司, 北京 100093
    4 北京林业大学森林资源与生态系统过程北京市重点实验室, 北京 100083
  • 收稿日期:2017-09-05 接受日期:2017-12-10 出版日期:2018-01-20
  • 通讯作者: 申国珍 E-mail:snj@ibcas.ac.cn
  • 作者简介:# 共同第一作者
  • 基金项目:
    科技基础性工作专项(2015FY1103002)和国家重点研发计划(2016YFC050330304)

Evaluating the effectiveness of Shennongjia National Nature Reserve based on the dynamics of forest carbon pools

Shuyu Deng1, 2, Xiangzhong Dong3, Mingzhe Ma1, 2, Zhenhua Zang1, 4, Wenting Xu1, Changming Zhao1, Zongqiang Xie1, Guozhen Shen1, *()   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 Beijing Danqing Gardening Co., Ltd, Beijing 100093
    4 Key Laboratory for Forest Resources Ecosystem Processes of Beijing, Beijing Forestry University, Beijing 100083
  • Received:2017-09-05 Accepted:2017-12-10 Online:2018-01-20
  • Contact: Shen Guozhen E-mail:snj@ibcas.ac.cn
  • About author:# Co-first authors

保护区是维持生物多样性和生态系统功能的最有效方式, 但其保护成效有待提升, 土地利用变化是重要影响因素之一。本研究以神农架国家级自然保护区为对象, 基于神农架地区近20年的调查研究和数据积累, 通过异速生长模型、生物量方程、抽样加权等方法, 对比分析了土地利用方式转变格局下神农架国家级自然保护区森林生态系统地上、地下、凋落物、粗木质残体、土壤有机碳5个碳库动态, 分析论证了20年间(1990-2010)神农架保护区对森林生态系统碳库的保护成效。研究发现, 林地占神农架保护区总面积的92.76%, 其中针叶林(51.85%)、落叶阔叶林(35.11%)及常绿阔叶林(4.47%)3种森林类型合计占林地面积的98.56%。20年间神农架保护区林地面积增加了0.11%, 灌木林地和耕地面积分别减少了8.85%和6.06%。神农架保护区2010年碳储量为24.24 Tg C (22.57-26.62 Tg C), 土壤有机碳和地上碳合计占全部碳储量的90.68%。常绿阔叶林、落叶阔叶林和针叶林3种森林类型碳储量占神农架保护区碳储量的95%。20年间神农架保护区5个碳库碳储量均有所增加, 共固碳25.04 kt C (21.83-29.57 kt C), 固碳率为1.21 kt C/年(1.09-1.48 kt C/年), 其中地上生物量碳库和土壤有机碳库分别增加14.50 kt C (11.81-18.31 kt C)和6.84 kt C。保护区内总碳库碳密度高于保护区外22.37 t C/ha。研究结果表明, 神农架国家级自然保护区在保护森林固碳能力方面取得了一定的成效。

关键词: 神农架国家级自然保护区, 固碳, 保护成效, 森林, 碳库

Nature reserves are a cornerstone of global conservation strategies. However, the effectiveness of the reserve in conserving ecosystem function such as carbon storage is poorly understood. The Shennongjia National Nature Reserve is a conservation icon and has taken exceptional efforts to protect forests. It provides a unique case to address this question. Here, we quantified the carbon storage from aboveground carbon, belowground carbon, litter, coarse woody debris, and soil organic carbon inside and outside the Shennongjia National Nature Reserve between 1990 and 2010, based on inventory data and digitized historical land cover maps. The result showed that the woodland covered 92.76% of the reserve, most of which was coniferous forest (51.85%), deciduous broad-leaved forest (35.11%), and evergreen broad-leaved forest (4.47%). Between 1990 and 2010, the area of the woodland has increased 0.11%, while the area of shrubland and cropland has declined 8.85% and 6.06%, respectively. The Shennongjia National Natural Reserve has accumulated 24.24 Tg carbon (22.57-26.62 Tg C) until 2010, of which 90.68% was contributed by soil organic carbon and aboveground carbon. A total of 95% of the carbon storage in Shennongjia National Nature Reserve are contributed by evergreen broad-leaved forest, deciduous broad-leaved forest and coniferous forest. Between 1990 and 2010, the aboveground carbon pool and soil organic carbon pool has increased 14.50 kt C (11.81-18.31 kt C) and 6.84 kt C, respectively. The carbon density inside the reserve is 22.37 t C/ha higher than that outside the reserve. Our results indicated that the Shennongjia National Nature Reserve is efficiently conserving forest carbon.

Key words: Shennongjia National Nature Reserve, carbon sequestration, conservation effectiveness, forest ecosystem, carbon pool

表1

神农架国家级自然保护区土地利用格局"

土地利用类型
Land use type
1990年面积
Area in 1990 (ha)
1990年占比
Proportion in 1990 (%)
2010年面积
Area in 2010 (ha)
2010年占比
Proportion in 2010 (%)
常绿阔叶林
Evergreen broad-leaved forest
3,245.71 4.46 3,249.13 4.47
落叶阔叶林
Deciduous broad-leaved forest
25,448.97 34.99 25,532.75 35.11
针叶林 Coniferous forest 37,694.08 51.83 37,713.32 51.85
针阔混交林
Coniferous and broad-leaved mixed forest
622.14 0.86 624.78 0.86
灌木林 Shrubland 380.97 0.52 347.26 0.48
耕地 Cropland 2,056.3 2.83 1,931.7 2.66
其他 Other 3,281.99 4.51 3,331.22 4.58

图1

神农架自然保护区主要森林类型各碳库碳密度"

表2

神农架自然保护区1990-2010年间各碳库碳储量变化"

地上碳库
Aboveground
carbon
地下碳库
Belowground
carbon
凋落物碳库
Litter carbon
粗木质残体碳库
Coarse woody
debris carbon
土壤有机碳库
Soil organic
carbon
总计
Total
1990 (Tg C) 8.57 1.80 0.29 0.16 13.40 24.21
2000 (Tg C) 8.58 1.81 0.29 0.16 13.40 24.23
2010 (Tg C) 8.58 1.81 0.29 0.16 13.40 24.24
1990-2010年变化量
△Cstorage1990-2010 (kt C) (1990-2000; 2000-2010)
14.50
(13.93; 0.57)
3.01
(2.88; 0.13)
0.21
(0.44; -0.24)
0.49
(0.52; -0.03)
6.84
(3.97; 2.87)
25.04
(21.74; 3.30)
1990-2010年变化率
Change rate of carbon storage during
1990-2010 (%) (1990-2000; 2000-2010)
0.17
(0.16; 0.01)
0.17
(0.16; 0.01)
0.07
(0.16; -0.02)
0.30
(0.32; -0.02)
0.05
(0.03; 0.02)
0.10
(0.09; 0.01)

表3

神农架自然保护区内外1990-2010年各碳库碳密度(t C/ha)"

地上碳库
Aboveground carbon
地下碳库
Belowground carbon
凋落物碳库
Litter carbon
粗木质残体碳库
Coarse woody
debris carbon
土壤有机碳库
Soil organic
carbon
总计
Total

Inside
外 Outside
Inside
外 Outside 内 Inside 外 Outside 内 Inside 外 Outside 内 Inside 外 Outside 内 Inside 外 Outside
1990 117.76 121.10 24.77 25.42 3.92 4.00 2.22 2.51 184.21 157.04 332.87 310.08
2000 117.95 121.63 24.81 25.53 3.93 4.02 2.22 2.52 184.26 157.20 333.17 310.90
2010 117.96 121.60 24.81 25.53 3.92 4.02 2.22 2.51 184.30 157.19 333.22 310.85
1990-2010年增加量
△Cdendity1990-2010
(1990-2000; 2000-2010)
0.20
(0.19; 0.01)
0.50
(0.52; -0.02)
0.04
(0.04;
0)
0.10
(0.11;
-0.01)
0
(0.01;
0)
0.02
(0.02; -0.01)
0.01
(0.01;0)
0.01
(0.01; 0)
0.09
(0.05; 0.04)
0.15
(0.16; -0.01)
0.34
(0.30; 0.04)
0.77
(0.82; -0.05)

图2

神农架自然保护区1990-2010年碳密度变化量"

1 Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences, USA, 105, 16089-16094.
2 Bowker JN, de Vos A, Ament JM, Cumming GS (2017) Effectiveness of Africa’s tropical protected areas for maintaining forest cover. Conservation Biology, 31, 559-569.
3 Bruner AG, Gullison RE, Rice RE, da Fonseca GAB (2001) Effectiveness of parks in protecting tropical biodiversity. Science, 291, 125-128.
4 Cao MT, Peng L, Liu SQ (2015) Analysis of the network of protected areas in China based on a geographic perspective: Current status, issues and integration. Sustainability, 7, 15617-15631.
5 Carranza T, Balmford A, Kapos V, Manica A (2014) Protected area effectiveness in reducing conversion in a rapidly vanishing ecosystem: The Brazilian Cerrado. Conservation Letters, 7, 216-223.
6 Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87-99.
7 Chen QQ, Xu WQ, Li SG, Fu SL, Yan JH (2013) Aboveground biomass and corresponding carbon sequestration ability of four major forest types in south China. Chinese Science Bulletin, 58, 1551-1557.
8 Chen YH, Zhang J, Jiang JP, Nielsen SE, He FL (2017) Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Diversity and Distributions, 23, 146-157.
9 Cui HX, Xiao WF, Huang ZL, Zeng LX, Pan L, Pang HD (2014) Soil organic carbon storage of three coniferous forests in Shennongjia Nature Reserve. Journal of Northeast Forestry University, 42, 69-72.(in Chinese with English abstract)
[崔鸿侠, 肖文发, 黄志霖, 曾立雄, 潘磊, 庞宏东 (2014) 神农架3种针叶林土壤碳储量比较. 东北林业大学学报, 42, 69-72.]
10 Cui HX, Xiao WF, Pan L, Huang ZL, Wang XR, Pang HD (2012) Characteristics of soil carbon storage of Abies fargesii forest in Shennongjia. Scientia Silvae Sinicae, 48, 107-111.(in Chinese with English abstract)
[崔鸿侠, 肖文发, 潘磊, 黄志霖, 王晓荣, 庞宏东 (2012) 神农架巴山冷杉林土壤碳储量特征. 林业科学, 48, 107-111.]
11 Dixon RK, Solomon AM, Brown S, Houghton RA, Trexier MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
12 Editorial Committee of Hubei Shennongjia Forestry District Local Chronicles(1996) Shennongjia chronicles. Hubei Science and Technology Press, Wuhan.(in Chinese)
[湖北省神农架林区地方志编纂委员会(1996) 神农架志. 湖北科学技术出版社, 武汉.]
13 Fang JY, Chen AP, Peng CH, Zhao SQ, Ci LJ (2001) Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 292, 2320-2322.
14 Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science, 309, 570-574.
15 Gaston KJ, Jackson SF, Cantú-Salazar L, Cruz-Piñón G (2008) The ecological performance of protected areas. Annual Review of Ecology, Evolution, and Systematics, 39, 93-113.
16 Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, Kilibarda M, Blagotic A, Shangguan W, Wright MN, Geng XY, Bauer-Marschallinger B, Guevara MA, Vargas R, MacMillan RA, Batjes NH, Leenaars JGB, Ribeiro E, Wheeler I, Mantel S, Kempen B (2017) SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12, e0169748.
17 Hill R, Miller C, Newell B, Dunlop M, Gordon IJ (2015) Why biodiversity declines as protected areas increase: The effect of the power of governance regimes on sustainable landscapes. Sustainability Science, 10, 357-369.
18 Houghton RA, House JI, Pongratz J, van der Werf GR, DeFries RS, Hansen MC, Le Quéré C, Ramankutty N (2012) Carbon emissions from land use and land-cover change. Biogeosciences Discussions, 9, 835-878.
19 IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Kanagawa, Japan.
20 Jenkins CN, van Houtan KS, Pimm SL, Sexton JO (2015) US protected lands mismatch biodiversity priorities. Proceedings of the National Academy of Sciences, USA, 122, 5081-5086.
21 Joppa LN, Loarie SR, Pimm SL (2008) On the protection of “protected areas”. Proceedings of the National Academy of Sciences, USA, 105, 6673-6678.
22 Joppa LN, Pfaff A (2009) High and far: Biases in the location of protected areas. PLoS ONE, 4, e8273.
23 Juffe-Bignoli D, Burgess ND, Bingham H, Belle EMS, de Lima MG, Deguignet M, Bertzky B, Milam AN, Martinez-Lopez J, Lewis E, Eassom A, Wicander S, Geldmann J, van Soesbergen A, Arnell AP, O’Connor B, Park S, Shi YN, Danks FS, MacSharry B, Kingston N (2014) Protected Planet Report 2014. UNEP-WCMC, Cambridge, UK.
24 Lai L, Huang XJ, Yang H, Chuai XW, Zhang M, Zhong TY, Chen ZG, Chen Y, Wang X, Thompson JR (2016) Carbon emissions from land-use change and management in China between 1990 and 2010. Science Advances, 2, e1601063.
25 Lambin EF, Turner BL, Geist HJ, Agbola SB, Angelsen A, Bruce JW, Coomes OT, Dirzo R, Fischer G, Folke C, George PS, Homewood K, Imbernon J, Leemans R, Li XB, Moran EF, Mortimore M, Ramakrishnan PS, Richards JF, Skånes H, Steffen W, Stone GD, Svedin U, Veldkamp TA, Vogel C, Xu JC (2001) The causes of land-use and land-cover change: Moving beyond the myths. Global Environmental Change, 11, 261-269.
26 Luo YJ, Wang XK, Lu F (2015) Comprehensive Database of Biomass Regressions for China’s Tree Species. China Forestry Publishing House, Beijing.(in Chinese)
[罗云建, 王效科, 逯非 (2015) 中国主要林木生物量模型手册. 中国林业出版社, 北京.]
27 Ma MZ, Shen GZ, Xiong GM, Zhao CM, Xu WT, Zhou YB, Xie ZQ (2017) Characteristic and representativeness of the vertical vegetation zonation along the altitudinal gradient in Shennongjia Natural Heritage. Chinese Journal of Plant Ecology, 41, 1127-1139.(in Chinese with English abstract)
[马明哲, 申国珍, 熊高明, 赵常明, 徐文婷, 周友兵, 谢宗强 (2017) 神农架自然遗产地植被垂直带谱的特点和代表性. 植物生态学报, 41, 1127-1139.]
28 Nogueira EM, Fearnside PM, Nelson BW, Barbosa RI, Keizer EWH (2008) Estimates of forest biomass in the Brazilian Amazon: New allometric equations and adjustments to biomass from wood-volume inventories. Forest Ecology and Management, 256, 1853-1867.
29 Ouyang ZY, Zheng H, Xiao Y, Polasky S, Liu JG, Xu WH, Wang Q, Zhang L, Xiao Y, Rao EM, Jiang L, Lu F, Wang XK, Yang GB, Gong SH, Wu BF, Zeng Y, Yang W, Daily GC (2016) Improvements in ecosystem services from investments in natural capital. Science, 352, 1455-1459.
30 Pouzols FM, Toivonen T, Minin ED, Kukkala A, Kullberg P, Kuusterä J, Lehtomäki J, Tenkanen H, Verburg PH, Moilanen A (2014) Global protected area expansion is compromised by projected land-use and parochialism. Nature, 516, 383-386.
31 Ren GP, Young SS, Wang L, Wang W, Long YC, Wu RD, Li JS, Zhu JG, Yu DW (2015) Effectiveness of China’s national forest protection program and nature reserves. Conservation Biology, 29, 1368-1377.
32 Rodrigues ASL, Andelman SJ, Bakarr MI, Boitani L, Brooks TM, Cowling RM, Fishpool LDC, da Fonseca GAB, Gaston KJ, Hoffmann M, Long JS, Marquet PA, Pilgrim JD, Pressey RL, Schipper J, Sechrest W, Stuart SN, Underhill LG, Waller RW, Watts MEJ, Xie Y (2004) Effectiveness of the global protected area network in representing species diversity. Nature, 428, 637-640.
33 Scharlemann JPW, Kapos V, Campbell A, Lysenko I, Burgess ND, Hansen MC, Gibbs HK, Dickson B, Miles L (2010) Securing tropical forest carbon: The contribution of protected areas to REDD. Oryx, 44, 352-357.
34 Scherer L, Curran M, Alvarez M (2017) Expanding Kenya’s protected areas under the convention on biological diversity to maximize coverage of plant diversity. Conservation Biology, 31, 302-310.
35 Schimel D, Melillo J, Tian HQ, McGuire AD, Kicklighter D, Kittel T, Rosenbloom N, Running S, Thornton P, Ojima D, Parton W, Kelly R, Sykes M, Neilson R, Rizzo B (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science, 287, 2004-2006.
36 Schlesinger WH (1990) Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348, 232-234.
37 Singh V, Tewari A, Kushwaha SPS, Dadhwal VK (2011) Formulating allometric equations for estimating biomass and carbon stock in small diameter trees. Forest Ecology and Management, 261, 1945-1949.
38 Tans PP, Fung IY, Takahashi T (1990) Observational constraints on the global atmospheric CO2 budget. Science, 247, 1431-1438.
39 Technical Manual Writing Group of Ecosystem Carbon Sequestration Project(2015) Observation and Investigation for Carbon Sequestration in Terrestrial Ecosystems. Science Press, Beijing.(in Chinese)
[生态系统固碳项目技术规范编写组(2015) 生态系统固碳观测与调查技术规范. 科学出版社, 北京.]
40 Thomas CD, Gillingham PK, Bradbury RB, Roy DB, Anderson BJ, Baxter JM, Bourn NAD, Crick HQP, Findon RA, Fox R, Hodgson JA, Holt AR, Morecroft MD, O’Hanlon NJ, Oliver TH, Pearce-Higgins JW, Procter DA, Thomas JA, Walker KJ, Walmsley CA, Wilson RJ, Hill JK (2012) Protected areas facilitate species’ range expansions. Proceedings of the National Academy of Sciences, USA, 109, 14063-14068.
41 Wang CL, Zang ZH, Qiu Y, Deng SY, Feng ZY, Xie ZQ, Xu WT, Liu L, Chen QS, Shen GZ (2017) The effectiveness of Shennongjia National Nature Reserve in conserving forests and habitat of Sichuan snub-nosed monkey. Biodiversity Science, 25, 504-512.(in Chinese with English abstract)
[王翠玲, 臧振华, 邱月, 邓舒雨, 冯朝阳, 谢宗强, 徐文婷, 刘蕾, 陈全胜, 申国珍 (2017) 湖北神农架国家级自然保护区森林和川金丝猴栖息地的保护成效. 生物多样性, 25, 504-512.]
42 Willcock S, Phillips OL, Platts PJ, Balmford A, Burgess ND, Lovett JC, Ahrends A, Bayliss J, Doggart N, Doody K, Fanning E, Green JMH, Hall J, Howell KL, Marchant R, Marshall AR, Mbilinyi B, Munishi PKT, Owen N, Swetnam RD, Topp-Jorgensen EJ, Lewis SL (2012) Towards regional, error-bounded landscape carbon storage estimates for data-deficient areas of the world. PLoS ONE, 7, e44795.
43 Willcock S, Phillips OL, Platts PJ, Swetnam RD, Balmford A, Burgess ND, Ahrends A, Bayliss J, Doggart N, Doody K, Fanning E, Green JMH, Hall J, Howell KL, Lovett JC, Marchant R, Marshall AR, Mbilinyi B, Munishi PKT, Owen N, Topp-Jorgensen EJ, Lewis SL (2016) Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Global Change Biology, 22, 2787-2800.
44 Wu BF, Yuan QZ, Yan CZ, Wang ZM, Yu XF, Li AN, Ma RH, Huang JL, Chen JS, Chang C, Liu CL, Zhang L, Li XS, Zeng Y, Bao AM (2014) Land cover changes of China from 2000 to 2010. Quaternary Sciences, 34, 723-731.(in Chinese with English abstract)
[吴炳方, 苑全治, 颜长珍, 王宗明, 于信芳, 李爱农, 马荣华, 黄进良, 陈劲松, 常存, 刘成林, 张磊, 李晓松, 曾源, 包安明 (2014) 21世纪前十年的中国土地覆盖变化. 第四纪研究, 34, 723-731.]
45 Wu RD, Zhang S, Yu DW, Zhao P, Li XH, Wang LZ, Yu Q, Ma J, Chen A, Long YC (2011) Effectiveness of China’s nature reserves in representing ecological diversity. Frontiers in Ecology and the Environment, 9, 383-389.
46 Xiang WH, Liu SH, Deng XW, Shen AH, Lei XD, Tian DL, Zhao MF, Peng CH (2011) General allometric equations and biomass allocation of Pinus massoniana trees on a regional scale in southern China. Ecological Research, 26, 697-711.
47 Xie ZB, Zhu JG, Liu G, Cadisch G, Hasegawa T, Chen CM, Sun HF, Tang HY, Zeng Q (2007) Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology, 13, 1989-2007.
48 Xie ZQ, Shen GZ, Zhou YB, Fan DY, Xu WT, Gao XM, Du YJ, Xiong GM, Zhao CM, Zhu Y, Lai JS (2017) The outstanding universal value and conservation of the Shennongjia World Natural Heritage Site. Biodiversity Science, 25, 490-497.(in Chinese with English abstract)
[谢宗强, 申国珍, 周友兵, 樊大勇, 徐文婷, 高贤明, 杜彦君, 熊高明, 赵常明, 祝燕, 赖江山 (2017) 神农架世界自然遗产地的全球突出普遍价值及其保护. 生物多样性, 25, 490-497.]
49 Xu WH, Xiao Y, Zhang JJ, Yang W, Zhang L, Hull V, Wang Z, Zheng H, Liu JG, Polasky S, Jiang L, Xiao Y, Shi XW, Rao EM, Lu F, Wang XK, Daily GC, Ouyang ZY (2017) Strengthening protected areas for biodiversity and ecosystem services in China. Proceedings of the National Academy of Sciences, USA, 114, 1601-1606.
50 Zhang L, Wu BF, Li XS, Xing Q (2014) Classification system of China land cover for carbon budget. Acta Ecologica Sinica, 34, 7158-7166.(in Chinese with English abstract)
[张磊, 吴炳方, 李晓松, 邢强 (2014) 基于碳收支的中国土地覆被分类系统. 生态学报, 34, 7158-7166.]
51 Zheng Z, Zhan YH, Xie JL (1997) Shennongjia of China. Hubei Science and Technology Press, Wuhan.(in Chinese)
[郑重, 詹亚华, 谢继伦 (1997) 中国神农架. 湖北科学技术出版社, 武汉.]
[1] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[2] 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196.
[3] 温纯,金光泽. 功能多样性对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2019, 43(2): 94-106.
[4] 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138.
[5] 池秀莲,王庆刚,郭强,杨弦,唐志尧. 古田山常绿阔叶林不同演替群落的萌生特征[J]. 生物多样性, 2019, 27(1): 24-32.
[6] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41.
[7] 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布[J]. 生物多样性, 2019, 27(1): 81-87.
[8] 窦丽娜, 张文富, 邓晓保, 曹敏, 唐勇. 西双版纳望天树林种子雨9年动态[J]. 生物多样性, 2018, 26(9): 919-930.
[9] 陈科宇, 字洪标, 阿的鲁骥, 胡雷, 王根绪, 王长庭. 青海省森林乔木层碳储量现状及固碳潜力[J]. 植物生态学报, 2018, 42(8): 831-840.
[10] 邓云, 王彬, 李强, 张志明, 邓晓保, 曹敏, 林露湘. 轻小型无人机航摄技术辅助的热带森林样地测量精度问题探讨[J]. 生物多样性, 2018, 26(8): 892-904.
[11] 钟巧连,刘立斌,许鑫,杨勇,郭银明,许海洋,蔡先立,倪健. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5): 562-572.
[12] 鲍勇, 高颖, 曾晓敏, 袁萍, 司友涛, 陈岳民, 陈滢伊. 中亚热带3种典型森林土壤碳氮含量和酶活性的关系[J]. 植物生态学报, 2018, 42(4): 508-516.
[13] 宋瑞玲, 姚锦仙, 吴恺悦, 张晓川, 吕植, 朱争光, 殷丽洁. 海洋保护区管理与保护成效评估的方法与进展[J]. 生物多样性, 2018, 26(3): 286-294.
[14] 李永强, 董智, 丁晨曦, 王雅楣, 贾继文, 张佳楠, 焦树英. 山东省暖性草丛生态系统碳库现状和碳通量季节变化特征[J]. 植物生态学报, 2018, 42(3): 277-287.
[15] 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed