生物多样性 ›› 2017, Vol. 25 ›› Issue (11): 1192-1201.doi: 10.17520/biods.2017149

• 研究报告: 植物多样性 • 上一篇    下一篇

中国西北荒漠区植物物种丰富度分布格局及其环境解释

王健铭1, 王文娟1, 李景文1, *(), 冯益明2, 吴波2, 卢琦2   

  1. 1 北京林业大学林学院, 北京 100083
    2 中国林业科学研究院荒漠化研究所, 北京 100091;
  • 收稿日期:2017-05-18 接受日期:2017-11-20 出版日期:2017-11-20
  • 通讯作者: 李景文 E-mail:lijingwen@bjfu.edu.cn
  • 基金项目:
    林业行业公益项目(201404304)、国家自然科学基金(31570610)和科技部科技基础性工作专项(2012FY111700)

Biogeographic patterns and environmental interpretation of plant species richness in desert regions of Northwest China

Jianming Wang1, Wenjuan Wang1, Jingwen Li1, *(), Yiming Feng2, Bo Wu2, Qi Lu2   

  1. 1 College of Forestry, Beijing Forestry University, Beijing 100083
    2 Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091
  • Received:2017-05-18 Accepted:2017-11-20 Online:2017-11-20
  • Contact: Li Jingwen E-mail:lijingwen@bjfu.edu.cn

土地荒漠化是中国西北地区的主要生态问题之一, 荒漠生态系统极易受到气候与土地利用类型变化的影响。然而受恶劣的自然环境与交通条件影响, 目前我国西北荒漠区植物多样性格局及其维持机理的系统研究还很缺乏。本文通过对中国西北荒漠区195个植物群落样方进行调查, 并结合气候与空间变量数据, 探讨了西北荒漠区植物物种丰富度的分布格局及其主导因素。研究结果表明: (1)本次调查共记录植物363种, 分属38科153属, 植物物种丰富度存在显著的经纬度分布格局, 随着经度或纬度的升高呈现出先下降后增加的变化趋势; (2)水分、能量及空间变量均对植物物种丰富度有着显著的独立作用; (3)水分、能量与空间变量解释了植物物种丰富度65.36%的变异, 三者的共同解释率高达48.08%, 且水分与能量一起解释的变异更多。以上结果表明, 西北荒漠区的植物物种丰富度格局由生态位分化与中性过程以及其他未知因素共同控制, 其中生态位分化的贡献可能更大。而研究中未考虑的土壤、地形、人为干扰等因素也很可能对西北荒漠区植物物种丰富度存在非常重要的影响。

关键词: 荒漠区, 物种丰富度, 空间变量, 水分, 能量, 生态位, 中性过程

Desertification poses an important ecological problem in Northwest China as desert ecosystems are highly vulnerable to climatic and land-use changes. Due to the harsh environment and poor accessibility, systematic studies of plant diversity in the desert region of Northwest China remain elusive. Here, we explored the geographic patterns of species richness and determinants in the desert regions of Northwest China based on species richness and spatial and climatic factors of 195 field plots. Results showed that a total of 363 species were recorded, belonging to 38 families and 153 genera. Species richness exhibited significant longitudinal and latitudinal gradients, which were quadratically correlated with longitude and latitude. Species richness was strongly influenced by spatial, water, and energy factors. These factors explained 65.36% of the variation in species richness, while 48.08% was simultaneously explained by the three groups of factors. Furthermore, the water and energy factors together explained more variation than that of spatial factors. These results indicate that the patterns of species richness were determined by niche, neutral, and other unknown processes together, and suggest that environmental factors play an important role. We highlight that unmeasured factors including soil, topography, and human disturbances may greatly affect plant species richness in the desert regions of Northwest China.

Key words: desert, species richness, spatial variables, water, energy, niche, neutral processes

图1

中国西北荒漠区植被调查样地分布图"

表1

中国西北荒漠区植物物种丰富度与环境变量描述性统计"

最大值 Max 平均值 Mean 最小值 Min 标准误差 SD
物种丰富度 Species richness 19 7.69 1 3.56
地理因素 Geographic variables
海拔 Altitude (m) 2,870 1,268 216 442.76
经度 Longitude (E) 111.45° 97.90° 82.00° 7.92
纬度 Latitude (N) 47.56° 41.80° 36.70° 2.50
气候因素 Climatic factors
年均降水量 Mean annual precipitation (MAP, mm) 261 107.66 15 65.27
年均温度 Mean annual temperature (MAT, °C) 12.10 6.80 2.10 2.10
潜在蒸散量 Potential evapotranspiration (PET, mm) 1,349 1,034.10 831 118.42
实际蒸散量 Actual evapotranspiration (AET, mm) 238 103.08 16 57.69
湿润指数 Moisture index (MI) -69.29 -88.93 -98.89 7.37
最热月均温 Mean temperature of the warmest month (MTWM, °C) 27.80 22.92 14.70 2.27
最冷月均温 Mean temperature of the coldest month (MTCM, °C) -6.8 -11.71 -18.7 2.57
气温日较差 Mean diurnal range (MDR, °C) 16.50 13.94 11.00 1.39
气温年较差 Temperature annual range (ART, °C) 53.60 48.10 41.50 2.39

表2

中国西北荒漠区水分、能量因子与地理因子的相关性分析"

经度
Longitude
纬度
Latitude
海拔
Altitude
水分因子 Water factors
年均降水量 Mean annual precipitation (MAP, mm) 0.392 (US)*** 0.167 (US)** 0.022 (HS)*
实际蒸散量 Actual evapotranspiration (AET, mm) 0.383 (US)*** 0.260 (US)*** 0.038 (HS)*
湿润指数 Moisture index (MI) 0.387 (US)*** 0.304 (US)*** 0.037 (HS)*
能量因子 Energy factors
年均温度 Mean annual temperature (MAT, °C) 0.098 (HS)*** 0.269 (-)*** 0.073 (-)***
气温日较差 Mean diurnal range (MDR, °C) 0.337 (HS)** 0.338 (-)*** 0.067 (+)**
气温年较差 Temperature annual range (ART, °C) 0.198 (+)*** 0.406 (-)***
潜在蒸散量 Potential evapotranspiration (PET, mm) 0.157 (HS)*** 0.363 (-)***
最冷月均温 Mean temperature of the coldest month (MTCM, °C) 0.226 (HS)*** 0.672 (-)*** 0.044 (HS)**
最热月均温 Mean temperature of the warmest month (MTWM, °C) 0.081 (HS)** 0.092 (HS)*** 0.323(-)***

图2

中国西北荒漠区植物物种丰富度随经度(a)与纬度(b)的变化趋势"

图3

中国西北荒漠区群落物种丰富度与气候因子的关系"

图4

能量和水分因子对中国西北荒漠区物种丰富度格局的解释。*** P <0.001; ** P <0.01; a为能量因子单独解释率; b为能量因子与水分因子共同解释率; c为水分因子单独解释率; d为未解释部分。"

图5

水分、能量与空间变量对中国西北荒漠区植物物种丰富度的解释。*** P < 0.001; ** P < 0.01; * P < 0.05。"

[1] Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer Science & Business Media, New York.
[2] Chambers JM (2008) Software for Data Analysis: Programming with R. Springer, New York.
[3] Chen CD, Zhang LY (1987) Extremely arid deserts in China. Journal of Arid Land Resources and Environment, z1, 1-12. (in Chinese with English abstract)
[陈昌笃, 张立运 (1987) 中国的极旱荒漠. 干旱区资源与环境, z1, 1-12.]
[4] Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? The American Naturalist, 163, E1-E23.
[5] Couwenberghe RV, Collet C, Lacombe E, Pierrat JC, Gégout J (2010) Gap partitioning among temperate tree species across a regional soil gradient in windstorm-disturbed forests. Forest Ecology and Management, 260, 146-154.
[6] Currie DJ, Francis AP (2004) Regional versus climatic effect on taxon richness in angiosperms: reply to Qian and Ricklefs. The American Naturalist, 163, 780-785.
[7] Currie DJ, Paquin V (1987) Large-scale biogeographical patterns of species richness of trees. Nature, 329, 326-327.
[8] Dai S, Wang XP, Liu C, Wu X, Li QY, Wang M (2013) Relationship between shrub species richness and climate across central Inner Mongolia, China. Acta Scientiarum Naturalium Universitatis Pekinensis, 49, 689-698. (in Chinese with English abstract)
[代爽, 王襄平, 刘超, 武娴, 李巧燕, 王敏 (2013) 内蒙古灌木群落物种丰富度与气候的关系. 北京大学学报(自然科学版), 49, 689-698.]
[9] Dang RL, Pan XL, Gu XF (2002) Floristic analysis of spermatophyte genera in the arid deserts area in North-West China. Guihaia, 22, 121-128. (in Chinese with English abstract)
[党荣理, 潘晓玲, 顾雪峰 (2002) 西北干旱荒漠区植物属的区系分析. 广西植物, 22, 121-128.]
[10] Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, 196, 483-493.
[11] Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D (2009) Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548. (in Chinese with English abstract)
[方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹 (2009) 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
[12] Francis AP, Currie DJ (2003) A globally consistent richness-climate relationship for angiosperms. The American Naturalist, 161, 523-536.
[13] Gaston KJ (2000) Global patterns in biodiversity. Nature, 405, 220-227.
[14] Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. Proceedings of the National Academy of Sciences , USA, 101, 7651-7656.
[15] Guo RX, Guan XD, Zhang YT (2015) Main Advances in Desertification Research in China. Journal of Arid Meteorology, 33, 505-514. (in Chinese with English abstract)
[郭瑞霞, 管晓丹, 张艳婷 (2015) 我国荒漠化主要研究进展. 干旱气象, 33, 505-514.]
[16] Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecology Letters, 9, 399-409.
[17] Hawkins BA, Porter EE (2004) Water-energy balance and the geographic pattern of species richness of western palearctic butterflies. Ecological Entomology, 28, 678-686.
[18] Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O’Brien EM, Porter EE, Turner JR (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
[19] Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
[20] Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Sciences, USA, 104, 5925-5930.
[21] La D, Zhang YJ, Liu J, Cui LL, Pang YZ (2016) Spatial distribution patterns and environmental interpretation of plant species richness in the Lhasa valley, Tibet. Acta Prataculturae Sinica, 25, 202-211. (in Chinese with English abstract)
[拉多, 张燕杰, 刘杰, 崔玲玲, 庞有志 (2016) 拉萨河谷植物物种丰富度空间分布格局及其环境解释. 草业学报, 25, 202-211.]
[22] Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology, 74, 1659-1673.
[23] Legendre P, Legendre L (2012) Numerical Ecology, 3rd edn. Elsevier Science , Amsterdam.
[24] Li LP, Abdusalih N, Wang SP, Wang ZH, Tang ZY (2011) Distribution patterns and climatic explanations of species richness of vascular plants in Xinjiang, China. Arid Zone Research, 28, 25-30. (in Chinese with English abstract)
[李利平, 努尔巴依·阿布都沙力克, 王少鹏, 王志恒, 唐志尧 (2011) 新疆野生维管束植物物种丰富度分布格局的水热解释. 干旱区研究, 28, 25-30.]
[25] Li LP, Liu YN, Wang XP, Fang JY, Wang QC, Zhang BG, Xiao PG, Mohammat A, Terwei A (2015) Different effects of regional species pool on plant diversity between forest and grassland biomes in arid Northwest China. PLoS ONE, 10, e0131982.
[26] Li LP, Wang ZH, Stefan Z, Zerbe S, Abdusalih N, Tang ZY, Ma M, Yin LK, Mohammat A, Han WX, Fang JY (2013) Species richness patterns and water-energy dynamics in the drylands of Northwest China. PLoS ONE, 8, e66450.
[27] Li XR, Tan HJ, He MZ, Wang XP, Li XJ (2009) The response of shrub species richness and abundance patterns to environmental change in Alxa Plateau: the premise of shrubs diversity conservation in extremely arid Gobi regions. Science China: Earth Sciences, 39, 504-515. (in Chinese with English abstract)
[李新荣, 谭会娟, 何明珠, 王新平, 李小军 (2009) 阿拉善高原灌木种的丰富度和多度格局对环境因子变化的响应: 极端干旱戈壁地区灌木多样性保育的前提. 中国科学: 地球科学, 39, 504-515.]
[28] Li Y, Qu JJ, Dong ZB, An LZ (2008) Biodiversity in desert region of China. Research of Soil & Water Conservation, 15(4), 79-81. (in Chinese with English abstract)
[李毅, 屈建军, 董治宝, 安黎哲 (2008) 中国荒漠区的生物多样性. 水土保持研究, 15(4), 79-81.]
[29] Liu QF, Liu Y, Sun XL, Zhang XF, Kang S, Ding Y (2015) The explanation of climatic hypotheses to community species diversity patterns in Inner Mongolia grasslands. Biodiversity Science, 23, 463-470. (in Chinese with English abstract)
[刘庆福, 刘洋, 孙小丽, 张雪峰, 康萨如拉, 丁勇 (2015) 气候假说对内蒙古草原群落物种多样性格局的解释. 生物多样性, 23, 463-470.]
[30] O’Brien EM (1993) Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa’s woody flora. Journal of Biogeography, 20, 181-198.
[31] O’Brien EM (1998) Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography, 25, 379-398.
[32] O’Brien EM, Field R, Whittaker RJ (2000) Climatic gradients in woody plant (tree and shrub) diversity: water-energy dynamics, residual variation, and topography. Oikos, 89, 588-600.
[33] Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2013) Vegan: Community Ecology Package. R package version 2.4-5. (accessed on 2017-03-15)
[34] Qian H, Kissling WD (2010) Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology, 91, 1172-1183.
[35] Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 3033-3041.
[36] Siefert A, Ravenscroft C, Althoff D, Alvarez-Yépiz JC, Carter BE, Glennon KL, Heberling JM, Jo IS, Pontes A, Sauer A, Willis A, Fridley JD (2012) Scale dependence of vegetation-environment relationships: a meta-analysis of multivariate data. Journal of Vegetation Science, 23, 942-951.
[37] Smith TW, Lundholm JT (2010) Variation partitioning as a tool to distinguish between niche and neutral processes. Ecography, 33, 648-655.
[38] Svenning JC, Skov F (2010) The relative roles of environment and history as controls of tree species composition and richness in Europe. Journal of Biogeography, 32, 1019-1033.
[39] Thornthwaite CW (1948) An approach toward a rational classification of climate. Geographical Review, 38, 55-94.
[40] Wang JM, Dong FY, Nasina BH, Li JW, Li JQ, Feng YM, Lu Q (2016a) Plant distribution patterns and the factors influencing plant diversity in the Black Gobi Desert of China. Acta Ecologica Sinica, 36, 3488-3498. (in Chinese with English abstract)
[王健铭, 董芳宇, 巴海·那斯拉, 李景文, 李俊清, 冯益明, 卢琦 (2016a) 中国黑戈壁植物多样性分布格局及其影响因素. 生态学报, 36, 3488-3498.]
[41] Wang JM, Zhong YM, Zhang TH, Li JW, Feng YM, Lu Q (2016b) Plant species richness patterns and water-energy dynamics in the Black Gobi Desert, China. Plant Science Journal, 34, 530-538. (in Chinese with English abstract)
[王健铭, 钟悦鸣, 张天汉, 李景文, 冯益明, 卢琦 (2016b) 中国黑戈壁地区植物物种丰富度格局的水热解释. 植物科学学报, 34, 530-538.]
[42] Wang XP, Fang JY, Sanders NJ, White PS, Tang ZY (2009) Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32, 133-142.
[43] Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
[44] Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends in Ecology & Evolution, 19, 639-644.
[45] Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos, 41, 496-506.
[46] Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
[47] Wu Z (2009) Sandy Deserts and Its Control in China
[吴正 (2009) 中国沙漠及其治理. 科学出版社, 北京.]
[48] Wu ZY (1980) Vegetation of China. Science Press, Beijing. (in Chinese)
[吴征镒 (1980) 中国植被. 科学出版社, 北京.]
[49] Xia YG, Ning Y, Li JW, Li JQ, Feng YM, Wu B, Lu Q (2013) Plant species diversity and floral characters in the Black Gobi desert of China.Acta Botanica Boreali-Occidentalia Sinica, 33, 1906-1915. (in Chinese with English abstract)
[夏延国, 宁宇, 李景文, 李俊清, 冯益民, 吴波, 卢琦 (2013) 中国黑戈壁地区植物区系及其物种多样性研究. 西北植物学报, 33, 1906-1915.]
[50] Zhang PP, Shao MA, Zhang XC (2017) Spatial pattern of plant species diversity and the influencing factors in a Gobi Desert within the Heihe River Basin, Northwest China. Journal of Arid Land, 9, 379-393.
[51] Zhu JT, Yu JJ, Wang P, Yu Q, Eamus D (2013) Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China. Ecohydrology, 6, 191-200.
[1] 冯兆忠 李品 张国友 李征珍 平琴 彭金龙 刘硕. (2020) 二氧化碳浓度升高对陆地生态系统的影响:问题与展望. 植物生态学报, 44(全球变化与生态系统专辑): 0-0.
[2] 李娜 丁晨晨 曹丹丹 初红军 戚英杰 李春旺 平晓鸽 孙悦华 蒋志刚. (2020) 中国阿勒泰地区鸟类物种编目、丰富度格局和区系组成. 生物多样性, 28(4): 401-411.
[3] 敬洪霞,孙宁骁,Muhammad UMAIR,刘春江,杜红梅. (2020) 滇南喀斯特地区不同季节土壤和灌木叶片化学计量特征及对水分添加的响应. 植物生态学报, 44(1): 56-69.
[4] 胡菀,张志勇,陈陆丹,彭焱松,汪旭. (2020) 末次盛冰期以来观光木的潜在地理分布变迁. 植物生态学报, 44(1): 44-55.
[5] 施晶晶,赵鸣飞,王宇航,薛峰,康慕谊,江源. (2019) 黄土高原腹地人工林下草本层群落构建机制. 植物生态学报, 43(9): 834-842.
[6] 袁海生, 魏玉莲, 周丽伟, 秦问敏, 崔宝凯, 何双辉. (2019) 东北4种林木干基腐朽病原真菌潜在分布范围预测及其生态位分析. 生物多样性, 27(8): 873-879.
[7] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[8] 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. (2019) 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析. 植物生态学报, 43(6): 490-500.
[9] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27(6): 607-618.
[10] 江焕, 张辉, 龙文兴, 方燕山, 符明期, 朱孔新. (2019) 金钟藤入侵群落的种间联结及生态位特征. 生物多样性, 27(4): 388-399.
[11] 范靖宇, 李汉芃, 杨琢, 朱耿平. (2019) 基于本土最优模型模拟入侵物种水盾草在中国的潜在分布. 生物多样性, 27(2): 140-148.
[12] 温纯,金光泽. (2019) 功能多样性对典型阔叶红松林生产力的影响. 植物生态学报, 43(2): 94-106.
[13] 杨贵军,王敏,杨益春,李欣芸,王新谱. (2019) 贺兰山甲虫物种丰富度分布格局及其环境解释. 生物多样性, 27(12): 1309-1319.
[14] 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. (2019) 模拟降雨格局变化对亚热带地区两树种液流特征的影响. 植物生态学报, 43(11): 988-998.
[15] 刘金亮, 于明坚. (2019) 片段化森林群落构建的生态过程及其检验方法. 植物生态学报, 43(11): 929-945.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed