生物多样性 ›› 2024, Vol. 32 ›› Issue (8): 24046. DOI: 10.17520/biods.2024046 cstr: 32101.14.biods.2024046
刘双祺1(), 华方圆1,*(
)(
), 夏舫2, 闫亮亮2, 于方3, 叶红3, 彭澎3, 张东元3, 关雪燕3, 付建平3, 梁烜3, 侯笑如3, 李晓阳3, 赵欣如3,4,*(
)
收稿日期:
2024-01-31
接受日期:
2024-08-07
出版日期:
2024-08-20
发布日期:
2024-09-09
通讯作者:
*E-mail: fhua@pku.edu.cn;xrzhao@bnu.edu.cn
基金资助:
Shuangqi Liu1(), Fangyuan Hua1,*(
)(
), Fang Xia2, Liangliang Yan2, Fang Yu3, Hong Ye3, Peng Peng3, Dongyuan Zhang3, Xueyan Guan3, Jianping Fu3, Xuan Liang3, Xiaoru Hou3, Xiaoyang Li3, Xinru Zhao3,4,*(
)
Received:
2024-01-31
Accepted:
2024-08-07
Online:
2024-08-20
Published:
2024-09-09
Contact:
*E-mail: fhua@pku.edu.cn;xrzhao@bnu.edu.cn
Supported by:
摘要:
当前全球候鸟的种群数量正普遍下降, 迫切需要采取有效的保护措施。多种候鸟, 特别是迁徙陆鸟, 会利用城市绿地作为中途停歇地进行能量补给。鉴于全球范围内城市化进程还将持续, 如果城市绿地能为迁徙陆鸟提供高质量的中途停歇地, 将给迁徙陆鸟保护带来重大机遇。实现这个愿景的一个关键基础, 是准确评估城市绿地作为这些鸟类中途停歇地的栖息地质量(包括在特定的绿地建设与管理措施下)。本研究从能量补给条件的视角出发, 以体重增长率为指标, 利用鸟类环志数据评估了北京翠湖国家城市湿地公园作为迁徙陆鸟中途停歇地的栖息地质量。研究还聚焦留野(即停止或减少园林养护操作, 降低对自然演替的干预)这一广受提倡的“生物多样性友好型”绿地管理措施, 探究了该措施对迁徙陆鸟中途停歇地栖息地质量的提升成效。在分析的所有“迁徙陆鸟物种-春/秋季”的组合中, 大部分都表现出显著大于0的体重增长率, 表明翠湖湿地公园能为多种不同生态需求的迁徙陆鸟提供能量补给条件。但是, 总体而言留野措施对能量补给条件的影响并不明显, 仅有2个“物种-季节”组合显示留野有提升能量补给条件的迹象。
刘双祺, 华方圆, 夏舫, 闫亮亮, 于方, 叶红, 彭澎, 张东元, 关雪燕, 付建平, 梁烜, 侯笑如, 李晓阳, 赵欣如 (2024) 城市绿地作为迁徙陆鸟中途停歇地的栖息地质量及其受留野措施的影响. 生物多样性, 32, 24046. DOI: 10.17520/biods.2024046.
Shuangqi Liu, Fangyuan Hua, Fang Xia, Liangliang Yan, Fang Yu, Hong Ye, Peng Peng, Dongyuan Zhang, Xueyan Guan, Jianping Fu, Xuan Liang, Xiaoru Hou, Xiaoyang Li, Xinru Zhao (2024) Stopover habitat quality of urban green space for migratory landbirds and the impact of urban wilding measures. Biodiversity Science, 32, 24046. DOI: 10.17520/biods.2024046.
图1 翠湖湿地公园的位置及北京城区土地覆盖。“城六区”是北京的中心城区和拓展区; 土地覆盖数据来自Zanaga等(2022)。
Fig. 1 The location of Cuihu Wetland Park and the land cover of ‘Urban Beijing’. Urban Beijing is represented by the ‘Six Urban Districts’ (城六区), the six core administrative districts of Beijing (i.e. not including suburban districts). Land cover data are from Zanaga et al (2022).
图2 迁徙陆鸟的体重增长率。(A) “无重捕”方法得到的12种迁徙陆鸟的昼间每小时体重增长率。每个点代表一个物种-季节组合的体重增长率估计值, 相应的竖线代表估计值的95%置信区间, 相应物种学名已标注在上方, 字体为绿色代表春天, 为棕红色代表秋天。(B) “有重捕”方法估算的红喉姬鹟重捕个体体重增长与当日时刻之差(减去日期差值之后剩余的时间差值)的关系。每个点代表一次重捕, 拟合线是日期之差取中位数(2天)时得到的。
Fig. 2 The rate of body mass gain of migratory landbirds. (A) Hourly rate of daytime body mass gain of 12 migratory landbird species obtained using the ‘no-recapture’ method, i.e. using all data available for each species-season combination. Each point represents the estimated hourly rate of daytime body mass gain for a species-season combination; each vertical line represents the 95% confidence interval for the corresponding rate estimate. The scientific names of the species are labeled above, with green color indicating spring and ochre color indicating autumn. (B) Relationship between body mass gain and recapture interval in time of the day (the remaining recapture interval after subtracting the recapture interval in date) for a given recaptured individual of Taiga Flycatcher, based on the ‘recapture’ method, i.e. using only data from individuals with recapture records within the same season. Each point represents a recapture event; the shaded polygon represents confidence bands for predictions of body mass gain. The fitted line is based on the median value for the recapture interval in date (i.e. 2 days).
图3 留野对迁徙陆鸟在城市绿地中体重增长影响的模型分析结果。三幅图分别呈现3个预测变量在7个物种-季节组合中的效应; 每个点代表变量效应的估计值, 相应的横线代表估计值的95%置信区间。特定物种-季节组合的特定效应估计值缺失, 表明该变量未进入最佳模型。
Fig. 3 The impact of urban wilding measures on the body mass gain of migratory landbirds in urban green space according to best models based on model selection. Each of the three panels displays the coefficient of one predictor variable for the seven species-season combinations, with each point representing the estimated coefficient value, and the corresponding horizontal lines representing its 95% confidence intervals. Some coefficient estimates are missing for certain species-season combinations, indicating that those variables did not enter the best model.
[1] | Amaya-Espinel JD, Hostetler ME (2019) The value of small forest fragments and urban tree canopy for Neotropical migrant birds during winter and migration seasons in Latin American countries: A systematic review. Landscape and Urban Planning, 190, 103592. |
[2] | Archer JMJ, Hostetler ME, Acomb G, Blair R (2019) A systematic review of forest bird occurrence in North American forest fragments and the built environment. Landscape and Urban Planning, 185, 1-23. |
[3] | Aronson MF, Lepczyk CA, Evans KL, Goddard MA, Lerman SB, MacIvor JS, Nilon CH, Vargo T (2017) Biodiversity in the city: Key challenges for urban green space management. Frontiers in Ecology and the Environment, 15, 189-196. |
[4] |
Bairlein F (2016) Migratory birds under threat. Science, 354, 547-548.
PMID |
[5] | Bauer S, Hoye BJ (2014) Migratory animals couple biodiversity and ecosystem functioning worldwide. Science, 344, 1242552. |
[6] | Billerman S, Keeney B, Rodewald P, Schulenberg T (2022) Birds of the World. Cornell Laboratory of Ornithology, Ithaca. |
[7] | Bren d’Amour C, Reitsma F, Baiocchi G, Barthel S, Güneralp B, Erb KH, Haberl H, Creutzig F, Seto KC (2017) Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences, USA, 114, 8939-8944. |
[8] |
Buler JJ, Moore FR, Woltmann S (2007) A multi-scale examination of stopover habitat use by birds. Ecology, 88, 1789-1802.
PMID |
[9] | Choi CY, Nam HY, Kim HK, Park SY, Park JG (2020) Changes in Emberiza bunting communities and populations spanning 100 years in Korea. PLoS ONE, 15, e0233121. |
[10] | Cooper NW, Hallworth MT, Marra PP (2017) Light-level geolocation reveals wintering distribution, migration routes, and primary stopover locations of an endangered long-distance migratory songbird. Journal of Avian Biology, 48, 209-219. |
[11] | Copete JL (2020a) Little Bunting (Emberiza pusilla). In: Birds of the World (eds del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E). Cornell Lab of Ornithology, Ithaca. |
[12] | Copete JL (2020b) Yellow-throated Bunting (Emberiza elegans). In: Birds of the World (eds del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E). Cornell Lab of Ornithology, Ithaca. |
[13] | del Hoyo J, Collar N, Kirwan GM, Christie D (2020) Taiga Flycatcher (Ficedula albicilla). In: Birds of the World (eds del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E). Cornell Lab of Ornithology, Ithaca. |
[14] | Dokter AM, Farnsworth A, Fink D, Ruiz-Gutierrez V, Hochachka WM, La Sorte FA, Robinson OJ, Rosenberg KV, Kelling S (2018) Seasonal abundance and survival of North America’s migratory avifauna determined by weather radar. Nature Ecology & Evolution, 2, 1603-1609. |
[15] | Dou YY, Kuang WH (2020) A comparative analysis of urban impervious surface and green space and their dynamics among 318 different size cities in China in the past 25 years. Science of the Total Environment, 706, 135828. |
[16] | Edenius L, Choi CY, Heim W, Jaakkonen T, De Jong A, Ozaki K, Roberge JM (2017) The next common and widespread bunting to go? Global population decline in the Rustic Bunting Emberiza rustica. Bird Conservation International, 27, 35-44. |
[17] | Faaborg J, Holmes RT, Anders AD, Bildstein KL, Dugger KM, Gauthreaux SA Jr, Heglund P, Hobson KA, Jahn AE, Johnson DH, Latta SC, Levey DJ, Marra PP, Merkord CL, Nol E, Rothstein SI, Sherry TW, Sillett TS, Thompson FR III, Warnock N (2010) Recent advances in understanding migration systems of New World land birds. Ecological Monographs, 80, 3-48. |
[18] | Fink D, Johnston A, Strimas-Mackey M, Auer T, Hochachka WM, Ligocki S, Oldham Jaromczyk L, Robinson O, Wood C, Kelling S, Rodewald AD (2023) A double machine learning trend model for citizen science data. Methods in Ecology and Evolution, 14, 2435-2448. |
[19] | Gillings S, Scott C (2021) Nocturnal flight calling behaviour of thrushes in relation to artificial light at night. Ibis, 163, 1379-1393. |
[20] |
Gómez C, Bayly NJ, Norris DR, MacKenzie SA, Rosenberg KV, Taylor PD, Hobson KA, Cadena CD (2017) Fuel loads acquired at a stopover site influence the pace of intercontinental migration in a boreal songbird. Scientific Reports, 7, 3405.
DOI PMID |
[21] | Greco SE, Airola DA (2018) The importance of native valley oaks (Quercus lobata) as stopover habitat for migratory songbirds in urban Sacramento, California, USA. Urban Forestry & Urban Greening, 29, 303-311. |
[22] | Guo FY, Buler JJ, Smolinsky JA, Wilcove DS (2023) Autumn stopover hotspots and multiscale habitat associations of migratory landbirds in the eastern United States. Proceedings of the National Academy of Sciences, USA, 120, e2203511120. |
[23] | Hahn S, Bauer S, Liechti F (2009) The natural link between Europe and Africa—2.1 billion birds on migration. Oikos, 118, 624-626. |
[24] | Hayes JP, Shonkwiler JS (2001) Morphological indicators of body condition:Useful or wishful thinking? In: Body Composition Analysis of Animals (ed. Speakman JR), pp. 8-38. Cambridge University Press, Cambridge. |
[25] | Homayoun TZ, Blair RB (2016) Value of park reserves to migrating and breeding landbirds in an urban important bird area. Urban Ecosystems, 19, 1579-1596. |
[26] | Horton KG, Morris SR (2012) Estimating mass change of migrant songbirds during stopover: Comparison of three different methods. Journal of Field Ornithology, 83, 412-419. |
[27] | Huang Y (2015) The Methodology of Bird Habitats’ Making and Planning at Beijing Urban Green Spaces. PhD dissertation, Tsinghua University, Beijing. (in Chinese with English abstract) |
[黄越 (2015) 北京城市绿地鸟类生境规划与营造方法研究. 博士学位论文, 清华大学, 北京.] | |
[28] | Jia Q, Koyama K, Choi CY, Kim HJ, Cao L, Gao DL, Liu GH, Fox AD (2016) Population estimates and geographical distributions of swans and geese in East Asia based on counts during the non-breeding season. Bird Conservation International, 26, 397-417. |
[29] | Johnson MD (2007) Measuring habitat quality: A review. The Condor, 109, 489-504. |
[30] | Jones J, Francis CM, Drew M, Fuller S, Ng MWS (2002) Age-related differences in body mass and rates of mass gain of passerines during autumn migratory stopover. The Condor, 104, 49-58. |
[31] |
Kamp J, Oppel S, Ananin AA, Durnev YA, Gashev SN, Hölzel N, Mishchenko AL, Pessa J, Smirenski SM, Strelnikov EG, Timonen S, Wolanska K, Chan S (2015) Global population collapse in a superabundant migratory bird and illegal trapping in China. Conservation Biology, 29, 1684-1694.
DOI PMID |
[32] | Klinner T, Buddemeier J, Bairlein F, Schmaljohann H (2020) Decision-making in migratory birds at stopover: An interplay of energy stores and feeding conditions. Behavioral Ecology and Sociobiology, 74, 10. |
[33] | Lepczyk CA, Aronson MFJ, Evans KL, Goddard MA, Lerman SB, MacIvor JS (2017) Biodiversity in the city: Fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience, 67, 799-807. |
[34] | Matthews SN, Rodewald PG (2010) Movement behaviour of a forest songbird in an urbanized landscape: The relative importance of patch-level effects and body condition during migratory stopover. Landscape Ecology, 25, 955-965. |
[35] | Pennington DN, Hansel J, Blair RB (2008) The conservation value of urban riparian areas for landbirds during spring migration: Land cover, scale, and vegetation effects. Biological Conservation, 141, 1235-1248. |
[36] | R Core Team (2023) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/. (accessed on 2023-11-18) |
[37] |
Robertson BA, Hutto RL (2006) A framework for understanding ecological traps and an evaluation of existing evidence. Ecology, 87, 1075-1085.
DOI PMID |
[38] |
Rosenberg KV, Dokter AM, Blancher PJ, Sauer JR, Smith AC, Smith PA, Stanton JC, Panjabi A, Helft L, Parr M, Marra PP (2019) Decline of the North American avifauna. Science, 366, 120-124.
DOI PMID |
[39] |
Runge CA, Watson JEM, Butchart SHM, Hanson JO, Possingham HP, Fuller RA (2015) Protected areas and global conservation of migratory birds. Science, 350, 1255-1258.
DOI PMID |
[40] |
Sánchez-Clavijo LM, Bayly NJ, Quintana-Ascencio PF (2020) Habitat selection in transformed landscapes and the role of forest remnants and shade coffee in the conservation of resident birds. Journal of Animal Ecology, 89, 553-564.
DOI PMID |
[41] | Schaub M, Jenni L, Bairlein F (2008) Fuel stores, fuel accumulation, and the decision to depart from a migration stopover site. Behavioral Ecology, 19, 657-666. |
[42] |
Schmaljohann H, Eikenaar C, Sapir N (2022) Understanding the ecological and evolutionary function of stopover in migrating birds. Biological Reviews of the Cambridge Philosophical Society, 97, 1231-1252.
DOI PMID |
[43] | Seewagen CL, Sheppard CD, Slayton EJ, Guglielmo CG (2011) Plasma metabolites and mass changes of migratory landbirds indicate adequate stopover refueling in a heavily urbanized landscape. The Condor, 113, 284-297. |
[44] | Seewagen CL, Slayton EJ (2008) Mass changes of migratory landbirds during stopovers in a New York city park. Wilson Journal of Ornithology, 120, 296-303. |
[45] | Seewagen CL, Slayton EJ, Guglielmo CG (2010) Passerine migrant stopover duration and spatial behaviour at an urban stopover site. Acta Oecologica, 36, 484-492. |
[46] | Şekercioğlu ÇH, Daily GC, Ehrlich PR (2004) Ecosystem consequences of bird declines. Proceedings of the National Academy of Sciences, USA, 101, 18042-18047. |
[47] | Shi X, Hu C, Soderholm J, Chapman J, Mao HF, Cui K, Ma ZJ, Wu DL, Fuller RA (2023) Prospects for monitoring bird migration along the East Asian-Australasian Flyway using weather radar. Remote Sensing in Ecology and Conservation, 9, 169-181. |
[48] |
Stevenson RD, Woods WA (2006) Condition indices for conservation: New uses for evolving tools. Integrative and Comparative Biology, 46, 1169-1190.
DOI PMID |
[49] |
Studds CE, Kendall BE, Murray NJ, Wilson HB, Rogers DI, Clemens RS, Gosbell K, Hassell CJ, Jessop R, Melville DS, Milton DA, Minton CDT, Possingham HP, Riegen AC, Straw P, Woehler EJ, Fuller RA (2017) Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nature Communications, 8, 14895.
DOI PMID |
[50] | Tyler S (2020) Olive-backed Pipit (Anthus hodgsoni). In: Birds of the World (eds del Hoyo J, Elliott A, Sargatal J, Christie D, de Juana E). Cornell Lab of Ornithology, Ithaca. |
[51] | Van Doren BM, Lostanlen V, Cramer A, Salamon J, Dokter A, Kelling S, Bello JP, Farnsworth A (2023) Automated acoustic monitoring captures timing and intensity of bird migration. Journal of Applied Ecology, 60, 433-444. |
[52] |
van Vliet J (2019) Direct and indirect loss of natural area from urban expansion. Nature Sustainability, 2, 755-763.
DOI |
[53] | Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis, 156, 1-22. |
[54] | Walker J, Taylor PD (2017) Using eBird data to model population change of migratory bird species. Avian Conservation and Ecology, 12, art4. |
[55] | Wang XD, Kuang FL, Tan K, Ma ZJ (2018) Population trends, threats, and conservation recommendations for waterbirds in China. Avian Research, 9, 14. |
[56] | Yong DL, Heim W, Chowdhury SU, Choi CY, Ktitorov P, Kulikova O, Kondratyev A, Round PD, Allen D, Trainor CR, Gibson L, Szabo JK (2021) The state of migratory landbirds in the East Asian flyway: Distributions, threats, and conservation needs. Frontiers in Ecology and Evolution, 9, 613172. |
[57] | Yong DL, Liu Y, Low BW, Española CP, Choi CY, Kawakami K (2015) Migratory songbirds in the East Asian-Australasian Flyway: A review from a conservation perspective. Bird Conservation International, 25, 1-37. |
[58] | Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar NE, Xu P, Ramoino F, Arino O (2022) ESA WorldCover 10 m 2021 v200. (accessed on 2024-01-13) |
[59] | Zhao XR, Zhu L (2021) Birds of Beijing. China Forestry Publishing House, Beijing. (in Chinese) |
[赵欣如, 朱雷 (2021) 北京鸟类图谱. 中国林业出版社, 北京.] |
[1] | 王秦韵, 张玉泉, 刘浩, 李明, 刘菲, 赵宁, 陈鹏, 齐敦武, 阙品甲. 成都大熊猫繁育研究基地鸟类多样性[J]. 生物多样性, 2024, 32(8): 24066-. |
[2] | 岑渝华, 王鹏, 陈庆春, 张承云, 余上, 胡珂, 刘阳, 肖荣波. 城市绿地动物声景的时空特征及其驱动因素[J]. 生物多样性, 2023, 31(1): 22359-. |
[3] | 牛铜钢, 刘为. 双碳战略背景下城市生态系统的碳汇功能与生物多样性可以兼得[J]. 生物多样性, 2022, 30(8): 22168-. |
[4] | 黄越, 顾燚芸, 阳文锐, 闻丞. 如何在北京充分实现受胁鸟类栖息地保护?[J]. 生物多样性, 2021, 29(3): 340-350. |
[5] | 王勇, 许洁, 杨刚, 李宏庆, 吴时英, 唐海明, 马波, 王正寰. 城市公共绿地常见木本植物组成对鸟类群落的影响[J]. 生物多样性, 2014, 22(2): 196-207. |
[6] | 赵娟娟, 欧阳志云, 郑华, 徐卫华, 王效科, 倪永明. 北京建成区外来植物的种类构成[J]. 生物多样性, 2010, 18(1): 19-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn