生物多样性 ›› 2015, Vol. 23 ›› Issue (5): 649-657.doi: 10.17520/biods.2015032

所属专题: 森林动态监测样地专题

• • 上一篇    下一篇

宝天曼落叶阔叶林土壤细菌多样性

赵爱花1, 2, 杜晓军1, *(), 臧婧1, 张守仁1, 焦志华3   

  1. 1 中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
    2 中国科学院大学, 北京 100049
    3 中国矿业大学(北京)化学与环境工程学院, 北京 100083
  • 收稿日期:2015-02-10 接受日期:2015-02-10 出版日期:2015-09-20
  • 通讯作者: 杜晓军 E-mail:xjdu@ibcas.ac.cn
  • 基金项目:
    国家自然科学基金(31270642, 31370586)

Soil bacterial diversity in the Baotianman deciduous broad-leaved forest

Aihua Zhao1, 2, Xiaojun Du1, *(), Jing Zang1, Shouren Zhang1, Zhihua Jiao3   

  1. 1 State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
    2 University of Chinese Academy of Sciences, Beijing 100049
    3 School of Chemical and Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083;
  • Received:2015-02-10 Accepted:2015-02-10 Online:2015-09-20
  • Contact: Du Xiaojun E-mail:xjdu@ibcas.ac.cn

土壤微生物在森林生态系统中起着重要作用。高通量测序方法的出现为进一步认识土壤微生物提供了契机。本文利用Illumina Miseq高通量测序技术对宝天曼森林土壤的细菌多样性进行了初步研究。结果显示: 在31个采样点内, 随着采样点增加, 检测出不同分类水平的土壤细菌类群也在增多, 当采样点达到31个时, 检测出的土壤细菌类群达到45门163纲319目495科785属和42,632个OTU; 31个土壤样品中所检测出的细菌类群平均有34.2门114.7纲215.2目323.7科446.6属5,924.7个OTU, 其中门、纲、目分类水平上的优势类群(所占比例)分别为变形菌门(Proteobacteria)(38.30%)、α-变形菌纲(α-Proteobacteria)(18.08%)、根瘤菌目(Rhizobiales)(10.62%)。这些初步研究结果表明在一定程度上宝天曼森林土壤有较高的细菌多样性水平, 为进一步认识森林土壤细菌多样性与植物多样性关系等奠定了基础。

关键词: 森林, 土壤微生物, 细菌多样性, 高通量测序, 变形菌门, α-变形菌纲, 根瘤菌目, 宝天曼国家级自然保护区

Soil microbes play an essential role in forest ecosystems. The development of the high-throughput sequencing method provides an invaluable opportunity to further understand soil microbial communities. In this study, we investigated soil bacterial diversity in the Baotianman forest using the Illumina Miseq platform. Results showed that in the 31 soil sampling points, the number of bacterial taxa detected at different classification levels increased with increasing number of sampling points. When all 31 samples were considered, the number of relative bacterial groups included 45 phyla, 163 classes, 319 orders, 495 families, 785 genera and 42,632 OTUs. The mean values of relative bacterial taxa in the 31 samples were 34.2 phyla, 114.7 classes, 215.2 orders, 323.7 families, 446.6 genera, and 5,924.7 OTUs. At the classification level of phylum, class and order, the dominant groups were Proteobacteria (38.30%), α-Proteobacteria (18.08%), and Rhizobiales (10.62%), respectively. These preliminary findings suggest that Baotianman forest soils have high levels of bacterial diversity to some degree and provide basic information and knowledge to further understand the relationship between soil bacterial diversity and plant diversity and other related scientific questions.

Key words: forest, soil microbe, bacterial diversity, high-throughput sequencing, Proteobacteria, α-Proteobacteria, Rhizobiales, Baotianman National Nature Reserve

图1

25 ha宝天曼森林动态监测样地31个土壤微生物采样点位置"

表1

样品序列数及OTU数"

样品编号
Sample identity
原始序列数
Original sequence number
原始OTU数
Original OTU number
标准化序列数
Even sequence number
标准化后OTU数
Even OTU number
0101 37,569 7,148 36,000 6,979
0105 39,949 5,671 36,000 5,320
0203 39,698 5,661 36,000 5,327
0218 39,337 5,579 36,000 5,320
0306 39,281 6,396 36,000 6,097
0318 39,760 6,263 36,000 5,906
0411 39,756 6,008 36,000 5,672
0606 39,636 6,642 36,000 6,286
0701 39,945 6,059 36,000 5,694
0819 39,864 6,324 36,000 5,933
0913 39,827 5,275 36,000 4,971
0919 39,720 5,958 36,000 5,645
1002 39,844 5,486 36,000 5,175
1006 39,551 6,658 36,000 6,322
1018 39,711 5,526 36,000 5,184
1104 39,746 6,380 36,000 6,036
1210 39,569 6,255 36,000 5,933
1212 39,659 6,016 36,000 5,691
1318 39,809 6,706 36,000 6,326
1405 39,825 5,910 36,000 5,547
1510 39,379 5,650 36,000 5,378
1512 37,588 5,555 36,000 5,413
1607 39,739 6,338 36,000 5,981
1615 39,212 6,246 36,000 5,978
1618 39,578 6,552 36,000 6,200
1704 39,495 6,405 36,000 6,024
1718 39,130 6,910 36,000 6,564
1808 39,739 6,833 36,000 6,498
1814 39,866 6,850 36,000 6,501
1902 39,155 7,283 36,000 6,920
1913 38,882 7,145 36,000 6,844

图2

宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上的细菌数量"

图3

宝天曼森林动态监测样地31个土壤样品中检测到的不同分类水平上细菌类群数随采样点数增加的稀疏曲线"

[1] Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2010) Examining the global distribution of dominant archaeal populations in soil.The International Society for Microbial Ecology, 5, 908-917.
[2] Cai CQ (蔡晨秋), Tang L (唐丽), Long CL (龙春林) (2011) Soil microbial diversity and its research methods.Journal of Anhui Agricultural Science(安徽农业科学), 39, 17274-17276, 17278. (in Chinese with English abstract)
[3] Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data.Nature Methods, 7, 335-336.
[4] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences,USA, 108(S1), 4516-4522.
[5] Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina Hiseq and Miseq platforms.The International Society for Microbial Ecology, 6, 1621-1624.
[6] Chakravorty S, Helb D, Burday M, Connell N, Allan D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods, 69, 330-339.
[7] Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis.Nucleic Acids Research, 42(Datbase issue), D633-D642.
[8] Delmont TO, Prestat E, Keegan KP, Faubladier M, Robe P, Clark IM, Pelletier E, Hirsch PR, Meyer F, Gilbert JA, Le Paslier D, Simonet P, Vogel TM (2012) Structure, fluctuation and magnitude of a natural grassland soil metagenome. The International Society for Microbial Ecology, 6, 1677-1687.
[9] Fernando WJD, Li R (2012) Opening the black box: understanding the influence of cropping systems and plant communities on bacterial and fungal population dynamics. Ceylon Journal of Science (Biology Science), 41, 89-110.
[10] Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities.Proceedings of the National Academy of Sciences, USA, 103, 626-631.
[11] Fierer N, Leff JW, Adams BJ, Nielsend UN, Thomas BS, Lauber CL, Sarah O, Gilberte JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.Proceedings of the National Academy of Sciences, USA, 109, 21390-21395.
[12] Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils.Environmental Microbiology, 13, 1642-1654.
[13] Gu FX (顾峰雪), Wen QK (文启凯), Pan BR (潘伯荣), Yang YS (杨玉锁) (2000) A preliminary study on soil microorganisms of artificial vegetation in the center of Taklimakan Desert.Biodiversity Science(生物多样性), 8, 297-303. (in Chinese with English abstract)
[14] Guo LD (郭良栋) (2012) Progress of microbial species diversity research in China.Biodiversity Science(生物多样性), 20, 572-580. (in Chinese with English abstract)
[15] Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S (2005) Composition of the microbial communities in the mineral soil under different types of natural forest.Soil Biology and Biochemistry, 37, 661-671.
[16] Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils.Applied Environmental Microbiology, 70, 5057-5065.
[17] He ZL, van Nostrand JD, Deng Y, Zhou JZ (2011) Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities.Frontiers of Environmental Science and Engineering in China, 5, 1-20.
[18] Jiang HY (姜海燕), Yan W (闫伟), Li XT (李晓彤), Yang XL (杨秀丽), Lv HL (吕洪丽) (2010) The diversity of soil microorganism under different vegetations of Larix gmelinii forest in Great Xing’an Mountains.Microbiology China(微生物学通报), 37, 186-190. (in Chinese with English abstract)
[19] Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses.The International Society for Microbial Ecology, 3, 442-453.
[20] Lauber CL, Micah H, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale.Applied and Environmental Microbiology, 75, 5111-5120.
[21] Li H, Ye D, Wang X, Settles ML, Wang J, Hao Z, Zhou L, Dong P, Jiang Y, Ma ZS (Sam) (2014) Soil bacterial communities of different natural forest types in Northeast China. Plant Soil, 383, 203-216.
[22] Liu YD (刘雨迪), Chen XY (陈小云), Liu MQ (刘满强), Qin JT (秦江涛), Li HX (李辉信), Hu F (胡锋) (2013) Changes in soil microbial properties and nematode assemblage over time during rice cultivation. Biodiversity Science(生物多样性), 21, 334-342. (in Chinese with English abstract)
[23] Macrae A (2000) The use of 16S rDNA methods in soil microbial ecology.Brazilian Journal of Microbiology, 31, 77-82.
[24] Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies.Bioinformatics, 27, 2957-2963.
[25] Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils.PLoS ONE, 6, e17000.
[26] Roesch LFW, Fulthorpe RR, Riva A, Casella G, Hadwin AKM, Kent AD, Daroub SH, Camargo FAO, Farmerie WG, Triplett EW (2007) Pyrosequencing enumerates and contrasts soil microbial diversity.The International Society for Microbial Ecology, 1, 283-290.
[27] Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. The International Society for Microbial Ecology, 4, 1340-1351.
[28] Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY (2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Biochemistry, 57, 204-211.
[29] Shi P (时鹏), Gao Q (高强), Wang SP (王淑平), Zhang Y (张妍) (2010) Effects of continuous cropping of corn and fertilization on soil microbial community functional diversity.Acta Ecologica Sinica(生态学报), 30, 6173-6182. (in Chinese with English abstract)
[30] Song CS (宋朝枢) (1994) Scientific Investigation in the Baotianman Nature Reserve (宝天曼自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese)
[31] Stackebrandt E, Goebel BM (1994) Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.International Journal of Systematic Bacteriology, 44, 846-849.
[32] Sun X (孙欣), Gao Y (高莹), Yang YF (杨云锋) (2013) Recent advancement in microbial environmental research using metagenomics tools.Biodiversity Science(生物多样性), 21, 393-400. (in Chinese with English abstract)
[33] Teng QH (滕齐辉), Cao H (曹慧), Cui ZL (崔中利), Wang Y (王英), Sun B (孙波), Hao HT (郝红涛), Li SP (李顺鹏) (2006) PCR-RFLP analysis of bacterial 16S rDNA from a typical garden soil in Taihu region.Biodiversity Science(生物多样性), 14, 345-351. (in Chinese with English abstract)
[34] Tiedje JM, Asuming-Brempong S, Nüsslein K, Marsh TL, Flynn SJ (1999) Opening the black box of soil microbial diversity.Applied Soil Ecology, 13, 109-122.
[35] van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems.Ecology Letters, 11, 296-310.
[36] Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics.PLoS Computational Biology, 6, e1000667.
[37] Wu ZY (吴则焰), Lin WX (林文雄), Chen ZF (陈志芳), Fang CX (方长旬), Zhang ZX (张志兴), Wu LK (吴林坤), Zhou MM (周明明), Chen T (陈婷) (2013) Variations of soil microbial community diversity along an elevational gradient in mid-subtropical forest.Chinese Journal of Plant Ecology(植物生态学报), 37, 397-406. (in Chinese with English abstract)
[38] Yang GP (杨官品), Nan L (男兰), Jia HB (贾海波), Zhu YH (朱艳红), Liu YJ (刘英杰), Zhang K (张凯) (2000) Bacterial genetic diversity in soils and their correlation with vegetation.Acta Genetica Sinica(遗传学报), 27, 278-282. (in Chinese with English abstract)
[39] Yuan YL, Si GC, Wang J, Luo TX, Zhang GX (2014) Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbiology Ecology, 87, 121-132.
[40] Zhang JP (张建萍), Dong NY (董乃源), Yu HB (余浩滨), Zhou YJ (周勇军), Lu YL (陆永良), Geng RM (耿锐梅), Yu LQ (余柳青) (2008) Bacteria diversity in paddy field soil by 16S rDNA-RFLP analysis in Ningxia.Biodiversity Science(生物多样性), 16, 586-592. (in Chinese with English abstract)
[41] Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014a) Community structure and elevational diversity patterns of soil Acidobacteria.Journal of Environmental Sciences, 26, 1717-1724.
[42] Zhang YG, Cong J, Lu H, Yang CY, Yang YF, Zhou JZ, Li DQ (2014b) An integrated study to analyze soil microbial community structure and metabolic potential in two forest types.PLoS ONE, 9, e93773.
[43] Zhao XL (赵先丽), Zhou GS (周广胜), Zhou L (周莉), Lv GH (吕国红), Jia QY (贾庆宇), Xie YB (谢艳兵) (2007) A preliminary study on soil microorganism in Panjin reed wetland.Journal of Meteorology and Environment(气象与环境学报), 23, 30-33. (in Chinese with English abstract)
[1] 桂旭君, 练琚愉, 张入匀, 李艳朋, 沈浩, 倪云龙, 叶万辉. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6): 619-629.
[2] 张雪, 李兴安, 苏秦之, 曹棋钠, 李晨伊, 牛庆生, 郑浩. 用于蜜蜂和熊蜂肠道微生物分类的细菌16S rRNA数据库优化[J]. 生物多样性, 2019, 27(5): 557-566.
[3] 刘山林. DNA条形码参考数据集构建和序列分析相关的新兴技术[J]. 生物多样性, 2019, 27(5): 526-533.
[4] 陈志祥, 姚雪莹, Stephen R.Downie, 王奇志. 直刺变豆菜叶绿体全基因组及其特征[J]. 生物多样性, 2019, 27(4): 366-372.
[5] 冯婵莹, 郑成洋, 田地. 氮添加对森林植物磷含量的影响及其机制[J]. 植物生态学报, 2019, 43(3): 185-196.
[6] 温纯,金光泽. 功能多样性对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2019, 43(2): 94-106.
[7] 张振振, 赵平, 张锦秀, 斯瑶. 亚热带常绿阔叶林散孔材和环孔材树种导管及叶片功能性状的比较[J]. 植物生态学报, 2019, 43(2): 131-138.
[8] 李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧. 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响[J]. 植物生态学报, 2019, 43(2): 174-184.
[9] 池秀莲,王庆刚,郭强,杨弦,唐志尧. 古田山常绿阔叶林不同演替群落的萌生特征[J]. 生物多样性, 2019, 27(1): 24-32.
[10] 翁昌露,张田田,巫东豪,陈声文,金毅,任海保,于明坚,罗媛媛. 古田山10种主要森林群落类型的α和β多样性格局及影响因素[J]. 生物多样性, 2019, 27(1): 33-41.
[11] 李通,李俊凝,魏玉莲. 古田山国家级自然保护区木腐真菌物种多样性及分布[J]. 生物多样性, 2019, 27(1): 81-87.
[12] 窦丽娜, 张文富, 邓晓保, 曹敏, 唐勇. 西双版纳望天树林种子雨9年动态[J]. 生物多样性, 2018, 26(9): 919-930.
[13] 雷学明, 沈芳芳, 雷学臣, 刘文飞, 段洪浪, 樊后保, 吴建平. 模拟氮沉降和灌草去除对杉木人工林地土壤微生物群落结构的影响[J]. 生物多样性, 2018, 26(9): 962-971.
[14] 刘安榕, 杨腾, 徐炜, 上官子健, 王金洲, 刘慧颖, 时玉, 褚海燕, 贺金生. 青藏高原高寒草地地下生物多样性: 进展、问题与展望[J]. 生物多样性, 2018, 26(9): 972-987.
[15] 邓云, 王彬, 李强, 张志明, 邓晓保, 曹敏, 林露湘. 轻小型无人机航摄技术辅助的热带森林样地测量精度问题探讨[J]. 生物多样性, 2018, 26(8): 892-904.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed