生物多样性 ›› 2017, Vol. 25 ›› Issue (12): 1295-1302.doi: 10.17520/biods.2017071

• 生物入侵专题 • 上一篇    下一篇

土壤微生物与植物入侵: 研究现状与展望

付伟1, 王宁1, 庞芳1, 黄玉龙1, 吴俊1, 祁珊珊1, 戴志聪1, 2, *(), 杜道林1, 2   

  1. 1 .江苏大学环境与安全工程学院环境生态研究所, 江苏镇江 212013
    2 .江苏大学农业工程研究院, 江苏镇江 212013
  • 收稿日期:2017-03-06 接受日期:2017-12-20 出版日期:2017-12-20
  • 通讯作者: 戴志聪 E-mail:daizhicong@163.com
  • 基金项目:
    国家自然科学基金(31600326, 31570414)、国家重点研发计划(2017YFC1200100)、江苏省自然科学基金(BK20150504)、中国博士后基金(2016M590416, 2017T100329)和江苏大学科研立项项目(16A157)

Soil microbiota and plant invasions: current and future

Wei Fu1, Ning Wang1, Fang Pang1, Yulong Huang1, Jun Wu1, Shanshan Qi1, Zhicong Dai1, 2, *(), Daolin Du1, 2   

  1. 1 Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013
    2 Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013
  • Received:2017-03-06 Accepted:2017-12-20 Online:2017-12-20
  • Contact: Dai Zhicong E-mail:daizhicong@163.com

入侵植物在全球范围的快速扩张导致了全球生物多样性的快速丧失, 这使得对其入侵机理的研究更具有现实性与紧迫性。在入侵生态学中, 以往的关注重点多集中于宏观有机体上, 但是越来越多的研究表明, 入侵植物与土壤微生物之间的相互作用关系深刻影响着入侵植物的适应性和竞争力, 在其成功入侵的过程中发挥着重要的作用。现阶段, 在土壤微生物参与的植物入侵研究中, 将微生物分为3个主要类群, 即病原微生物(microbial pathogens)、共生微生物(mutualistic microbes)和腐生微生物(saprotrophic microbes)。本文从该3个类群出发总结了土壤微生物与入侵植物之间的相互关系, 探讨其对外来植物入侵性的影响。另外, 以往的研究多单独围绕总体层次或某一维度而展开, 往往不能深入系统地揭示外来植物的入侵机理。然而, 在陆地生态系统中, 植物与微生物的相互作用关系主要始于根系, 植物的根际为微生物提供了多样的异质性栖息环境(根际土壤、根表和内生环境), 并塑造了其功能的多样性。作者建议, 今后关于土壤微生物对入侵植物影响的研究, 在借鉴快速发展的高通量测序技术拓展研究的深度和广度的同时, 同样需要注意根际微生境与宏观功能特性的结合与统一, 并建立系统而又可重复性的研究模式, 从现象特征的描述向机理阐述方向发展。

关键词: 入侵植物, 入侵机制, 土壤微生物, 根际环境, 微生物分子生态学

Profound threats on global biodiversity caused by the expansion and accumulation of invasive species substantiate the urgent need to understand their invasion mechanisms. While most studies of invasive plants have focused on macro-organisms, it has become increasingly clear that microorganisms are pervasive and play central roles in successful invasion processes of exotic plants. According to studies examining soil microbes and invasive plants, we discuss the effects of invasive plants on soil microbial communities by dividing them into three separate groups, namely microbial pathogens, mutualistic microbes, and saprotrophic microbes. Roots are the primary site for interactions with microbes, and the rhizosphere is the largest reservoir of known microbial diversity. The rhizosphere provided a heterogeneity microhabitat at the root-soil interface (rhizosphere soil, rhizoplane, and endorhizosphere) and shapes the habitat into different functions. However, previous studies have tended to focus on either the single dimension or at the hole level, which fails to explain the scope and depth of the phenomenon. When examining this issue, we propose that future studies of the interactions between rhizosphere microbes and invasive plant should combine the root elaborate microhabitat and macro-functional traits. It is essential to construct a systematic and reproducible research framework by using high-throughput DNA sequencing technology and corresponding bioinformatic tools, to switch the mode of research from the description and prediction of the phenomenon into the elaboration of the mechanism in the field of plant invasion.

Key words: invasive plant, invasion mechanisms, soil microbes, rhizosphere microhabitat, microbial molecular ecology

图1

入侵植物-土壤微生物相互作用关系及根际微环境划分"

[1] Afkhami ME, Strauss SY (2016) Native fungal endophytes suppress an exotic dominant and increase plant diversity over small and large spatial scales. Ecology, 97, 1159-1169.
[2] Agrawal AA, Kotanen PM, Mitchell CE, Power AG, Godsoe W, Klironomos JN (2005) Enermy release? An experiment with congeneric plant pairs and diverse above- and belowground enemies. Ecology, 86, 2979-2989.
[3] Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive plants in Hawaii. Oecologia, 141, 612-619.
[4] Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and outer organisms. Annual Review of Plant Biology, 57, 233-266.
[5] Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM (2013) The rhizosphere revisited: root microbiomics. Frontiers in Plant Science, 4, 165.
[6] Berendsen RL, Pieterse CMJ, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
[7] Bever JD, Westover KM, Antonovics J (1997) Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology, 85, 561-573.
[8] Blumenthal DM (2006) Interactions between resource availability and enemy release in plant invasion. Ecology Letters, 9, 887-895.
[9] Blumenthal DM, Mitchell CE, Pyšek P, Jarošík V (2009) Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences, USA, 106, 7899-7904.
[10] Callaway RM, Cipollini D, Barto K, Thelen GC, Hallett SG, Prati D, Stinson K, Klironomos JN (2008) Novel wepaons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology, 89, 1043-1055.
[11] Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature, 427, 731-733.
[12] Coats VC (2013) Microbial associates of Berberis thunbergii (Japanese barberry). PhD dissertation, University of Maine Coats VC, Rumph ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiology, 5, 368.
[13] Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry, 42, 669-678.
[14] Dai ZC, Fu W, Wan LY, Cai HH, Wang N, Qi SS, Du DL (2016) Different growth promoting effects of endophytic bacteria on invasive and native clonal plants. Frontiers in Plant Science, 7, 706.
[15] Dai ZC, Qi SS, Miao SL, Liu YT, Tian YF, Zhai DL, Ping H, Du DL (2015) Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. Biochemical Systematics and Ecology, 61, 19-27.
[16] Denison RF (2004) Lifestyle alternatives for rhizobia: mutual¬ism, parasitism, and forgoing symbiosis. FEMS Microbiol¬ogy Letters, 237, 187-193.
[17] Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 31, 861-864.
[18] Eisenhauer N, Hörsch V, Moeser J, Scheu S (2010) Synergistic effects of microbial and animal decomposers on plant and herbivore performance. Basic and Applied Ecology, 11, 23-34.
[19] Elgersma KJ, Yu S, Vor T, Ehrenfeld JG (2012) Microbial-mediated feedbacks of leaf litter on invasive plant growth and interspecific competition. Plant and Soil, 356, 341-355.
[20] Eppinga MB, Rietkerk M, Dekker SC, Ruiter PCD, van der Putten WH (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 114, 168-176.
[21] Geldner N, Salt DE (2014) Focus on roots. Plant Physiology, 166, 453-454.
[22] Gilbert GS (2002) Evolutionary ecology of plant diseases in natural ecosystems. Annual Review of Phytopathology, 40, 13-43.
[23] Hamilton EW, Frank DA (2001) Can plants stimulate soil microbes and their own number supply? Evidence from a grazing tolerant grass. Ecology, 82, 2397-2402.
[24] Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant and Soil, 321, 5-33.
[25] Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution, 17, 164-170.
[26] Keiser AD, Keiser DA, Strickland MS, Bradford MA (2014) Disentangling the mechanisms underlying functional differences among decomposer communities. Journal of Ecology, 102, 603-609.
[27] Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: A key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology, 38, 67-77.
[28] Lankau RA (2012) Coevolution between invasive and native plants driven by chemical competition. Proceedings of the National Academy of Sciences, USA, 109, 11240-11245.
[29] Laungani R, Knops JMH (2009) Species-driven changes in nitrogen cycling can provide a mechanism for plant inva¬sions. Proceedings of the National Academy of Sciences, USA, 106, 12400-12405.
[30] Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist, 168, 189-204.
[31] Li H, Zhang X, Zheng R, Li X, Elmer WH, Wolfe LM, Li B (2014) Indirect effects of non-native Spartina alterniflora and its fungal pathogen (Fusarium palustre) on native salt¬marsh plants in China. Journal of Ecology, 102, 1112-1119.
[32] Lowe S, Browne M, Boudjelas S, De Poorter M (2000) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. ISSG, SSC and IUCN. www.issg.org/pdf/publications/worst_100/english_100_worst.pdf
[33] Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556.
[34] Mangla S, Inderjit, Callaway RM (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants. Journal of Ecology, 96, 58-67.
[35] Margulis L (1993) Origins of species: acquired genomes and individuality. Biosystems, 31, 121-125.
[36] Marler MJ, Zabinski CA, Callaway RM (1999) Mycorrhizae indirectly enhance competitive effects of an invasive forb on a native bunchgrass. Ecology, 80, 1180-1186.
[37] Mauchline TH, Chedom-Fotso D, Chandra G, Samuels T, Greenaway N, Backhaus A, McMillan V, Canning G, Pow¬ers SJ, Hammond-Kosack KE, Hirsch PR, Clark IM, Mehrabi Z, Roworth J, Burnell J, Malone JG (2015) An analy¬sis of Pseudomonas genomic diversity in take-all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota. Environmental Microbiology, 17, 4764-4778.
[38] McFall-Ngai M (2008) Are biologists in “future shock”? Sym¬biosis integrates biology across domains. Nature Reviews Microbiology, 6, 789-792.
[39] Mcleod ML, Cleveland CC, Lekberg Y, Maron JL, Philippot L, Bru D, Callaway RM, Aerts R (2016) Exotic invasive plants increase productivity, abundance of ammonia-oxidizing bacteria and nitrogen availability in intermountain grass¬lands. Journal of Ecology, 104, 994-1002.
[40] Mendes R, Kruijt M, de Bruijin I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, Desantis TZ, Andersen GL, Bakker PA (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332, 1097-1100.
[41] Mincheva T, Barni E, Varese GC, Brusa G, Cerabolini B, Siniscalco C (2014) Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation. Acta Oecologica, 54, 29-35.
[42] Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature, 421, 625-627.
[43] Nijjer S, Rogers WE, Siemann E (2007) Negative plant-soil feedbacks may limit persistence of an invasive tree due to rapid accumulation of soil pathogens. Proceedings of the Royal Society B: Biological Sciences, 274, 2621-2627.
[44] Ofek M, Voronov-Goldman M, Hadar Y, Minz D (2014) Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16, 2157-2167.
[45] Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant inva¬sions. Annual Review of Ecology, Evolution & Systematics, 40, 699-715.
[46] Reinhart KO, Callaway RM (2004) Soil biota facilitate exotic acer invasions in Europe and North America. Ecological Applications, 14, 1737-1745.
[47] Reinholdhurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015) Roots shaping their microbiome: global hotspots for microbial activity. Annual Review of Phytopathology, 53, 403-424.
[48] Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Pierotti Cei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environmental Microbiology, 17, 316-331.
[49] Rosenblueth M, Martínez RE (2006) Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe In¬teractions, 132, 827-837.
[50] Rout ME, Callaway RM (2009) An invasive plant paradox. Science, 324, 734-735.
[51] Rout ME, Callaway RM (2012) Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘Everything is not everywhere’. Annals of Botany, 110, 213-222.
[52] Rout ME, Chrzanowski TH, Westlie TK, DeLuca TH, Callaway RM, Holben WE (2013) Bacterial endophytes enhance competition by invasive plants. American Journal of Botany, 100, 1726-1737.
[53] Setälä H, Mclean MA (2004) Decomposition rate of organic substrates in relation to the species diversity of soil sapro¬phytic fungi. Oecologia, 139, 98-107.
[54] Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, e140.
[55] Sun ZK, He WM (2010) Evidence for enhanced mutualism hypothesis: Solidago canadensis plants from regular soils perform better. PLoS ONE, 5, e15418.
[56] Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist, 176, 256-273.
[57] van der Putten WH, Klironomos JN, Wardle DA (2007a) Microbial ecology of biological invasions. The ISME Journal, 1, 28-37.
[58] van der Putten WH, Kowalchuk GA, Brinkman EP, Doodeman GTA, van der Kaaij RM, Kamp AFD, Menting FBJ, Veenendaal EM (2007b) Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. Ecology, 88, 978-988.
[59] Vanderhoeven S, Dassonville N, Meerts P (2005) Increased topsoil mineral nutrient concentrations under exotic inasive plants in Belgium. Plant and Soil, 275, 169-179.
[60] van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant im¬mune responses triggered by beneficial microbes. Current Opinion in Plant Biology, 11, 443-448.
[61] Vogelsang KM, Bever JD (2009) Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion. Ecology, 90, 399-407.
[62] Waller LP, Callaway RM, Klironomos JN, Ortega YK, Maron JL (2016) Reduced mycorrhizal responsiveness leads to in¬creased competitive tolerance in an invasive exotic plant. Journal of Ecology, 104, 1599-1607.
[63] Wardle DA (2004) Ecological linkages between aboveground and belowground biota. Science, 304, 1629-1633.
[64] Wertz S, Degrange V, Prosser JI, Poly F, Commeaux C, Freitag T, Guillaumaud N, Roux XL (2006) Maintenance of soil functioning following erosion of microbial diversity. Envi¬ronmental Microbiology, 8, 2162-2169.
[65] Xu J, Wang W, Sun J, Zhang Y, Ge Q, Du L, Yin H, Liu X (2011) Involvement of auxin and nitric oxide in plant Cd-stress responses. Plant and Soil, 346, 107-119.
[66] Yang HS, Zhang Q, Koide RT, Hoeksema JD, Tang JJ, Bian XM, Hu SJ, Chen X (2017) Taxonomic resolution is a de¬terminant of biodiversity effects in arbuscular mycorrhizal fungal communities. Journal of Ecology, 105, 219-228.
[67] Yang Q, Carrillo J, Jin H, Shang L, Hovick SM, Nijjer S, Ga¬bler CA, Li B, Siemann E (2013) Plant-soil biota interac¬tions of an invasive species in its native and introduced ranges: implications for invasion success. Soil Biology and Biochemistry, 65, 78-85.
[1] 闫雅楠, 叶小齐, 吴明, 闫明, 张昕丽. (2019) 入侵植物加拿大一枝黄花根际解钾菌多样性及解钾活性. 植物生态学报, 43(6): 543-556.
[2] 土艳丽,王力平,王喜龙,王林林,段元文. (2019) 利用昆虫携带的花粉初探西藏入侵植物印加孔雀草在当地传粉网络中的地位. 生物多样性, 27(3): 306-313.
[3] 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. (2019) 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43(2): 174-184.
[4] 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. (2018) 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响. 生物多样性, 26(9): 962-971.
[5] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. (2018) 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 26(9): 972-987.
[6] 薛晨阳, 许玉凤, 曲波. (2018) 不同氮水平下瘤突苍耳、苍耳及其杂交种形态、光合及生长特征比较. 生物多样性, 26(6): 554-563.
[7] 孙士国, 卢斌, 卢新民, 黄双全. (2018) 入侵植物的繁殖策略以及对本土植物繁殖的影响. 生物多样性, 26(5): 457-467.
[8] 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. (2018) 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征. 植物生态学报, 42(3): 382-396.
[9] 毕艳孟, 孙振钧. (2018) 蚯蚓调控土壤微生态缓解连作障碍的作用机制. 生物多样性, 26(10): 1103-1115.
[10] 吴秀芝, 阎欣, 王波, 刘任涛, 安慧. (2018) 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响. 植物生态学报, 42(10): 1022-1032.
[11] 陈宏, 冼晓青, 邱荣洲, 池美香, 赵健. (2018) 基于GIS的外来入侵植物调查规划与外业实施. 生物多样性, 26(1): 44-52.
[12] 石国玺, 王文颖, 蒋胜竞, 成岗, 姚步青, 冯虎元, 周华坤. (2018) 黄帚橐吾种群扩张对土壤理化特性与微生物功能多样性的影响. 植物生态学报, 42(1): 126-132.
[13] 肖春旺, 杨帆, 柳隽瑶, 周勇, 苏佳琦, 梁韵, 裴智琴. (2017) 陆地生态系统地下碳输入与输出过程研究进展. 植物学报, 52(5): 652-668.
[14] 古春凤, 叶小齐, 吴明, 邵学新, 焦盛武. (2017) 草甘膦对加拿大一枝黄花和伴生植物白茅种间竞争关系的影响. 植物生态学报, 41(4): 439-449.
[15] 邓邦良, 刘倩, 刘喜帅, 郑利亚, 江亮波, 郭晓敏, 刘苑秋, 张令. (2017) UV-B辐射增强和氮沉降对入侵植物乌桕生长的影响. 植物生态学报, 41(4): 471-479.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed