Biodiv Sci ›› 2024, Vol. 32 ›› Issue (4): 23435. DOI: 10.17520/biods.2023435 cstr: 32101.14.biods.2023435
• Technology and Methodology • Previous Articles Next Articles
Yongcai Wang1, Huawei Wan2, Jixi Gao2,*(), Zhuowei Hu1,*(), Chenxi Sun2, Na Lü2, Zhiru Zhang2
Received:
2023-11-15
Accepted:
2024-03-30
Online:
2024-04-20
Published:
2024-05-17
Contact:
* E-mail: Yongcai Wang, Huawei Wan, Jixi Gao, Zhuowei Hu, Chenxi Sun, Na Lü, Zhiru Zhang. Identification of common native grassland plants in northern China using deep learning[J]. Biodiv Sci, 2024, 32(4): 23435.
模型 Model | 测试集 Test | 验证集 Valid | ||
---|---|---|---|---|
Top1 (%) | Top5 (%) | Top1 (%) | Top5 (%) | |
Eva-02 | 96.78 | 99.17 | 96.25 | 99.11 |
MobileViTv2 | 94.29 | 98.93 | 93.97 | 98.83 |
ResNet-RS | 95.57 | 98.79 | 95.34 | 98.78 |
MobileNetV3 | 91.53 | 97.56 | 91.30 | 97.85 |
Table 1 The recognition accuracy for all four models of Eva-02, MobileViTv2, ResNet-RS, and MobileNetV3
模型 Model | 测试集 Test | 验证集 Valid | ||
---|---|---|---|---|
Top1 (%) | Top5 (%) | Top1 (%) | Top5 (%) | |
Eva-02 | 96.78 | 99.17 | 96.25 | 99.11 |
MobileViTv2 | 94.29 | 98.93 | 93.97 | 98.83 |
ResNet-RS | 95.57 | 98.79 | 95.34 | 98.78 |
MobileNetV3 | 91.53 | 97.56 | 91.30 | 97.85 |
模型 Model | 参数量 Params (M) | 裁剪大小 Crop size | 每秒浮点运 算次数 Flops | 每秒样本数 Samples/s |
---|---|---|---|---|
Eva-02 | 303.78 | 448,448 | 310.15 G | 29.62 |
MobileViTv2 | 18.40 | 384,384 | 16.09 G | 197.14 |
ResNet-RS | 93.21 | 256,256 | 20.26 G | 84.62 |
MobileNetV3 | 4.17 | 256,256 | 280.44 M | 200.12 |
Table 2 The parameter size and inference performance for all four models of Eva-02, MobileViTv2, ResNet-RS, and MobileNetV3
模型 Model | 参数量 Params (M) | 裁剪大小 Crop size | 每秒浮点运 算次数 Flops | 每秒样本数 Samples/s |
---|---|---|---|---|
Eva-02 | 303.78 | 448,448 | 310.15 G | 29.62 |
MobileViTv2 | 18.40 | 384,384 | 16.09 G | 197.14 |
ResNet-RS | 93.21 | 256,256 | 20.26 G | 84.62 |
MobileNetV3 | 4.17 | 256,256 | 280.44 M | 200.12 |
Fig. 4 The number of species with recognition accuracy exceeding 90% in both Top1 and Top5 for all four models of Eva-02, MobileViTv2, ResNet-RS, and MobileNetV3
模型 Model | 识别植物种类 Recognized plant species | Top1 (%) | Top5 (%) |
---|---|---|---|
Pl@ntNet | 207 | 15.14 | 26.51 |
百度识图 Baidu-Shitu | 509 | 56.12 | 73.59 |
花伴侣 HuaBanLv | 569 | 41.08 | 62.87 |
Table 3 The recognition results of three plant identification systems on the test dataset
模型 Model | 识别植物种类 Recognized plant species | Top1 (%) | Top5 (%) |
---|---|---|---|
Pl@ntNet | 207 | 15.14 | 26.51 |
百度识图 Baidu-Shitu | 509 | 56.12 | 73.59 |
花伴侣 HuaBanLv | 569 | 41.08 | 62.87 |
[1] | Alzubaidi L, Zhang JL, Humaidi AJ, Al-Dujaili A, Duan Y, Al-Shamma O, Santamaría J, Fadhel MA, Al-Amidie M, Farhan L (2021) Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8, 1-74. |
[2] | Belhumeur PN, Chen DZ, Feiner S, Jacobs DW, Kress WJ, Ling HB, Lopez I, Ramamoorthi R, Sheorey S, White S, Zhang L (2008) Searching the world’s herbaria:A system for visual identification of plant species. In: European Conference on Computer Vision (eds Forsyth D, Torr P, Zisserman A), pp. 116-129. Springer, Berlin. |
[3] | Bello I, Fedus W, Du XZ, Cubuk ED, Srinivas A, Lin TY, Shlens J, Zoph B (2021) Revisiting ResNets: Improved training and scaling strategies. Advances in Neural Information Processing Systems, 34, 22614-22627. |
[4] | Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA (2020) Albumentations: Fast and flexible image augmentations. Information, 11, 125. |
[5] | Chytrý M, Schaminée JHJ, Schwabe A (2011) Vegetation survey: A new focus for Applied Vegetation Science. Applied Vegetation Science, 14, 435-439. |
[6] | Donahue J, Jia YQ, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: A deep convolutional activation feature for generic visual recognition. Proceedings of the 31st International Conference on International Conference on Machine Learning, 32, 647-655. |
[7] | Elhariri E, El-Bendary N, Hassanien AE (2014) Plant classification system based on leaf features. In: 2014 9th International Conference on Computer Engineering & Systems (ICCES), pp. 271-276. IEEE, Cairo, Egypt. |
[8] | Fang YX, Sun Q, Wang XG, Huang TJ, Wang XL, Cao Y (2023) Eva-02: A visual representation for neon genesis. ArXiv, doi: 2303.11331. |
[9] | Garcin C, Joly A, Bonnet P, Lombardo JC, Affouard A, Chouet M, Salmon J (2021) Pl@ntNet-300K:A plant image dataset with high label ambiguity and a long-tailed distribution. In: NeurIPS 2021—35th Conference on Neural Information Processing Systems. Online. |
[10] | Gao HY, Gao XH, Feng QS, Li WL, Lu Z, Liang TG (2020) Approach to plant species identification in natural grasslands based on deep learning. Pratacultural Science, 37, 1931-1939. (in Chinese with English abstract) |
[高宏元, 高新华, 冯琦胜, 李文龙, 鲁征, 梁天刚 (2020) 基于深度学习的天然草地植物物种识别方法. 草业科学, 37, 1931-1939.] | |
[11] | Goëau H, Bonnet P, Joly A (2022) Overview of PlantCLEF 2022:Image-based plant identification at global scale. In: Conference and Labs of the Evaluation Forum (CLEF) (Working Notes), pp. 1916-1928. Bologna, Italy. |
[12] | Goëau H, Joly A, Bonnet P, Selmi S, Molino JF, Barthélémy D, Boujemaa N (2014) LifeCLEF plant identification task 2014. In: Conference and Labs of the Evaluation Forum (CLEF), pp. 598-615. Sheffield, UK. |
[13] | Gyires-Tóth BP, Osváth M, Papp D, Szűcs G (2019) Deep learning for plant classification and content-based image retrieval. Cybernetics and Information Technologies, 19, 88-100. |
[14] | Han K, Wang Y, Chen H, Chen X, Guo J, Liu Z, Tang Y, Xiao A, Xu C, Yang Z, Zhang Y, Tao D (2022) A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 87-110. |
[15] | Hart AG, Bosley H, Hooper C, Perry J, Sellors-Moore J, Moore O, Goodenough AE (2023) Assessing the accuracy of free automated plant identification applications. People and Nature, 5, 929-937. |
[16] | Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang W, Zhu Y, Pang R, Vasudevan V, Le Q, Adam H (2019) Searching for MobileNetv3. In: Proceedings of the IEEE/CVF international conference on computer vision, pp. 1314-1324. |
[17] | Joly A, Bonnet P, Goëau H, Barbe J, Selmi S, Champ J, Dufour-Kowalski S, Affouard A, Carré J, Molino JF, Boujemaa N, Barthélémy D (2016) A look inside the Pl@ntNet experience: The good, the bias and the hope. Multimedia Systems, 22, 751-766. |
[18] | Joly A, Goëau H, Glotin H, Spampinato C, Bonnet P, Vellinga WP, Planque R, Rauber A, Fisher B, Müller H (2014) LifeCLEF:Multimedia life species identification. In: Environmental Multimedia Retrieval, pp. 7-13. Sheffield, UK. |
[19] | Joly A, Goëau H, Kahl S, Picek L, Lorieul T, Cole E, Šulc M (2022) LifeCLEF 2022 teaser: An evaluation of machine- learning based species identification and species distribution predictio. In: European Conference on Information Retrieval, pp. 390-399. Springer International Publishing, Cham. |
[20] |
Kong JX, Zhang ZC, Zhang J (2019) Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect. Biodiversity Science, 27, 796-812. (in Chinese with English abstract)
DOI |
[孔嘉鑫, 张昭臣, 张健 (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27, 796-812.]
DOI |
|
[21] | Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JV (2012) Leafsnap: A computer vision system for automatic plant species identification, pp. 502-516. Springer, Berlin. |
[22] | Lewkowycz A (2021) How to decay your learning rate. arXiv, doi: 2103.12682. |
[23] | Li M (2018) “flower partners”: A new medium of knowledge service in the era of artificial intelligence. Publishing Reference, (8), 23-24. (in Chinese) |
[李敏 (2018) “花伴侣”:人工智能时代知识服务的新媒介. 出版参考, (8), 23-24.] | |
[24] | Mehta S, Rastegari M (2022) Separable self-attention for mobile vision transformers. arXiv, doi: 2206.02680. |
[25] | Munisami T, Ramsurn M, Kishnah S, Pudaruth S (2015) Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers. Procedia Computer Science, 58, 740-747. |
[26] | Parr CS, Wilson MN, Leary MP, Schulz KS, Lans MK, Walley ML, Corrigan Jr MRJ (2014) The Encyclopedia of Life v2: Providing global access to knowledge about life on earth. Biodiversity Data Journal, 2, e1079. |
[27] | Picek L, Šulc M, Matas J, Heilmann-Clausen J, Jeppesen TS, Lind E (2022a) Automatic fungi recognition: Deep learning meets mycology. Sensors, 22, 633. |
[28] | Picek L, Šulc M, Patel Y, Matas J (2022b) Plant recognition by AI: Deep neural nets, transformers, and kNN in deep embeddings. Frontiers in Plant Science, 13, 787527. |
[29] | Prasad S, Kudiri KM, Tripathi RC (2011) Relative sub-image based features for leaf recognition using support vector machine. In:Proceedings of the 2011 International Conference on Communication, Computing & Security, 343-346. |
[30] | Rahman A, Khanom A (2013) Taxonomic and ethno-medicinal study of species from Moraceae (mulberry) family in Bangladesh Flora. Research in Plant Sciences, 1(3), 53-57. |
[31] | Robertson T, Döring M, Guralnick R, Bloom D, Wieczorek J, Braak K, Desmet P (2014) The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS ONE, 9, e102623. |
[32] | Rzanny M, Wittich HC, Mäder P, Deggelmann A, Boho D, Wäldchen J (2022) Image-based automated recognition of 31 Poaceae species: The most relevant perspectives. Frontiers in Plant Science, 12, 804140. |
[33] | Shalev-Shwartz S, Ben-David S (2014) Understanding Machine Learning:From Theory to Algorithms. Cambridge University Press, Cambridge. |
[34] | Sharif Razavian A, Azizpour H, Sullivan J, Carlsson S (2014) CNN features off-the-shelf: An astounding baseline for recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 806-813. |
[35] | Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv, doi: 1409.1556. |
[36] | Song G, Wang Q (2023) Species classification from hyperspectral leaf information using machine learning approaches. Ecological Informatics, 76, 102141. |
[37] | Sun Y, Liu Y, Wang G, Zhang H (2017) Deep learning for plant identification in natural environment. Computational Intelligence and Neuroscience, 2017, 2-4. |
[38] |
Šulc M, Matas J (2017) Fine-grained recognition of plants from images. Plant Methods, 13, 115.
DOI PMID |
[39] | Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A (2014) Going deeper with convolutions. arXiv, doi: 1409.4842v1. |
[40] | Van Horn G, Mac Aodha O, Song Y, Cui Y, Sun C, Shepard A, Belongie S (2018) The iNaturalist Species Classification and Detection Dataset-Supplementary Material. Reptilia, 32, 1-3. |
[41] | Wang JX (2019) Research on the communication effect of “Huajian” article on shape-color App based on “5W” communication mode. Audio-Visual, 142(2), 131-132. (in Chinese) |
[王加希 (2019) 基于“5W”传播模式对形色App “花间”文章传播效果的探究. 视听, 142(2), 131-132.] | |
[42] | Wäldchen J, Mäder P (2018) Machine learning for image based species identification. Methods in Ecology and Evolution, 9, 2216-2225. |
[43] |
Xu ZH, Liu SY, Zhao Y, Tu WQ, Chang ZF, Zhang ET, Guo J, Zheng D, Geng J, Gu GY, Guo CP, Guo LL, Wang J, Xu CY, Peng C, Yang T, Cui MQ, Sun WC, Zhang JT, Liu HT, Ba CQ, Wang HQ, Jia JC, Wu JZ, Xiao C, Ma KP (2020) Evaluation of the identification ability of eight commonly used plant identification application softwares in China. Biodiversity Science, 28, 524-533. (in Chinese with English abstract)
DOI |
[许展慧, 刘诗尧, 赵莹, 涂文琴, 常诏峰, 张恩涛, 郭靖, 郑迪, 耿鋆, 顾高营, 郭淳鹏, 郭璐璐, 王静, 徐春阳, 彭钏, 杨腾, 崔梦琪, 孙伟成, 张剑坛, 刘皓天, 巴超群, 王鹤琪, 贾竞超, 武金洲, 肖翠, 马克平 (2020) 国内8款常用植物识别软件的识别能力评价. 生物多样性, 28, 524-533.]
DOI |
|
[44] | Zhang S, Huang W, Huang YA, Zhang C (2020) Plant species recognition methods using leaf image: Overview. Neurocomputing, 408, 246-272. |
[1] | Yixin Sun, Chunyu Hou, Lei Zhou, Xue Wei, Jinhao Ma, Juan Xue, Xiaohan Li, Pengfei Wu. Effects of annual and perennial potted legume forages on soil nematode communities in the Qinghai-Xizang Plateau [J]. Biodiv Sci, 2024, 32(7): 24040-. |
[2] | Xingyuan Yin, Hui An, Binbin Xing, Shiyu Su, Zhilin Wen, Jianchao Guo, Xiaoping Liu, Bo Wang. Effects of nutrient addition and precipitation changes on the stability of aboveground and belowground biomass in desert grassland [J]. Biodiv Sci, 2024, 32(7): 24073-. |
[3] | Jianwei Cheng, Manhou Xu, Yongjing Dou, Yadong Wang, Yanan Wang, Xinmin Liu, Frank Yonghong Li. Seasonal dynamics of arthropod communities during horse dung decomposition in Inner Mongolian grasslands [J]. Biodiv Sci, 2024, 32(6): 24018-. |
[4] | Jiali Lian, Jing Chen, Xueqin Yang, Ying Zhao, Xu Luo, Cui Han, Yaxin Zhao, Jianping Li. Responses of desert steppe plant diversity and microbial diversity to precipitation change [J]. Biodiv Sci, 2024, 32(6): 24044-. |
[5] | Fengming Wan, Huawei Wan, Zhiru Zhang, Jixi Gao, Chenxi Sun, Yongcai Wang. The application potential of unmanned aerial vehicle surveys in grassland plant diversity [J]. Biodiv Sci, 2024, 32(3): 23381-. |
[6] | Zhengming Luo, Jinxian Liu, Bianhua Zhang, Yanying Zhou, Aihua Hao, Kai Yang, Baofeng Chai. Diversity characteristics and driving factors of soil protist communities in subalpine meadow at different degradation stages [J]. Biodiv Sci, 2023, 31(8): 23136-. |
[7] | Jianmin Cai, Peiyu He, Zhipeng Yang, Luying Li, Qijun Zhao, Fan Pan. A deep feature fusion-based method for bird sound recognition and its interpretability analysis [J]. Biodiv Sci, 2023, 31(7): 23087-. |
[8] | Qiujie Zhao, Huijun Guo, Guangtao Meng, Mingchuan Zhong, Jun Yin, Zhuocheng Liu, Pinrong Li, Li Chen, Yi Tao, Sheng Qiu, Hong Wang, Yanhui Zhao. Effects of grazing on bees and suggestions for its ecological restoration [J]. Biodiv Sci, 2023, 31(5): 23037-. |
[9] | Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su. Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning [J]. Biodiv Sci, 2023, 31(3): 22411-. |
[10] | Xinyang Zhou, Yutao Wang, Jianping Li. Response of plant community composition to precipitation changes in typical grasslands in the Loess Plateau [J]. Biodiv Sci, 2023, 31(3): 22118-. |
[11] | Xiaohu Shen, Xiangyu Zhu, Hongfei Shi, Chuanzhi Wang. Research progress of birdsong recognition algorithms based on machine learning [J]. Biodiv Sci, 2023, 31(11): 23272-. |
[12] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[13] | Chen Zeng, Yang Liu. Research progress on olfactory communication in the social behaviours of birds [J]. Biodiv Sci, 2022, 30(11): 22219-. |
[14] | Yan Xu, Congling Zhang, Ruijiao Jiang, Zifei Wang, Mengchen Zhu, Guochun Shen. UAV-based hyperspectral images and monitoring of canopy tree diversity [J]. Biodiv Sci, 2021, 29(5): 647-660. |
[15] | Yu Zhang, Luyu Wang, Changlin Xiang, Meichun Duan, Zhisheng Zhang. Effects of different grazing intensities on spider diversity in Saihanwula Grassland [J]. Biodiv Sci, 2021, 29(4): 467-476. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn