Biodiv Sci ›› 2010, Vol. 18 ›› Issue (6): 615-621. DOI: 10.3724/SP.J.2010.615
Special Issue: 外来物种入侵:机制、影响与防控; 生物入侵
• Articles • Previous Articles Next Articles
Kun Wang, Ji Yang, Jiakuan Chen*()
Received:
2010-04-22
Accepted:
2010-09-26
Online:
2010-11-20
Published:
2011-01-31
Contact:
Jiakuan Chen
Kun Wang, Ji Yang, Jiakuan Chen. Comparison of morphological traits between alligator weed and two congeners under different water and nutrient conditions[J]. Biodiv Sci, 2010, 18(6): 615-621.
Fig. 1 Effects of environmental factors on biomass of three studied species, Alternanthera philoxeroides, A. pungens and A. sessilis. Different small letters indicate significant differences (P<0.05) among species in the same soil condition.
性状 Traits | 数据 转换 Data trans | 物种 Species | 水分 Water availability | 营养 Nutrient level | 物种×水分 Species×water | 物种×营养 Species×nutrient | 水分×营养 Water×nutrient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
生物量 Biomass | -- | 21.089 | 0.000 | 658.408 | 0.000 | 3451.420 | 0.000 | 179.623 | 0.000 | 103.106 | 0.000 | 67.504 | 0.000 | |||||
比叶面积 SLA | -- | 87.535 | 0.000 | 3.208 | 0.000 | 13.020 | 0.000 | 2.971 | 0.000 | 0.151 | 0.000 | 5.727 | 0.018 | |||||
叶面积 Leaf area | -- | 20.714 | 0.000 | 382.271 | 0.000 | 1236.911 | 0.000 | 13.553 | 0.000 | 15.485 | 0.000 | 0.483 | 0.489 | |||||
叶质量 Leaf mass | $\sqrt{x}$ | 87.931 | 0.000 | 180.221 | 0.000 | 503.897 | 0.000 | 0.881 | 0.418 | 6.235 | 0.000 | 0.389 | 0.534 | |||||
节间长 Internode length | log(x) | 404.691 | 0.000 | 205.384 | 0.000 | 219.201 | 0.000 | 44.146 | 0.000 | 14.689 | 0.000 | 3.376 | 0.069 | |||||
茎直径 Stem diameter | Log(x) | 508.679 | 0.000 | 237.240 | 0.000 | 260.662 | 0.000 | 51.080 | 0.000 | 19.651 | 0.003 | 3.685 | 0.058 |
Table 1 Effects of species (n = 3), water availability (n = 2) and nutrient levels (n = 2) on traits of three Alternanthera species (Three-way ANOVA)
性状 Traits | 数据 转换 Data trans | 物种 Species | 水分 Water availability | 营养 Nutrient level | 物种×水分 Species×water | 物种×营养 Species×nutrient | 水分×营养 Water×nutrient | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F | P | F | P | F | P | F | P | F | P | F | P | |||||||
生物量 Biomass | -- | 21.089 | 0.000 | 658.408 | 0.000 | 3451.420 | 0.000 | 179.623 | 0.000 | 103.106 | 0.000 | 67.504 | 0.000 | |||||
比叶面积 SLA | -- | 87.535 | 0.000 | 3.208 | 0.000 | 13.020 | 0.000 | 2.971 | 0.000 | 0.151 | 0.000 | 5.727 | 0.018 | |||||
叶面积 Leaf area | -- | 20.714 | 0.000 | 382.271 | 0.000 | 1236.911 | 0.000 | 13.553 | 0.000 | 15.485 | 0.000 | 0.483 | 0.489 | |||||
叶质量 Leaf mass | $\sqrt{x}$ | 87.931 | 0.000 | 180.221 | 0.000 | 503.897 | 0.000 | 0.881 | 0.418 | 6.235 | 0.000 | 0.389 | 0.534 | |||||
节间长 Internode length | log(x) | 404.691 | 0.000 | 205.384 | 0.000 | 219.201 | 0.000 | 44.146 | 0.000 | 14.689 | 0.000 | 3.376 | 0.069 | |||||
茎直径 Stem diameter | Log(x) | 508.679 | 0.000 | 237.240 | 0.000 | 260.662 | 0.000 | 51.080 | 0.000 | 19.651 | 0.003 | 3.685 | 0.058 |
Fig. 2 Difference in leaf size, leaf weight, length of internodes and stem diameter of Alternanthera philoxeroides, A. pungens and A. sessilis among different environmental conditions.
喜旱莲子草 A. philoxeroides | 刺花莲子草 A. pungens | 莲子草 A. sessilis | |
---|---|---|---|
叶面积 Leaf area | 0.621 | 0.519 | 0.468 |
叶质量 Leaf mass | 0.592 | 0.462 | 0.454 |
节间长 Internode length | 0.639 | 0.357 | 0.293 |
茎直径 Stem diameter | 0.597 | 0.573 | 0.389 |
Table 2 Values of phenotypic plasticity of three species, Alternanthera philoxeroides, A. pungens and A. sessilis
喜旱莲子草 A. philoxeroides | 刺花莲子草 A. pungens | 莲子草 A. sessilis | |
---|---|---|---|
叶面积 Leaf area | 0.621 | 0.519 | 0.468 |
叶质量 Leaf mass | 0.592 | 0.462 | 0.454 |
节间长 Internode length | 0.639 | 0.357 | 0.293 |
茎直径 Stem diameter | 0.597 | 0.573 | 0.389 |
Fig. 3 Specific leaf area (SLA) of three studied species in different soil conditions. Different small letters indicate significant differences (P< 0.05) among species in the same soil condition, Alternanthera philoxeroides, A. pungens and A. sessilis.
[1] | Agrawal AA, Kotanen PM (2003) Herbivores and the success of exotic plants: a phylogenetically controlled experiment. Ecology Letters, 6, 712-715. |
[2] | Baret S, Maurice S, Le Bourgeois T, Strasberg D (2004) Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Reunion Island. Plant Ecology, 172, 265-273. |
[3] | Bellingham PJ, Duncan RP, Lee WG, Buxton RP (2004) Seedling growth rate and survival do not predict invasiveness in naturalized woody plants in New Zealand. Oikos, 106, 308-316. |
[4] |
Burns JH (2004) A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Diversity and Distributions, 10, 387-397.
DOI URL |
[5] | Burns JH (2006) Relatedness and environment affect traits associated with invasive and non-invasive introduced Commelinaceae. Ecological Applications, 16, 1367-1376. |
[6] | Daehler CC (2003) Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology Evolution and Systematics, 34, 183-211. |
[7] |
Feng YL (2008) Photosynthesis, nitrogen allocation and specific leaf area in invasive Eupatorium adenophorum and native Eupatorium japonicum grown at different irradiances. Physiologia Plantarum, 133, 318-326.
URL PMID |
[8] |
Feng YL, Fu GL, Zheng YL (2008) Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies between invasive and noninvasive alien congeners. Planta, 228, 383-390.
DOI URL PMID |
[9] | Garland T, Adolph SC (1994) Why not to do two-species comparative studies: limitations on inferring adaptation. Physiological Zoology, 67, 797-828. |
[10] | Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2006) Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta Oecologica, 30, 380-385. |
[11] | Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK (2007) Plasticity and ontogenetic drift of biomass allocation in response to above- and below-ground resource availabilities in perennial herbs: a case study of Alternanthera philoxeroides. Ecological Research, 22, 255-260. |
[12] | Gerlach JD, Rice KJ (2003) Testing life history correlates of invasiveness using congenetic plant species. Ecological Applications, 13, 167-179. |
[13] |
Grotkopp E, Rejmanek M, Rost TL (2002) Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine ( Pinus) species. The American Naturalist, 159, 396-419.
URL PMID |
[14] | Grotkopp E, Rejmanek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. American Journal of Botany, 94, 526-532. |
[15] | Hwang BC, Lauenroth WK (2008) Effect of nitrogen, water and neighbor density on the growth of Hesperis matronalis and two native perennials. Biological Invasions, 10, 771-779. |
[16] | Julien M, Skarratt B, Maywald GF (1995) Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila. Journal of Aquatic Plant Management, 33, 55-60. |
[17] | Kong XW (孔宪武), Jian ZP (简焯坡) (1979) Chenopodiaceae and Amaranthaceae. In: Flora Reipublicae Popularis Sinicae, Tomus 25(2) (中国植物志第25卷第2分册) (ed. Delectis Florae Reipublicae Popularis Sinicae Agendae Academicae Sinicae Edita (中国科学院中国植物志编辑委员会), pp. 234-236. Science Press, Beijing. (in Chinese) |
[18] | Leicht-Young SA, Silander JA, Latimer AM (2007) Comparative performance of invasive and native Celastrus species across environmental gradients. Oecologia, 154, 273-282. |
[19] | Li B (李博), Chen JK (陈家宽) (2002) Ecology of biological invasions: achievements and challenges. World Science- Technology Research & Development (世界科技研究与发展), 24(2), 26-36. (in Chinese with English abstract) |
[20] | Li MC (李明财), Zhu JJ (朱教君), Sun YR (孙一荣) (2009) Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity. Chinese Journal of Ecology (生态学杂志), 28, 1437-1442. (in Chinese with English abstract) |
[21] | Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications, 10, 689-710. |
[22] | Pan XY, Geng YP, Xu CY, Zhang WJ, Li B, Chen JK (2006) The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta Oecologica, 30, 333-341. |
[23] | Pan XY (潘晓云), Geng YP (耿宇鹏), Sosa AJ, Zhang WJ (张文驹), Li B (李博), Chen JK (陈家宽) (2007) Invasive Alternanthera philoxeroides: biology, ecology and management. Acta Phytotaxonomica Sinica (植物分类学报), 45, 884-900. (in Chinese with English abstract) |
[24] | Rejmanek M, Richardson DV (1996) What attributes make some plant species more invasive? Ecology, 77, 1655-1661. |
[25] |
Thompson JD (1991) The biology of an invasive plant: what makes Spartina anglica so successful. BioScience, 41, 393-401.
DOI URL |
[26] | Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW (2000) Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology, 81, 1925-1936. |
[27] | Wang K (王坤), Yang J (杨继), Chen JK (陈家宽) (2009) The applications of congeneric comparisons in plant invasion ecology. Biodiversity Science (生物多样性), 17, 353-361. (in Chinese with English abstract) |
[28] | Williams DG, Mack RN, Black RA (1995) Ecophysiology of introduced Pennisetum setaceum on Hawaii: the role of phenotypic plasticity. Ecology, 6, 1569-1580. |
[29] | Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543. |
[30] | Wu XC (吴晓成), Zhang QL (张秋良), Zang RG (臧润国), Lei QZ (雷庆哲) (2009) Leaf area index and specific leaf area of natural poplars in Ergis Basin. Journal of Northwest Forestry University (西北林业大学学报), 24, 10-15. (in Chinese with English abstract) |
[31] |
Zheng YL, Feng YL, Liu WX, Liao ZY (2009) Growth, biomass allocation, morphology, and photosynthesis of invasive Eupatorium adenophorum and its native congeners grown at four irradiances. Plant Ecology, 203, 263-271.
DOI URL |
[1] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[2] | Teng Wang, Chunhou Li, Hua Wang, Jinfa Zhao, Juan Shi, Hongyu Xie, Yong Liu, Yu Liu. Species composition and succession of coral reef fishes in Qilianyu Island of the Xisha Archipelago [J]. Biodiv Sci, 2024, 32(6): 23481-. |
[3] | Fuwei Zhao, Yingshuo Li, Hui Chen. Reflections on biodiversity legislation in China’s new era [J]. Biodiv Sci, 2024, 32(5): 24027-. |
[4] | Lejie Wu, Zekang Liu, Xing Tian, Qun Zhang, Bo Li, Jihua Wu. Effects of genotypic diversity on vegetative growth and reproductive strategies of Scirpus mariqueter population [J]. Biodiv Sci, 2024, 32(4): 23478-. |
[5] | Yongcai Wang, Huawei Wan, Jixi Gao, Zhuowei Hu, Chenxi Sun, Na Lü, Zhiru Zhang. Identification of common native grassland plants in northern China using deep learning [J]. Biodiv Sci, 2024, 32(4): 23435-. |
[6] | Fengming Wan, Huawei Wan, Zhiru Zhang, Jixi Gao, Chenxi Sun, Yongcai Wang. The application potential of unmanned aerial vehicle surveys in grassland plant diversity [J]. Biodiv Sci, 2024, 32(3): 23381-. |
[7] | Suo Di, Yu Ruoxi, Li Yuanhui, Xu Jiliang. Problem review and optimization path of local legislation in nature reserves in China based on empirical analysis [J]. Biodiv Sci, 2024, 32(2): 23287-. |
[8] | Xiaodan Tan, Peng Zhang, Sirui Zhu, Xiang Liu, Shurong Zhou, Mu Liu. Effect of shrub encroachment on insect herbivory of Polygonum macrophyllum in alpine meadow of Qinghai-Xizang Plateau [J]. Biodiv Sci, 2024, 32(1): 23417-. |
[9] | Zhengming Luo, Jinxian Liu, Bianhua Zhang, Yanying Zhou, Aihua Hao, Kai Yang, Baofeng Chai. Diversity characteristics and driving factors of soil protist communities in subalpine meadow at different degradation stages [J]. Biodiv Sci, 2023, 31(8): 23136-. |
[10] | Qiujie Zhao, Huijun Guo, Guangtao Meng, Mingchuan Zhong, Jun Yin, Zhuocheng Liu, Pinrong Li, Li Chen, Yi Tao, Sheng Qiu, Hong Wang, Yanhui Zhao. Effects of grazing on bees and suggestions for its ecological restoration [J]. Biodiv Sci, 2023, 31(5): 23037-. |
[11] | Hong Chen, Xiaoqing Xian, Yixue Chen, Na Lin, Miaomiao Wang, Zhipeng Li, Jian Zhao. Spatial pattern and driving factors on the prevalence of red imported fire ant (Solenopsis invicta) in island cities: A case study of Haitan Island, Fujian [J]. Biodiv Sci, 2023, 31(5): 22501-. |
[12] | Yanqiu Xie, Hui Huang, Chunxiao Wang, Yaqin He, Yixuan Jiang, Zilin Liu, Chuanyuan Deng, Yushan Zheng. Determinants of species-area relationship and species richness of coastal endemic plants in the Fujian islands [J]. Biodiv Sci, 2023, 31(5): 22345-. |
[13] | Xinyang Zhou, Yutao Wang, Jianping Li. Response of plant community composition to precipitation changes in typical grasslands in the Loess Plateau [J]. Biodiv Sci, 2023, 31(3): 22118-. |
[14] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[15] | Hao Wu, Yurong Yu, Jiayu Wang, Yuanbo Zhao, Yafei Gao, Xiaoling Li, Guijun Bu, Dan Xue, Lin Wu. Lower water table increase shrub plant diversity and biomass but decrease soil organic carbon content: A case study of oligotrophic peatland in the Southwestern Hubei Province [J]. Biodiv Sci, 2023, 31(3): 22600-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn